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Intel Cloud & BigData Engineering Team 

• Work with community to optimize Apache Spark and 
Hadoop on Intel platform  

• Improve Spark scalability and reliability  

• Deliver better tools for management, benchmarking, tuning 
•  e.g., HiBench, HiMeter 

• Build Spark based solutions
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Tachyon Nexus

• Team consists of Tachyon creators, top contributors 

• Series A ($7.5 million) from Andreessen Horowitz 

• Committed to Tachyon Open Source Project  

• www.tachyonnexus.com
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Performance Trend: Memory is Fast
• RAM throughput  

increasing exponentially
• Disk throughput increasing 

slowly

Memory-locality is important!
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Price Trend: Memory is Cheaper

source: jcmit.com

$/ GB of Memory is lower, possible to handle huge size of data in 
memory
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New Memory Technology: Intel's Crazy-Fast 3D 
XPoint Memory 

• 1,000X faster than NAND 
• 10X denser than DRAM 
• less costly than DRAM 
• Shipments may start in 2017 
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Realized By Many Frameworks:
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Challenges
• Effectively share in-memory data among 

distributed applications.  
 

• GC overhead introduced by in memory caching  
 

• Data set could be larger than memory capacity
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What is Tachyon?
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An Open Source  
Memory-centric 

Distributed 
Storage System
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Tachyon Stack
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How Easy to Use Tachyon in 

scala> val file = sc.textFile(“hdfs://foo”)

scala> val file = sc.textFile(“tachyon://foo”)
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Issue 1

Spark Job

Spark 
Memory

block 1

block 3

Hadoop MR Job

YARN

HDFS / Amazon S3
block 1

block 3

block 2

block 4

Data Sharing bottleneck in analytics 
pipeline: Slow writes to disk

storage engine &  
execution engine 
same process
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Issue 1 resolved with TachyonMemory-speed data sharing among different 
jobs and different frameworks

Spark Job

Spark mem

Hadoop MR Job

YARN

HDFS / Amazon S3
block 1

block 3

block 2

block 4

HDFS 
disk

block 1

block 3

block 2

block 4
Tachyon 
in-memory

block 1

block 3 block 4

storage engine &  
execution engine 
same process
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Issue 2

Spark Task

Spark Memory 
block manager

block 1

block 3

HDFS / Amazon S3
block 1

block 3

block 2

block 4

In-Memory data loss when computation 
crashes

storage engine &  
execution engine 
same process
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Issue 2

crash

Spark Memory 
block manager

block 1

block 3

HDFS / Amazon S3
block 1

block 3

block 2

block 4

storage engine &  
execution engine 
same process

In-Memory data loss when computation 
crashes
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HDFS / Amazon S3

Issue 2

block 1

block 3

block 2

block 4

crash

storage engine &  
execution engine 
same process

In-Memory data loss when computation 
crashes
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HDFS / Amazon S3
block 1

block 3

block 2

block 4
Tachyon 
in-memory

block 1

block 3 block 4

Issue 2 resolved with Tachyon

Spark Task

Spark Memory 
block manager

storage engine &  
execution engine 
same process

Keep in-memory data safe, even when 
computation crashes
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Issue 2 resolved with Tachyon

HDFS 
disk

block 1

block 3

block 2

block 4
Tachyon 

in-memory 
block 1

block 3 block 4

crash

HDFS / Amazon S3
block 1

block 3

block 2

block 4

storage engine &  
execution engine 
same process

Keep in-memory data safe, even when 
computation crashes
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HDFS / Amazon S3

Issue 3
In-memory Data Duplication &

Java Garbage Collection

Spark Job1

Spark 
Memory

block 1

block 3

Spark Job2

Spark 
Memory

block 3

block 1

block 1

block 3

block 2

block 4

storage engine &  
execution engine 
same process
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Issue 3 resolved with Tachyon
No in-memory data duplication, 

much less GC

Spark Job1

Spark mem

Spark Job2

Spark mem

HDFS / Amazon S3
block 1

block 3

block 2

block 4

HDFS 
disk

block 1

block 3

block 2

block 4
Tachyon 
in-memory

block 1

block 3 block 4

storage engine &  
execution engine 
same process
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Challenges
• Effectively share in-memory data sharing among 

distributed applications. 
=> HDFS compatible, Spark/MapReduce can 
access Tachyon in-memory data with no 
modification 

• GC overhead introduced by in memory caching 
=> No GC overhead as working set files are in 
memory but off-heap  

• Data set could be larger than memory capacity 
=> Tiered storage
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Tiered block storage: extend Tachyon space with external storage 
(e.g., SSD HDD etc.)

▪ It is available since Tachyon 0.6 Release 
• The JIRA for tiered storage: TACHYON-33 

• Different tiers have  
different speed and priority 
• “hot” data in upper tier 

• “warm” data in lower tier 

• Multiple directories in single tier

MEM
SSD

HDD
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Data migration among tiers

•Data can be evicted  to lower layer if it is less “hot”  

• Data can be promote to upper layer if it is “hot” 
again. 

• Pluggable Eviction Policy 
• LRU, LRFU pre-defined

Evict stale data to 
lower tier

Promote hot data 
to upper tier
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Non-Volatile Memory (NVM)

▪ NVM is the next era of computer memory 
• Including 3D NAND, solid-state drives, and Intel 3D XPoint™ 

technology.  

▪ Advantages of NVM 
• Fast, comes to memory performance, low latency 

• Non-Volatile, Capable of retrieving stored data even after a power 
outage.  

• Inexpensive
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When Tachyon Meets NVM

▪ Data caching & sharing at memory speed 
• Local cache for remote data 
• Data share in job chain / among different applications 

▪ Eliminate GC overhead 
• Storing data off heap on NVM 

▪ Efficient cache management 
• Storage hierarchy knowledge for different storage media, MEM SSD 

HDD etc 
• Quota management for different storage

29



Outline

▪ Memory trend and challenges 

▪ Introduction of Tachyon & NVM 
▪ Performance testing and key learning 

▪ Summary
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PCI-E SSD(P3700) SPEC

▪ Due to availability of NVM hardware, use high speed SSD to simulate the 
usage of NVM 
• The NVM can be just used as block device like SSD, with lower latency and higher 

bandwidth 
• The performance of NVM will be better than PCI-E SSD, with similar behavior
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Test Bed
▪ One Tachyon master node  
▪ Four Tachyon worker nodes

Worker node Configuration

CPU IVB E5-2680 @ 2.8G  40 logical cores

Memory 192GB DDR3 @ 1066 MHZ

Disk  P3700 SSD * 1 + HDD * 11

OS Distribution Redhat 6.2 (kernel 
2.6.32-220.el6.x86_64)

JDK version JDK1.8.0_60 (64 bit server)

Spark version 1.4.1 release

Tachyon version 0.8.1 release

Hadoop version 2.5.0
32
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Experiment 1: Big Graph Computation

▪ Background: Calculate similarity between videos 

▪ A case of Graph Analysis 
▪ Friends-of-friend 
▪ Iteratively compute association  

between nodes 

▪ Challenge 
▪ Generating huge Intermediate data after each iter
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Architecture: Bagel over Tachyon

▪ Bagel is a graph processing framework. 
▪ Spark implementation of Google Pregel  
▪ jobs run as a sequence of iterations. 
▪ In each iteration, each vertex runs a user-

specified function  
▪ update state associated with the vertex and  
▪ send messages to other vertices for use in the 

next iteration. 
▪ The message generated and new vertex data 

will be cached after each iteration 

▪ Intermediate data can be cache in Tachyon 
• Tachyon can make full use of high speed device for data 

caching.

aggregate & generate 
msg for next superstep

compute
new vertex data

Tachyon

OffHeap

Bagel
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▪ Input data size: 22G 
▪ Caching data size: 1.5TB 
▪ Four configuration to test

Configuration

Framework Storage Configuration
Spark Spark: 11HDD + 1 SSD

Spark Spark: 11HDD + 4 SSD

Spark + Tachyon Spark: 11 HDD  
Tachyon (1 tier): 1 SSD (500GB) 

Spark + Tachyon Spark: 11 HDD 
Tachyon (2 tiers): 1 SSD (250GB) + 11 HDD (100GB per disk)  
Eviction strategy: LRU
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Test Result

▪ Tachyon with SSD & SSD + HDD 
outperforms original Spark, gets 
about 20% performance gain  

▪ In Spark + Tachyon(2 tiers), 2/3 
of caching data is putted on SSD 
and 1/3 on Disk 

▪ Spark + Tachyon(1 tier) and 
Spark + Tachyon(2 tiers) have 
very similar performance

Duration (Second)

3000

3500

4000

4500

5000

Spark(11HDD + 1 SSD) Spark + Tachyon(SSD)

3913
3848

4516

4899
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Performance Analysis – Disk utilization

Spark (11 HDD + 1 SSD)

Spark (11 HDD + 4 
SSD)

Spark + Tachyon  (2 tiers)

Spark + Tachyon  (1 
tier)

Tachyon helps achieve higher disk 
utilization
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Performance Analysis – CPU utilization

Spark (11 HDD + 1 SSD)

Spark (11 HDD + 4 SSD)

Spark + Tachyon  (1 
tier)

Spark + Tachyon  (2 
tiers)

Tachyon helps achieve higher CPU utilization due to less time in IO 
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▪ Tachyon significantly speeds up Spark 
▪ Spark takes all kinds of storage as the same storage media, it 

randomly allocates space and access to all local directories 
configured. 

▪ With tiered storage and smarter cache management, 
Tachyon achieves comparable performance while 
requiring less fast memory resource 
• Tachyon tries to use the fast device as much as possible, and 

has efficient data cache management for “hot” and “warm” 
data.

Experiment 1: Summary
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Experiment 2:  Recommendation System
▪ Background: data analysis of user event logs 
▪ Job1: Top-K online videos 
▪ IO Bound 

▪ Job2: Visits of advertisement by unique users in one day/
week 
▪ CPU Bound 

▪ Challenges:  
▪ storage and computation cluster are separate. 

▪ Data must be transferred from remote data cluster during 
computation 

▪ Same Input data is used by different applications 

▪ causing redundant network I/O.
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Architecture: Tachyon as local cache 

• Deploy Tachyon in compute cluster to avoid the 
duplicated network I/O 

Storage serviceComputation Cluster
Spark /MR

Tachyon

Cache 
data
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Configuration

▪ Input data size: 1.2TB 

▪ Tachyon 
• 1 tier with 500GB SSD on each worker 

▪ Network 
• 1 Gb connection between computation cluster and data service 

cluster 
• 10 Gb connection inside computation cluster
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Test Result

Job1 (IO Bound)

Duration

0

850

1700

2550

3400

Spark Only Spark + Tachyon

Job2 (CPU Bound)

Duration

0

1500

3000

4500

6000

Spark Only Spark + Tachyon
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Performance Analysis – Job1

Spark-only Spark+Tachyon
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Performance Analysis – Job2

Spark-only Spark+Tachyon
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▪ Using Tachyon as local cache accelerates the 
application 
• For the application is I/O bound, Tachyon greatly improves the 

performance(3X) 
• For the application is CPU bound, Tachyon still brings much 

performance gain(2X)

Experiment 2: Summary
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Experiment 3: Data Sharing within a Pipeline

▪ Background:  
▪ Intermediate data is shared in a job chain , the output of 

one job is the input of another job 

▪ Challenge: 
▪ Without Tachyon, output of the previous job needs to be 

written into HDFS, and read by another job
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Architecture

•With Tachyon, the output can be cached in Tachyon caching space, 
and makes the jobs share data without heavy network & HDD I/O

Spark / MR job

HDFS
Tachy

on

Spark/ MR job

Input

Output

Intermediate 
data read / 
write
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Data share in job chain – Terasort

▪ Two jobs in Terasort  
• Data-preparation 
• Data-processing  

▪ Data sharing between two jobs: 
• Written into HDFS, with 1 replication 
• Written into Tachyon
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Configuration

▪ Input data size: 1TB 

▪ Tachyon caching space 
• 1 layer with 500G SSD on each worker 

▪ Two rounds of testing for the second phase: 
• Data processing-round1: 

• Write result into HDFS with 3 replications 

• Data processing-round2: 
• Write result into HDFS with 1 replication / tachyon 
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Test Result

Data preparation Data processing

Duration

0

90

180

270

360

prepare-hdfs-1rep prepare-tachyon

Duration

0

375

750

1125

1500

Run-hdfs-hdfs-1rep Run-tachyon-tachyon

51



Performance Analysis – Data preparation

Prepare-hdfs-1rep Prepare-Tachyon
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Performance Analysis – Data processing-round1

Run-hdfs-hdfs-1rep Run-tachyon-tachyon
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Performance Analysis – Data processing-round2

Run-tachyon-hdfs-1repRun-hdfs-hdfs-1rep
54



Experiment 3: Summary

▪ Sharing Intermediate data via Tachyon with NVM 
boost the execution 
• For the first phase, which is purely I/O intensive, it brings 

(2X) performance gain 
• For the second phase, it brings 1.2X ~1.6X performance 

gain 
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Conclusion

▪ Memory is the new disk 

▪ Tachyon resolves the challenges in in-memory 
data management  

▪ NVM will offer great performance for data 
access in Tachyon
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Q & A
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Test 1: Friends-of-friend
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Problem statement

▪ In memory becomes more important and popular 
• Cost / capacity of Memory is lower and lower, which makes it possible to handle huge size 

of data in memory 
• Many computation frameworks leverage memory 
• How to manage huge caching data is an interesting problem 

▪ There are still some challenges 
• Data sharing among applications 
• GC overhead introduced by in memory caching 
• When data is huge, external storage is still needed
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Introduction of Tachyon

▪ Tachyon is an memory-centric distributed storage system enabling data 
sharing at memor-speed acorss cluster frameworks, such as Spark 
Mapreduce etc. 
• Caches working set files in memory and off-heap  
• Enables different jobs/queries and frameworks to access cached files at memory speed 

▪ Features 
• Java-like file API 
• Hadoop file system compatible 
• Pluggable under layer file system 

▪ Tiered block storage

http://www.tachyonproject.org/

Source: http://www.cs.berkeley.edu/~haoyuan/talks/Tachyon_2014-10-16-Strata.pdf
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Test cases for remote data cache

▪ Input data is used by different applications 
• Input: event logs 
• Data format: 

• Timestamp\Category\ObjectId\EventID\ … 

▪ Input data location: 
• Without Tachyon, all data is putted on remote HDFS cluster 
• With Tachyon, all data is cached in local Tachyon 

▪ There are two cases, which share the same input data  
• Case1 TopN 
• Case2 Nreach
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Intro for TopN

▪ Compute the top N object in each category 
• Used fields from input data: 

• <Category\ObjectId\...> 
• select Category, ObjectId, count(*) as events from Input_data group by Category ,ObjectId 

order by events desc limit N where category='a';(for all categories) 
• Output: 

• Category\ObjectId\Visits 

▪ It can be used to calculate: 
• The best selling products in each category 
• Most popular videos in each category
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Intro for Nreach

▪ Computing unique event occurrence across the time range 
• Used fields from input data: 

•   <TimeStamp, ObjectId, EventId, ...> 
• Output:  

•   <ObjectId, TimeRange, Unique Event#, Unique Event(≥2)#, …, Unique Event(≥n)#> 
• Accumulated unique event# for each object and certain time range 

▪ It is used to calculate: 
• Visits of certain advertisement by unique users in one day/week
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Tiered storage in Tachyon

▪ Tiered block storage is used to extend Tachyon’s caching space with 
external storage, such as SSD HDD etc. 
• Different tiers have different speed and priority 
• “Hot” data and “warm” data are putted on different layers 
• Multiple directories in single tier 

▪ Data migration among tiers 
• “Hot” data can be evicted  to lower layer, when it  
         is not “hot” any longer by eviction strategies. 
• “Warm” data can be promote to top layer, when 
         it becomes “hot” again. 

▪ It is available since Tachyon 0.6 Release 
• The JIRA for tiered storage: TACHYON-33
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