
SOLUTION REFERENCE: Comp/AD-Callout/25May/Red1/1.0

APPLICATION: Compiere ERP/CRM v2.5.0e on Oracle 9i

TOPIC: Yes! I Know What’s Application Dictionary and

Callout Coding

VERSION: 2.0

DATE: May, 2004, July(v2.0).

AUTHOR: red1

red1Compiere Workshop, Malaysia

EMAIL CONTACT redhuanoon@yahoo.com, red1@red1.org

CLIENT: No Pain No Gain Sports Centre,

MK Holdings Group

To Find What Others Want Is OK,
To Find What You Want Is Just Fantastic.

Copyright 2004 red1, red1.org, Malaysia 2

CONTENT

The Big Picture... 4

Client’s Requirements .. 4

Compiere – the Gap Muncher ... 4

The Application Dictionary.. 5

Developing with Eclipse.. 6

Callout Classes... 7

Tasks Index.. 8

Setting Up ... 9

Eclipse Setup.. 9

Importing Compiere Project.. 10

Running in Debug Mode... 12

Configuring Compiere ... 14

Configuring AD Reference... 14

Configuring AD Table and Column.. 16

Configuring AD Window.. 17

Configuring AD Menu.. 18

Configuring Resource Product .. 19

First Run.. 20

Customising Callout... 22

Eclipse in Action.. 22

Modifying CalloutSystem... 25

Closing .. 28

Appendix – VSchedulePanel.java amended ... 29

Copyright © 2004 red1, red1.org, Malaysia. All rights reserved. Any original material here can
be duplicated only with proper tribute as to its sources.
red1.org is dedicated to OPEN KNOWLEDGE – sharing of implementation and experience know-
how on an open basis. Global productivity will be faster and meaningful if such knowledge is freely
available and the learning pain and gap quickly reduced. The author only benefit from direct
consultancy work.
Other trademark benefactors in these documents are Compiere, Sun MicroSystems for Java, IBM
for Eclipse, Microsoft and Oracle.

This document is rendered in Acrobat PDF for more pleasant viewing

Copyright 2004 red1, red1.org, Malaysia 3

Is there one thing you can indulge in,

where you end up enriched, even the rest of us?

This brief exercise (if you can cut through the thick wood) seeks to instruct you on how to do some
Application Dictionary stuff, and really stretch a Callout. Along the way you also learn how to bring
the Compiere Source into Eclipse, and check out Resource Assignment and its cool Info Schedule.

- advertising space –
(a form of donation, dummy)

Copyright 2004 red1, red1.org, Malaysia 4

The Big Picture
Client’s Requirements
The second part of the Client’s need I wrote about earlier, (refer POSred.zip) requires the
Application to manage their Facilities bookings and sales. The main facilities are 4 courts that can be
converted within 5 minutes to play games such as Futsal, Basketball, Volleyball and Netball. They
are open from 10am till midnight.

Customers will call up the Sports Centre and inquire about the available time slots for these courts.
Some want to have the court for 2 hrs, some wants it for 1 ½ hrs. Most want to play during after-
office hours. So, this leaves the office hours as non-peak hours. Peak hours are charged at RM100.
Non-peak at RM55.

When the booking is made, the Schedule Info must display the name of the customer, the contact
phone number, the type of game and other miscellaneous details. The Operations crew uses the game
type info to prepare the court with the respective equipment.

When the customer arrives, the Sales Order screen must pull up the info easily for payment to be
made. An invoice receipt is to be printed in triplicate. Even when a follow-up inquiry is made, the
system must be robust and provide info on what booking is there, for what game and when, without
bothering the customer to verbalise further. If there are change requests, or cancellations, the
schedule must be updated. Other PCs in the network must access the same info real-time too. The
users of the PCs should not be able to access other Point of Sales information or other financial
processes.

Compiere – the Gap Muncher
The good news is that Compiere has an inbuilt Schedule Info with time slots. However there are
bound to be some gaps that can’t meet exact needs. The better news is that with Open Source, where
the codes are available and well designed and documented, meeting the needs are desired rather than
feared. Gaps meet its end when a developer meets the codes. It is highly gratfying, making the codes
munch away the gaps wherever you find them.

Now lets savour the gaps. Firstly you have to change lots of standard Compiere labels to those that
define the Client’s business. Now isn’t this exactly what the Application Dictionary (AD) is
designed for? As we continue stating the other needs, we will enclose the Compiere equivalent in
brackets to show you what we will be changing from - that we are on the same screen, so to speak.
When you select the Facility (Resource Assignment product field (Sales Order Window, Orderline
Tab)), it pops up another window expecting you to fill in the same name and phone number of the
Customer (Business Partner) you are assigning that resource to. We shall program those pop fields to
be auto-populated. That will be done through the Callout pattern in Compiere. To pin the game type
to the order, we shall use a pull down menu selection (AD Reference List). For login by the Front
Desk Executive (Sales Rep), she won’t be able to access the back-end of the system (User / Role).

Another thing about the Schedule Info screen, the opening period doesn’t cover midnight properly. It
thinks that midnight is the same as 0 hr in the morning which is true, if you remove the date context.
So what happens is that the slot array collapses when you have a 0hr to 12 midnight time-frame.
Closing at 11.58pm will trick it into not collapsing. But then the 11pm slot thinks that it is not open
and paints ‘unavailable’ over it!

Copyright 2004 red1, red1.org, Malaysia 5

The Application Dictionary
How do we remove coding work from the application? We first have to understand the behaviour of
applications. Well, the fundamental work of an application is to process data, usually taking them
from tables and putting them back into Tables. All that is done via an interface which we know as
Windows. Let’s use our imagination to separate what doesn’t change from what will keep-changing.
Fundamentally Windows display what and how we want to see things. The keep-changing elements
are the look and feel, the arrangement of windows, tabs, and fields, and the reports.

The universal stuff such as create new, goto next record, trash this record, search for that nameless
thingy is a constant and don’t seem to change. The hooks for those tasks always remain on the menu
and stays there so much so you forgot about them.

The next keep-changings are business rules or logic that concerns what-to-dos after or before
fetching some data. Smart thinking has kept them contained in the middle tier away from the well-
designed database level. On how that middle organises itself we shall leave it for another day.

Compiere attempts to absorb all these changes as much as it can through the use of metadata. Its data
about data. Or to be exact more humane codes that replaces less humane codes. So instead of coding
the interface changes entirely in a polynesian sounding Java codes, we just give instructions to
another more english and visually humane interface called the Application Dictionary (AD). Much
of the interface changes can be handled by the AD Menu, AD Window, AD Table & Column. For
the logic and rules, there are AD Reference, AD Validation and meta SQL clauses.

Figure 1 Application Dictionary, with 4 frequent
selections placed on the left panel

But grand these desires maybe, there are certain
plain Joe things we want to do further with a
certain data field which may be beyond the AD.

For example, we may want to make it derive its
value from the calculation of other fields. Or we
want it to be proactive, jump around and check
out another chick across town. Or we just want it
to show whats going on without us asking.
Sounds like what we could have done using a
spreadsheet, another humane app. How do we
deal with these in our application?

This is where the Callout comes in. It is
designed in a container that gives us that
spreadsheet capability but in Java terms. Doesn’t
this mean entering the oxymoron domain of a
polynesian language?! Hahaha.

Copyright 2004 red1, red1.org, Malaysia 6

Developing with Eclipse
Eclipse is another Open Source project, which is getting monstrous and a developer’s winner to use
in the battlefield. You will want to be able to use it in action to debug and change codes. So where
Compiere leaves out, Eclipse will step in and let you have your day. Its no surprise that Compiere’s
development platform has shifted from the proprietory JBuilder to the open all-plugs Eclipse.

Compiere allows further customisation to be done via Callouts. Ironically the concept of Callout in
Compiere is to avoid programming! Strange, but in a way its true. When we put Compiere into the
Eclipse (often reminds me of The Matrix movie), we won’t be facing messy streams of meaningless
symbols. We will begin to notice patterns, elegance of design, well documented cues. If I may go
extreme here with my Matrix analogy, the Callout is likened to the phone booth in the movie! You
expect to look for it, to dial back into the system.

But still when we wish to bring on bigger challenges such as extending with Fixed Assets, or
Payroll, you can reuse the Compiere framework and its inherent patterns, which like I said before,
offers a more humane look at software. You will end up with top class software that is highly
integrated, configurable and stable. The obvious rule is that when you have an industry strong app in
your lap, you have an industry strong app!

Sure, there is a catch. It’s a steep learning curve, to go through endless streams of codes and patterns.
It will help if you get to practice a lot. That means hands-on, burning holes in your keyboard. But my
angle here is not to just practice but think too about the big picture. Look out not just the common
patterns and streams, but also for the context, the history and the culture. Perchance we may
understand The Matrix – oops typo!

Copyright 2004 red1, red1.org, Malaysia 7

Callout Classes
Callout classes are located in the package org.compiere.model. It is located in the Base folder of
Compiere-all source. They have certain super classes that handle the context of the Window, Table
and Column you are calling from. In this way they resemble the Spreadsheet concept we talked
about. By taking away the worry of how fields are really handled, we can keep our focus on the
business logic.

For example let’s say that we have 3 fields in our Compiere window namely: ‘Price’,’Qty’, and
‘Total’. To make ‘Total’ = ‘Price’ X ‘Qty’ will take the form:

Qty = (BigDecimal)mTab.getValue("Qty");
Price = ((BigDecimal)mTab.getValue("Price"));
BigDecimal Total = Qty.multiply(Price);

mTab.setValue("Total" , Total);

The getValue pattern basically obtain the value from the Window field in scope. The setValue will
then place a new value into the Window Field. The Total field changes as you put in a new value
into either Qty or Price.

Since we are are on the go, lets go the next mile (notice I did not say last mile) and see how we are
going to refer to somebody across town. Let’s say you want the Price to come from the Product table
which is not refered to by the window. Here’s is an idea of what you must do prior to the above, in
the form:

String sql = "SELECT p.M_Price "
 + "FROM M_Product p "
 + "WHERE p.M_Product_ID=?" ;
 try
 {
 PreparedStatement pstmt = DB.prepareStatement(sq l);
 pstmt.setInt(1, M_Product_ID);
 ResultSet rs = pstmt.executeQuery();
 if (rs.next())
 {
 M_Price = rs.getInt (1);
 }
 mTab.setValue ("Price" , M_Price));

Please don’t stare too long, it’s just to give an idea.

A Callout is first addressed in the AD Table and Column, Field section. In a way the callout is at the
fringe of the AD. It’s the final straw where the AD won’t know how to satisfy your need and
surrender to a group of java classes that will handle it better. And yet the way the container is
designed makes the necessary evil so angelic. There’s no red pill to take. Just some red syrup.

Ok, this is about the only military pet talk you are gonna get. Cos, we are going to the battlefield
now, just stick to the guys and ignore the rest as noise. Sign the insurance papers. Grab a chute.

Copyright 2004 red1, red1.org, Malaysia 8

 Tasks Index
 We shall itemise the stuff that we are going to attempt here. We are going to…

1. Create a pull down menu selection to select the Game Type.

a. Create a reference list for GameType, that has Futsal, Volleyball, Basketball and
Netball.

b. Create a new field called GameType in the C_OrderLine Table.

c. Configure Menu and Window to have the Facility screen.

2. Making the Resource Assignment Product Callout to

a. Fetch the Customer name and telephone number

b. Fetch the GameType value

c. Arrange them nicely

d. Place them in the Resource Assignment table

3. Go and plunder the forums.

Suddenly a commoner rush from the crowd and tugged at the Master’s robes, signalling him to bend
lower. After some whisper into the Master’s ears, that manages to raise one of the Master’s
eyebrows, he return to compose himself on the carriage set on the shoulders of 6 warriors. With eyes
squirming, he peered at the vast heavens.

Ok, so I forgotten something.

0. How to set up Eclipse

a. Importing Compiere Project into Eclipse

b. Setting Compiere Debug Run

Copyright 2004 red1, red1.org, Malaysia 9

Setting Up
Now we are getting down to business. In front of your PC now, which is connected to broadband.
Don’t have broadband? Migrate.

Eclipse Setup
Go to www.eclipse.org and download the latest binary zip version. It is version 3.0M9 at this time of
writing. This version also has taken care of some bugs such as not getting the JDK classpath.

When you unzip it, you specify your target directory to be a root level, for example C:\, or D:\. This
is because it will make its own subfolders starting with eclipse\. You don’t want things to get too
nested around here.

Then you can go to the eclipse\ folder and find the eclipse.exe. Just double push on the finger and off
we go.

One more thing – you need to activate 2 perspectives: Java and Debug. Goto Window on the top
menu bar, select Open Perspective and select those two.

Figure 2 Getting the Debug and Java Perspectives out

You should spend some time reading up from the website on Eclipse, as well as check the FAQs and
forums on common issues and tips. The more you know, the powerful you get, and the less work you
do. And drop me a mail if at anytime you think you are getting smarter than me. Or else I will send
Mr.Smith.

Copyright 2004 red1, red1.org, Malaysia 10

Importing Compiere Project
You can right click on the empty space in the left panel, and it should give you the choice of import.
Otherwise call it the old way by selecting File on the top bar, and selecting Import.

Figure 3 Import Eclipse Project Dialog Box

Referring to this screen above, click on next, then browse for your Compiere source project file. You
can download compiere from www.compiere.org (look for the download section, take the source zip
which is 60Mb more, not the binary which is about 20Mb. Alternatively you can take the source
from its CVS if you want the latest, but it may not be stable yet). When you explode Compiere
source you will find a main sub directory: Compiere-all. That means that the source is with you.
Finally, OBeOneCannotBe.

Copyright 2004 red1, red1.org, Malaysia 11

When you selected the Compiere-all folder, the Finish button will wake-up. This is because it found
the .project file in the Compiere-all folder. If not, you can pick that with the dotClass file from
http://compiere.red1.org/eclipsefiles.zip. Both these files are needed for Eclipse to grasp it tightly.

This is how the dotProject file looks like if you open it with WordPad.:

Figure 4 The .project file under Compiere-all folder

Note the text between the <projects> tags. That tells Eclipse what is in the package. Which will look
like the next page when you hit the Finish button and give it a name, say: Compiere25e. (must I tell
you everything? The Master examines the donation box, Guess so).

Copyright 2004 red1, red1.org, Malaysia 12

Running in Debug Mode
Your screen should look like the following. If not don’t panic. Study around a little. Things arent far
off.

Figure 5 Compiere Source package layout in Eclipse Java Perspective

If there is an error in your folders, and its in interfaces/src where there is a red mark on this file -
CtrlMBean.java. Just zap it. Yeah! Delete it. Its alright, there is another copy somewhere for the
deployment of JBoss service, which we cannot get to debug. We only debug this part of Compiere as
it is on the JVM service. The other part – Accounts Posting and Web Interface runs on the JBoss
application service, and you can only see their debug prompts off the console.

Heavy stuff, dude! It sounds like The Matrix II. Bring me to the Architect. I got this question: I
wonder if you can tell me how I can setup both services to run on Eclipse the same time. ☺

Copyright 2004 red1, red1.org, Malaysia 13

Now where was I? Oh, I just finished loading the Compiere project into Eclipse, and I should be
making Compiere to debug from it. To do that, look for that little bug icon up there (of course it
looks like a bug, dummy). Click on it, or you can pull down and click on it if it has another default in
the way. Create a New Java Application (select Java Application, then New), goto Browse for your
project. Search for a main class, in the pop up you can pick Compiere. Otherwise you can physically
type that in. Give it a name: ‘Compiere’. In the final analysis this is what it would look like.

Figure 6 Setting the main class to run/debug

See the debug button? Hit it! Are you in? You should be in the Debug perspective (click on the other
bug, top, far right). If you see threads flying and the console prompts scribblings then you made it.

You can do the same setup for Run as you have done for Debug. For our AD Changes we can then
use the Run mode, as we won’t do code customisation yet. Let’s get Compiere running and do our
changes in the AD which are termed as configurations.

Copyright 2004 red1, red1.org, Malaysia 14

Configuring Compiere
All this while, we assume that you have setup Oracle and did the basic Compiere setup, so that when
the debug mode runs it will access that database instance. Note that its not using the Compiere2 set
of codes. Its running from the source itself. So whatever code changes will affect your Eclipse
instance of Compiere. But whatever AD changes you do happen at the database level as they are
metadata, not codes. So you may need to backup before proceeding. You can backup by going to
Compiere2/utils/ and run DBExport.bat. Go ahead and do that, as it won’t bother if you are running
or not. Its just a fast safe dump. Your backup will be in Compiere2/data/ as ExpDat.dmp.

Just to put it another way, you don’t worry about the Compiere2 binary directory, as you are using
the Compiere-all directory when running from Eclipse. When you want to finally deploy, you will
build the Jars and a fresh Compiere2 directory. Then you can send this to your production server.
Clients that run their webstart will automatically refresh the CClient.jar that has been changed.

Alternatively when you build from some fresh changes, you only need to copy over CClient.jar
which is more snappy. The other jars and JBoss were not changed, so why carry them around?

Let’s Run Compiere and login as System/System to do some AD changes. Don’t worry, we will
resume the debug fun soon afterwards.

Configuring AD Reference
We will now do the pull down reference list of Game Type. We want it to appear in our Sales
Orderline. In order to do that, we first define a reference list. Then we will reference that list in our
Table and Column as a new field called GameType too. Then the Window must import this new
field. Sorry if I keep repeating stuff all the time. Just don’t want you to fall onto the Dark Side.

Click on Reference. Create a new list called GameType. Set the Validation type to List Validation.

Copyright 2004 red1, red1.org, Malaysia 15

Figure 7 Reference screen, main tab

Now that it is going to be a list, we have to specify the members of the list. Click on the List
Validation tab.

Figure 8 Reference screen, list validation tab

Now we create the different type of values that we want to appear in our menu list. The Search Key
is the actual size and value that will be stored in the field of the Orderline afterwards. But the Name
‘Basketball’ or ‘Futsal’ will be the values you see when you pull down the list.

Copyright 2004 red1, red1.org, Malaysia 16

Configuring AD Table and Column
We will now create the GameType field in our Orderline table to store that value when the customer
picks a choice during court booking. Go to the Menu and select Table and Column. Open the
C_Orderline record. Select the Column tab, and create a new record. Note the length is 2 char.

Figure 9 C_Orderline table, create new record

Give the DB Column Name and Name to be the same so as to avoid confusion, though it is not
compulsory. You need not create a System Element, again not compulsory. We just want to proof
the concept and learn quickly without getting mixed up. Next you pull down Reference to select List,
and pull the Reference Key as GameType. In the end, remember to synchronise it to your Oracle
database, by clicking on the button at the
bottom (can’t see on the above screen, have to
scroll down) The process must complete
succesfully.

Next we will introduce this new field into a Window. Its going to be POS Facility (Sales Order).
Otherwise it won’t appear when you run your GardenAdmin and launch the Sales Order screen.
(Expert note: From our previous work when we created a POS window, we copied to POS Facility to
reuse similar settings and avoid redoing it again in the AD Window).

Copyright 2004 red1, red1.org, Malaysia 17

Configuring AD Window
Open the Window, Tab & Field screen. Create a new record. Call it something, in my case, POS
Facility. Copy Window Tabs from the Sales Order. Go to the 2nd tab, which is the orderline. Then go
to the Field tab. Create a new record.

Figure 10 New window, new Field – Game Type

Give it a proper name as this will appear in the actual window. Under column is where you select
from the field we created earlier in Table and Column. Make sure the Read Only box is NOT
checked otherwise the field will appear inanimate and won’t give a pull down menu list. You can
check the Same Line box if you want that Game Type to be next to another field.

You can then go to Field Sequence to arrange the display order you want your field to appear. For
my client, I even took out a lot of other unnecessary fields.

You have to Run another instance of Compiere, login as GardenAdmin (or whatever new client user
ID you are working from), and view your changes. Oh! You still cannot view anything until you
attach it to the AD Menu. So a bit more work now.

Copyright 2004 red1, red1.org, Malaysia 18

Configuring AD Menu
Under the General Rules, System Rules, you click on Menu to call up the Menu configuration
screen.

Figure 11 Creating
a new menu

Choose your action
to be Window, so
that you can then
select the window
you have in mind,
which in my case is
POS Facility. Now,
that you have done
this menu job, you
can login as a User
and view your new
screen.

Now you can go to and fro between the System and Admin mode to tune your changes.

From here, we shall be ready
for the Resource Assignment
field and amend the callout to
copy the name and phone
number of the customer into
the Description field, and the
Info Schedule as well. To
understand it, you click on
the box next to the field. A
calendar-like schedule will
pop-up and you can click
anywhere on it to select the
time and court that you want.
Now you see the point of
redundancy, where the user
has to key in again the details
at the schedule box. With our
callout customisation, we
won’t need to. I see light at
the end, Kimisabe!

Figure 12 A Window is born.

Copyright 2004 red1, red1.org, Malaysia 19

Configuring Resource Product
We seem to be jumping round a bit, so hope you don’t get lost. We have to set up a court first to
have it appear for selection at the Info Schedule screen. It involves creating a Resource Type and
Product. So in your GardenAdmin menu, call up Resource Type. We shall create a new type and call
it Courts, and then create a new product called Court A. We should also create a Product Category
called Sports Courts for report grouping purposes. Use the screen below for guide.

Do not set the Slot End time
to 11.58 as I did. It was to
work-around a bug I
described in a previous
article. You can end your
court time at 11pm, just for
this exercise. After creating
this, we call up the Resource
screen.

Figure 13 Resource Type

Set your Resource Type. Inspect the R. Product tab. See the fields are properly set. Then go to the
Price tab. Select a Price List and put in a Price. For our demonstration purpose, you can put $100 in
all 3 price fields.

Figure 14 Resource screen, R. Product tab, Price tab.

Copyright 2004 red1, red1.org, Malaysia 20

First Run
Now you can go and use the Facility screen, at the main tab, let’s say that a new customer call up so
you right-click at the Customer field (Business Partner). It will pop up a window for you. Select
New Record. Key in the caller details, at least put in the key, name, location and phone.

Figure 15 Main order screen,
caller calls and user request
contact details

Notice that I have changed my
Sales Rep to Front Desk
Executive. That change is done
in the AD Window. ‘syikin’ is
the login user. That is defaulted
by setting @#CreatedBy@ in
the AD Column. It is also made
to be read-only so that ‘syikin’
cannot pretend to be another
user.

Go to the Order Line tab, ah
yes! You can now pull down
the Game Type and choose!

Lovely isn’t it? Then click on the Resource Assignment and out pops the Schedule Info, as shown
below.

Figure 16 Game Type and Info Schedule

Copyright 2004 red1, red1.org, Malaysia 21

Click on any time slot in the schedule and you see that another window pops up expecting you to
rekey in some details. Notice that there is a dot on the Name field.

Figure 17 Resource Assignment Pop-up

Just key-in something after it, let’s say the name of the person doing the booking. In the Description
field key-in the contact telephone number. You can see this is annoying as you won’t have the
earlier screen showing you those details, and you already did that a while ago in the New Record
screen. That means you always need to scribble those details somewhere while holding the phone
and typing at the same time. (I just want you to feel the pain of necessity to invent here).

After accepting the input, we are returned to the Order Line screen which has its Product and the
Description fields populated. Notice that the phone number is put in brackets. Who did all this?

Now here is the good reason who. Go to the Table and Column of System and find out the Resource
Assignment column of the C_Orderline table. At the bottom, in the Callout section you will see that
a callout is stated there, by the name of SE_Assignment_Product. (see figure below).

Ahah! So there is already a callout before this in the Resource Assignment field! Remembering my
earlier point about noticing patterns, we will reuse that same callout to solve our problem. Its just
plain lucky to have that pattern in place. But the time taken for me to find that out was long and
dreary. I am giving you the beniefit of hindsight. If I leave you to figure out you will probably go
through the same journey *chuckles*.

Now we have to make the pop-
up window return without
keying in any details but
having the name and phone
number appearing later in the
schedule by itself.

Let’s return to the Eclipse to
have our unadulterated fun!

Figure 18 Callout reference

Copyright 2004 red1, red1.org, Malaysia 22

Customising Callout

Eclipse in Action
In Eclipse, we will now locate the Callout. Previously I didn’t have any clue as to where in the world
the Callout was kept. Is it in the database, a procedure, or a code? I sniff it out by puncturing a
callout – disfiguring it so that an error happens. From the debug log, I notice that it’s a program.
Finally I found it in the package org.compiere.model. So use your mouse and go to the Source
project tree. Click on the base folder, and expand to the model package. Double click on
CalloutSystem.java. You will notice the Assignment Product callout. Click on that too.

Figure 19 Getting to the Java and Method

Note that the SE_ is somehow used, must have been some parsing going on within Compiere, but
that’s not relevant here. What’s important is we have tracked down that callout and are ready to do
some high-rise construction.

Copyright 2004 red1, red1.org, Malaysia 23

Let’s examine the code in its original entirety here. See if we can get some explanations going.

1 public String Assignment_Product (Properties ctx, int WindowNo, MTab mTab, MField mField, Object value)
2 {
3 if (isCalloutActive() || value == null)
4 return "";
5 // get value
6 int S_ResourceAssignment_ID = ((Integer)value).intValue();
7 if (S_ResourceAssignment_ID == 0)
8 return "";
9 setCalloutActive(true);
10
11 int M_Product_ID = 0;
12 String Name = null;
13 String Description = null;
14 BigDecimal Qty = null;
15 String sql = "SELECT p.M_Product_ID, ra.Name, ra.Description, ra.Qty "
16 + "FROM S_ResourceAssignment ra"
17 + " INNER JOIN M_Product p ON (p.S_Resource_ID=ra.S_Resource_ID) "
18 + "WHERE ra.S_ResourceAssignment_ID=?";
19 try
20 {
21 PreparedStatement pstmt = DB.prepareStatement(sql);
22 pstmt.setInt(1, S_ResourceAssignment_ID);
23 ResultSet rs = pstmt.executeQuery();
24 if (rs.next())
25 {
26 M_Product_ID = rs.getInt (1);
27 Name = rs.getString(2);
28 Description = rs.getString(3);
29 Qty = rs.getBigDecimal(4);
30 }
31 rs.close();
32 pstmt.close();
33 }
34 catch (SQLException e)
35 {
36 log.error("Assignment_Product", e);
37 }
38
39 log.debug("S_ResourceAssignment_ID=" + S_ResourceAssignment_ID + " - M_Product_ID=" +
M_Product_ID);
40 if (M_Product_ID != 0)
41 {
42 mTab.setValue ("M_Product_ID", new Integer (M_Product_ID));
43 if (Description != null)
44 Name += " (" + Description + ")";
45 if (!".".equals(Name))
46 mTab.setValue("Description", Name);
47 //
48 String variable = "Qty";
49 if (mTab.getTableName().startsWith("C_Order"))
50 variable = "QtyOrdered";
51 else if (mTab.getTableName().startsWith("C_Invoice"))
52 variable = "QtyInvoiced";
53 if (Qty != null)
54 mTab.setValue(variable, Qty);
55 }
56 setCalloutActive(false);
57 return "";
58 } // Assignment_Product
59

Copyright 2004 red1, red1.org, Malaysia 24

 What we have is not the whole Java class, but part of it, in fact it concerns only the
Asignment_Product Method. It begins with certain arguments:

 (Properties ctx, int WindowNo, MTab mTab, MField mField, Object value)

the WindowNo will inform the system which window is been refered to. This we can understand as
when the callout happens, we were in a window screen. So when the callout finishes its job, the
result update will appear in the same window.

MTab concerns the table that is in focus. To let you know how I know, you can hover your mouse
arrow over any word and see the highlights. If you press the Ctrl key while you hover over them, and
click, you may really dial in – to the class that handles the objects. You can explore further by
opening the Parent class that it extends from such as the CalloutEngine.java, MTab.java among
others. Won’t want to rob you of the fun. Just going through the associate classes and reading the
Javadocs can be a journey of self-discovery.

Let’s turn our attention to the SQL statement on line 15 onwards. Its pulling out from the Resource
Assignment table (line 16). Remembering that there was a pop-up window that allow us to key in the
Name and Description. And not forgetting the Name field has a dot in it. So here it is retrieving from
what that pop-up (line 26 to 29) and populate the OrderLine Description with it (line 42 to 54). It
will also wrap the R.A. Description with brackets before presenting (line 44).

Notice also the pattern format – mTab.getTableName().startsWith("C_Order")

It seems to check which table the window is assoicated with. Hmm, very useful. Now go and hover
over the getTableName, dial in if you can, and off you go again.

To shift into top gear, you can right click at the left edge of the editor panel and toggle a breakpoint.
Then run in debug mode. When you access the Schedule Info pop-up and closes it, the program will
stop at the breakpoint and you can step through slowly, while examining the program flow weaving
in and out of other codes. At the same time the top right panel will display variables that are in focus,
and show what their values are. This gives you a surgical path through the mesh of codes, slowly
building your understanding of how things work as you go along. This at least is how I started about
5 months ago.

It can be like a cyber roller coaster ride, where you can toy for hours on end. I encourage it for that’s
the a really good way to jump into programming. For all the classes we skip (I mean real
programming courses), what choice we got?

We can then get on to putting in our own codes.

Copyright 2004 red1, red1.org, Malaysia 25

Modifying CalloutSystem
First you have to plan out what exactly you want to do, detailed it further in database terms, and then
write out what you plan.

• Access the Customer records to get the Name and Phone Number.

o Find from the parent record, C_Order for the C_BPartner_ID

o Lookup C_BPartner_Location for the Phone Number

• Updating the Orderline’s Description.

o Pull miscellaneous info from Resource Assignment

o Append with Customer Name and Phone Number

o Append with Game Type

o Set Orderline Description field with this info

• Putting new info into Resource Assignment table.

o Form the same info into Name and Description fields

o Write back to Database

So as not to lost each other, I will dump the complete coding to achieve that here.Take a look at it
and see if you can corelate to what we planned. Notice that we can still put in something in the pop-
up and it will get appended to in the OrderLine and Resource Assignment records.

//red1- get value from C_Order.C_BPartner.Name & Lo cation>Description, pass in here
// first get the C_Partner_ID from
// int C_BPartner_ID, C_BPartner_Location_ID;
 String BPartner_Name = null;
 String BPartner_Phone = null;
 Integer Order_ID = (Integer)mTab.getValue("C_Order_ID");
 int C_Order_ID = ((Integer)Order_ID).intValue();
 String sql1 = "SELECT bp.Name, loc.Phone "
 + "FROM C_Order o "
 + "INNER JOIN C_BPartner_Location loc ON
(o.C_BPartner_Location_ID=loc.C_BPartner_Location_I D)"
 + "INNER JOIN C_BPartner bp ON (o.C_BPartner_ID=bp.C_ BPartner_ID)"
 + "WHERE o.C_Order_ID=?" ;
 try
 {
 PreparedStatement pstmt = DB.prepareStatement(sql1);
 pstmt.setInt(1,C_Order_ID);
 ResultSet rs = pstmt.executeQuery();
 if (rs.next())
 {
 BPartner_Name = rs.getString(1);
 BPartner_Phone = rs.getString(2);
 }
 rs.close();
 pstmt.close();
 }
 catch (SQLException e)
 {

Copyright 2004 red1, red1.org, Malaysia 26

 log.error("Assignment_Product - getting C_Order" , e);
 }

//red1
 int M_Product_ID = 0;
 String Name = null;
 String Description = null;
 BigDecimal Qty = null;
 String sql = "SELECT p.M_Product_ID, ra.Name, ra.Description, ra .Qty "
 + "FROM S_ResourceAssignment ra"
 + " INNER JOIN M_Product p ON (p.S_Resource_ID=ra.S_R esource_ID) "
 + "WHERE ra.S_ResourceAssignment_ID=?" ;
 try
 {
 PreparedStatement pstmt = DB.prepareStatement(sq l);
 pstmt.setInt(1, S_ResourceAssignment_ID);
 ResultSet rs = pstmt.executeQuery();
 if (rs.next())
 {
 M_Product_ID = rs.getInt (1);
 Name = rs.getString(2); //red1 - will append with BPartner
name/tel
 Description = rs.getString(3); //red1 - will append to above
 Qty = rs.getBigDecimal(4);
 }
 rs.close();
 pstmt.close();
 }
 catch (SQLException e)
 {
 log.error("Assignment_Product" , e);
 }

 log.debug("S_ResourceAssignment_ID=" + S_ResourceAssignment_ID + " -
M_Product_ID=" + M_Product_ID);
 if (M_Product_ID != 0)
 {
 String GameType = (String)mTab.getValue("GameType");
 mTab.setValue ("M_Product_ID" , new Integer (M_Product_ID));
 Name += BPartner_Name + ", tel:" + BPartner_Phone + " - " + GameType;
//red1 - put info now
 if (Description != null)
 Name += " (" + Description + ")" ;
// if (!".".equals(Name)) red1 - taken out as B Partner info populates
it
 mTab.setValue("Description" , Name);
 //
 String variable = "Qty" ;
 if (mTab.getTableName().startsWith("C_Order"))
 variable = "QtyOrdered" ;
 else if (mTab.getTableName().startsWith("C_Invoice"))
 variable = "QtyInvoiced" ;
 if (Qty != null)
 mTab.setValue(variable, Qty);

// red1 - UPDATE ResourceAssignment RECORD with Nam e, Description (telno, GameType)
 Description=BPartner_Phone+ " - " +GameType; //red1 - previously left
blank
 String sql2 = "UPDATE S_ResourceAssignment ra SET"
 + " Name=" + DB.TO_STRING(BPartner_Name)+ ","
 + " Description=" + DB.TO_STRING(Description)

Copyright 2004 red1, red1.org, Malaysia 27

 + " WHERE S_ResourceAssignment_ID=" +
S_ResourceAssignment_ID;
 int i = DB.executeUpdate(sql2.toString());
 log.debug("S_ResourceAssignment_I - Updated if 1 => " + i);
 }
 setCalloutActive(false);
 return "" ;
 } // Assignment_Product

After this you can test the result and you should achieve the screens shown below. Just type in ‘will
be late, his son will play first’ in the Description, and hit enter. That’s all!

Figure set 20 Callout power!

Go to the top menu bar and pull down the
View menu and select Schedule Info. Select
your Court A, and you shall see the fruits of
the amended callout.

I know, its ok, happened to me too, here, take
some kleenex.

Copyright 2004 red1, red1.org, Malaysia 28

Closing
There are about 2 more tips that I am brushing through. First is on the 11.58pm array slot handling.
It took me like 3 days non-stop to track down what was the cause and when I did, it took me another
2 days to remove it. Then I switch to the Weekly display mode, and the problem reemerges! Another
period of 1 day to plug up. But that workaround is only short term, and its bad for a developer to
lock-in such a code. OBeOne, don’t go to the Dark Side. So for the record I append the mischievous
VSchedulePanel at the bottom. My inputs are coloured ‘red1’. You can put some breaks into it and
debug it to see the problem. Perhaps you can give it the real solution.

The other is a simple yet powerful search function you can activate when we click on the Search
(binocs) button from the top bar menu. By sepecifying the Business Partner field as Searchable in
the AD, you can have that appearing with the % symbol for you to zoom in on the Customer who
has made the booking. All that makes your app super-fast!

Do drop me a note whether it be to share a particular problem, or showing me what you have learn.
Let’s share our power. The world is big enough. Peace be upon all.

Copyright 2004 red1, red1.org, Malaysia 29

Appendix – VSchedulePanel.java amended
package org.compiere.apps.search;

import javax.swing.*;
import java.awt.*;
import java.awt.font.*;
import java.awt.event.*;
import java.util.*;
import java.text.*;
import java.sql.*;
import java.math.*;

import org.compiere.model.*;
import org.compiere.util.*;
import org.compiere.plaf.*;
import org.compiere.grid.ed.*;

/**
 * Schedule Panel
 *
 * @author Jorg Janke
 * @version $Id: VSchedulePanel.java,v 1.9 2003/09/29 01:04:41 jjanke Exp $
 */
public class VSchedulePanel extends JComponent implements MouseListener
{
 /**
 * Constructor
 */
 public VSchedulePanel ()
 {
 setHeight(250);
 addMouseListener(this);
 } // VSchedulePanel

 /** Number of Days */
 private int m_noDays = 1;
 /** Height */
 private int m_height = 250;
//red1 noted dimensions set here
 /** Day Slot Width */
 private int m_dayWidth = 170;

 /** TimePanel for layout info */
 private VScheduleTimePanel m_timePanel = null;

 /** Assignment Slots */
 private MAssignmentSlot[] m_slots = null;
 /** Position of Slots */
 private Rectangle[] m_where = null;
 /** Start Date */
 private Timestamp m_startDate = null;
 /** If true creates new assignments */
 private boolean m_createNew = false;
 /** Resource ID */
 private int m_S_Resource_ID = 0;

 private InfoSchedule m_infoSchedule = null;

 /** Text Margin */
 private static final int MARGIN = 2;

 /**
 * Set Type.
 * Calculate number of days and set
 * @param type schedule type - see VSchedule.TYPE_...
 */
 public void setType (int type)

Copyright 2004 red1, red1.org, Malaysia 30

 {
 if (type == VSchedule.TYPE_MONTH)
 m_noDays = 31;
 else if (type == VSchedule.TYPE_WEEK)
 m_noDays = 7;
 else
 m_noDays = 1;
 setSize();
 } // setType

 /**
 * Set InfoSchedule for callback
 * @param is InfoSchedule
 */
 public void setInfoSchedule (InfoSchedule is)
 {
 m_infoSchedule = is;
 }

 /**
 * Enable/disable to Create New Assignments
 * @param createNew if true, allows to create new Assignments
 */
 public void setCreateNew (boolean createNew)
 {
 m_createNew = createNew;
 } // setCreateNew

 /**
 * From height, Calculate & Set Size
 * @param height height in pixels
 */
 public void setHeight (int height)
 {
 m_height = height;
 setSize();
 } // setHeight

 /**
 * Set Size
 */
 public void setSize ()
 {
 // width
 FontMetrics fm = null;
 Graphics g = getGraphics();
 if (g == null)
 g = Env.getGraphics(this);
 if (g != null)
 fm = g.getFontMetrics(g.getFont()); // the "correct" way
 m_dayWidth = 0;
 for (int i = 0; i < m_noDays; i++)
 {
 if (fm != null)
 {
 String string = getHeading(i);
 int width = fm.stringWidth(string);
 if (width > m_dayWidth)
 m_dayWidth = width;
 }
 }
 m_dayWidth += 20;
 if (m_dayWidth < 180) // minimum width
 m_dayWidth = 180;

 int w = m_noDays * m_dayWidth;
 //
 Dimension size = new Dimension(w, m_height);
 setPreferredSize(size);
 setMinimumSize(size);
 setMaximumSize(size);
 } // setHeight

Copyright 2004 red1, red1.org, Malaysia 31

 /**
 * Set time Panel for info about tile slots
 * @param timePanel time panel
 */
 public void setTimePanel (VScheduleTimePanel timePanel)
 {
 m_timePanel = timePanel;
 } // setTimePanel

 /** ***********************/

 /**
 * Set Slots
 * @param mass Assignment Slots
 * @param S_Resource_ID resource
 * @param startDate start date
 * @param endDate end date
 */
 public void setAssignmentSlots (MAssignmentSlot[] mass, int S_Resource_ID,
 Timestamp startDate, Timestamp endDate)
 {
 Log.trace(Log.l5_DData, "VSchedulePanel.setAssignmentSlots");
 m_S_Resource_ID = S_Resource_ID;
 m_noDays = TimeUtil.getDaysBetween (startDate, en dDate);
 m_startDate = startDate;
 //
 m_slots = mass;
 m_where = new Rectangle[m_slots.length];
 //
 // Calculate Assignments // red1 note last m_where rect is truncated as midnite is
stated 11.58pm
 for (int i = 0; m_slots != null && i < m_slots.length; i++)
 {
 MAssignmentSlot mas = m_slots[i];
 int dayIndex = TimeUtil.getDaysBetween (m_startDate, m as.getStartTime());
 if (dayIndex < 0 || dayIndex >= m_noDays)
 System.out.println("Assignment " + i + " Invalid DateRange " +
mas.getInfo());
 //
 int xWidth = m_dayWidth / mas.getXMax();
 int xStart = dayIndex * m_dayWidth; // start day slot
 xStart += mas.getXPos() * xWidth; // offset
 int xEnd = xStart + xWidth;

 int yStart = m_timePanel.getSlotYStart(mas.getYStart());
 int yEnd = m_timePanel.getSlotYEnd(mas.getYEnd());
 // System.out.println("Assignment " + i + ", Xpos=" + mas.getXPos() + ", Xmax=" +
mas.getXMax()
 // + ", Ystart=" + mas.getYStart() + ", Yend=" + m as.getYEnd() + " " +
mas.getInfo());
 m_where[i] = new Rectangle(xStart+1, yStart+1, xWidth-1, yEnd-yStar t-1);
 } // calculate assignments

 //
 setSize();
 repaint();
 } // setAssignmentSlots

 /** ***********************/

 /**
 * Paint it
 * @param g the <code> Graphics </code> object
 */
 public void paint (Graphics g)
 {
 // Log.trace(Log.l5_DData, "VSchedulePanel.paint", g.getClip());
 Graphics2D g2D = (Graphics2D)g;
 Dimension size = getPreferredSize();
 Rectangle clipBounds = g2D.getClipBounds();
 int w = size.width;

Copyright 2004 red1, red1.org, Malaysia 32

 int h = size.height;

 // Paint Background
 g2D.setPaint(Color.white);
 g2D.fill3DRect(1, 1, w-2, h-2, true);

 if (m_timePanel == null) // required
 return;
 int headerHeight = m_timePanel.getHeaderHeight();

 // horizontal lines -
 g2D.setStroke(VScheduleTimePanel.getStroke(true));
 for (int i = 1; i < m_timePanel.getSlotCount(); i++)
 {
 g2D.setPaint(Color.gray);
 int yy = m_timePanel.getSlotYStart(i);
 g2D.drawLine(1, yy, w-2, yy); // top horiz line
 }

 // heading and right vertical lines |
 g2D.setStroke(VScheduleTimePanel.getStroke(false));
 for (int i = 0; i < m_noDays; i++)
 {
 Rectangle where = new Rectangle(i * m_dayWidth, 0, m_dayWidth, headerHei ght);
 if (!where.intersects(clipBounds))
 continue;
 // Header Background
 CompiereUtils.paint3Deffect(g2D, where, false, true);
 g2D.setPaint(Color.blue);
 TextLayout layout = new TextLayout (getHeading(i), g2D.getFont(),
g2D.getFontRenderContext());
 float hh = layout.getAscent() + layout.getDescent();
 layout.draw (g2D, where.x + (m_dayWidth - layout .getAdvance())/2, //
 center
 ((where.height - hh)/2) + layout.getAscent()); //
 center
 // line
 g2D.setPaint(Color.black);
 int xEnd = (i+1) * m_dayWidth;
 g2D.drawLine(xEnd, 1, xEnd, h-1); // right part
 }

 // Paint Assignments // red1 note that upper/lower "Time not available"s ar e part
of this
//red1 'do not allow closing time thru "11:58:00 PM SGT" - to overwrite assignments

 for (int i = 0; m_slots != null && i < m_slots.length; i++)
// red1 put in "-1" to avoid last loop, previous solut ion, but cant work for week display. Remove “-1”
 {
 if (m_slots[i].toString().equals("11:58:00 PM SGT")) //red1 do not allow to
overwrite...
 continue;
 if (!m_where[i].intersects(clipBounds))
 continue;

 // Background
 g2D.setColor(m_slots[i].getColor(true));
 g2D.fill(m_where[i]);
 // Text
 String string = m_slots[i].getInfoNameDescriptio n(); //red1
getInfoNameDescription
 AttributedString as = new AttributedString (string);
 as.addAttribute(TextAttribute.FONT, g2D.getFont());
 as.addAttribute(TextAttribute.FOREGROUND, m_slot s[i].getColor(false));
 // Italics for Description
 int startIt = string.indexOf('(');
 int endIt = string.lastIndexOf(')');
 if (startIt != -1 && endIt != -1)
 as.addAttribute(TextAttribute.POSTURE, TextAttr ibute.POSTURE_OBLIQUE,
startIt, endIt);
 // Paint multiple lines if required
 AttributedCharacterIterator aci = as.getIterator ();

Copyright 2004 red1, red1.org, Malaysia 33

 LineBreakMeasurer measurer = new LineBreakMeasurer (aci,
g2D.getFontRenderContext());
 float wrappingWidth = m_where[i].width - (2*MARGIN);
 float curY = m_where[i].y + MARGIN;
 TextLayout layout = null;
 int yEnd = m_where[i].y + m_where[i].height;
 while (measurer.getPosition() < aci.getEndIndex() && cur Y < yEnd)
 {
 layout = measurer.nextLayout(wrappingWidth);
 curY += layout.getAscent();
 if (curY < yEnd)
 layout.draw(g2D, m_where[i].x + MARGIN, curY);
 }
 } // assignments

 // Paint Borders
 g2D.setPaint(Color.black);
 g2D.setStroke(VScheduleTimePanel.getStroke(false));
 g2D.drawLine(1, 1, 1, h-1); // left
 g2D.drawLine(1, 1, w-1, 1); // top
 // heading line
 g2D.drawLine(1, headerHeight, w-1, headerHeight);
 // Final lines
 g2D.setStroke(VScheduleTimePanel.getStroke(false));
 g2D.drawLine(w-1, 1, w-1, h-1); // right
 g2D.drawLine(1, h-1, w-1, h-1); // bottom line
 } // paint

 /**
 * Return heading for index
 * @param index index
 * @return heading
 */
 private String getHeading (int index)
 {
 GregorianCalendar cal = new GregorianCalendar();
 if (m_startDate != null)
 cal.setTime(m_startDate);
 cal.add(java.util.Calendar.DAY_OF_YEAR, index);
 //
 SimpleDateFormat format = (SimpleDateFormat)DateF ormat.getDateInstance
 (DateFormat.FULL, Language.getLanguage().getLoca le());
 return format.format(cal.getTime());
 } // getHeading

 /**
 * Mouse Clicked. Start AssignmentDialog
 * @param e event
 */
 public void mouseClicked(MouseEvent e)
 {
 if (e.getClickCount() < 2)
 return;

 Log.trace(Log.l3_Util, "VSchedulePanel.mouseClicked" , e.getPoint());
 Rectangle hitRect = new Rectangle (e.getX()-1, e.getY()-1, 3, 3);

 // Day
 int dayIndex = e.getX() / m_dayWidth;
 if (dayIndex >= m_noDays)
 dayIndex = m_noDays-1;
 // System.out.println("DayIndex=" + dayIndex + ": " + TimeUtil.addDays(m_startDate,
dayIndex));

 // Time
 int timeIndex = m_timePanel.getTimeSlotIndex(e.getY()) ;
 // System.out.println("TimeIndex=" + timeIndex + ": " +
m_timePanel.getTimeSlot(timeIndex));

 // check if there is an existing assignment// red1 overide 11.58pm
 for (int i = 0; i < m_slots.length; i++)
 {

Copyright 2004 red1, red1.org, Malaysia 34

 if (m_where[i].intersects(hitRect))
 if (!m_slots[i].toString().equals("11:58:00 PM SGT")) //red1 overiding...
 {
 MAssignmentSlot mas = m_slots[i];
 System.out.println("Existing=" + mas.getInfo());
 if (!mas.isAssignment())
 //
 return;
 //
 VAssignmentDialog vad = new VAssignmentDialog (Env.getFrame(this),
 m_slots[i].getMAssignment(), false, m_createNew);
 m_infoSchedule.mAssignmentCallback(vad.getMAssi gnment());
 return;
 }
 }
 if (m_createNew)
 {
 MAssignment ma = new MAssignment(Env.getCtx(), 0);
 ma.setS_Resource_ID(m_S_Resource_ID);
 ma.setAssignDateFrom(TimeUtil.getDayTime(TimeUti l.addDays(m_startDate,
dayIndex),
 m_timePanel.getTimeSlot(timeIndex).getStartTime ()));
 ma.setQty(new BigDecimal(1));
 VAssignmentDialog vad = new VAssignmentDialog (Env.getFrame(this), ma, false,
m_createNew);
 m_infoSchedule.mAssignmentCallback(vad.getMAssig nment());
 return;
 }
 } // mouseClicked

 public void mousePressed(MouseEvent e)
 {
 }
 public void mouseReleased(MouseEvent e)
 {
 }
 public void mouseEntered(MouseEvent e)
 {
 }
 public void mouseExited(MouseEvent e)
 {
 }

 /**
 * Dispose
 */
 public void dispose()
 {
 m_infoSchedule = null;
 m_timePanel = null;
 m_where = null;
 m_slots = null;
 this.removeAll();
 } // dispose

} // VSchedulePanel

