
Make Tachyon ready for next-gen data
center platforms with NVM

Mingfei Shi
Intel  

mingfei.shi@intel.com

Bin Fan
Tachyon Nexus 

binfan@tachyonnexus.com

1

mailto:binfan@tachyonnexus.com
mailto:binfan@tachyonnexus.com
mailto:binfan@tachyonnexus.com
mailto:binfan@tachyonnexus.com

Intel Cloud & BigData Engineering Team

• Work with community to optimize Apache Spark and
Hadoop on Intel platform  

• Improve Spark scalability and reliability  

• Deliver better tools for management, benchmarking, tuning
• e.g., HiBench, HiMeter 

• Build Spark based solutions

2

Tachyon Nexus

• Team consists of Tachyon creators, top contributors

• Series A ($7.5 million) from Andreessen Horowitz 

• Committed to Tachyon Open Source Project  

• www.tachyonnexus.com

3

http://www.tachyonnexus.com

Outline

▪ Memory trend and challenges
▪ Introduction of Tachyon & NVM
▪ Performance testing and key learning

▪ Summary

4

Outline

▪ Memory trend and challenges
▪ Introduction of Tachyon & NVM
▪ Performance testing and key learning

▪ Summary

5

Performance Trend: Memory is Fast
• RAM throughput  

increasing exponentially
• Disk throughput increasing

slowly

Memory-locality is important!
6

Price Trend: Memory is Cheaper

source: jcmit.com

$/ GB of Memory is lower, possible to handle huge size of data in
memory

7

New Memory Technology: Intel's Crazy-Fast 3D
XPoint Memory

• 1,000X faster than NAND
• 10X denser than DRAM
• less costly than DRAM
• Shipments may start in 2017

8

Realized By Many Frameworks:

9

Challenges
• Effectively share in-memory data among

distributed applications.  
 

• GC overhead introduced by in memory caching  
 

• Data set could be larger than memory capacity
10

Outline

▪ Memory trend and challenges

▪ Introduction of Tachyon & NVM
▪ Performance testing and key learning

▪ Summary

11

What is Tachyon?

12

An Open Source  
Memory-centric 

Distributed
Storage System

13

Tachyon Stack

14

How Easy to Use Tachyon in

scala> val file = sc.textFile(“hdfs://foo”)

scala> val file = sc.textFile(“tachyon://foo”)

15

Issue 1

Spark Job

Spark
Memory

block 1

block 3

Hadoop MR Job

YARN

HDFS / Amazon S3
block 1

block 3

block 2

block 4

Data Sharing bottleneck in analytics
pipeline: Slow writes to disk

storage engine &
execution engine
same process

16

Issue 1 resolved with TachyonMemory-speed data sharing among different
jobs and different frameworks

Spark Job

Spark mem

Hadoop MR Job

YARN

HDFS / Amazon S3
block 1

block 3

block 2

block 4

HDFS
disk

block 1

block 3

block 2

block 4
Tachyon 
in-memory

block 1

block 3 block 4

storage engine &
execution engine
same process

17

Issue 2

Spark Task

Spark Memory
block manager

block 1

block 3

HDFS / Amazon S3
block 1

block 3

block 2

block 4

In-Memory data loss when computation
crashes

storage engine &
execution engine
same process

18

Issue 2

crash

Spark Memory
block manager

block 1

block 3

HDFS / Amazon S3
block 1

block 3

block 2

block 4

storage engine &
execution engine
same process

In-Memory data loss when computation
crashes

19

HDFS / Amazon S3

Issue 2

block 1

block 3

block 2

block 4

crash

storage engine &
execution engine
same process

In-Memory data loss when computation
crashes

20

HDFS / Amazon S3
block 1

block 3

block 2

block 4
Tachyon 
in-memory

block 1

block 3 block 4

Issue 2 resolved with Tachyon

Spark Task

Spark Memory
block manager

storage engine &
execution engine
same process

Keep in-memory data safe, even when
computation crashes

21

Issue 2 resolved with Tachyon

HDFS
disk

block 1

block 3

block 2

block 4
Tachyon 

in-memory
block 1

block 3 block 4

crash

HDFS / Amazon S3
block 1

block 3

block 2

block 4

storage engine &
execution engine
same process

Keep in-memory data safe, even when
computation crashes

22

HDFS / Amazon S3

Issue 3
In-memory Data Duplication &

Java Garbage Collection

Spark Job1

Spark
Memory

block 1

block 3

Spark Job2

Spark
Memory

block 3

block 1

block 1

block 3

block 2

block 4

storage engine &
execution engine
same process

23

Issue 3 resolved with Tachyon
No in-memory data duplication, 

much less GC

Spark Job1

Spark mem

Spark Job2

Spark mem

HDFS / Amazon S3
block 1

block 3

block 2

block 4

HDFS
disk

block 1

block 3

block 2

block 4
Tachyon 
in-memory

block 1

block 3 block 4

storage engine &
execution engine
same process

24

Challenges
• Effectively share in-memory data sharing among

distributed applications.
=> HDFS compatible, Spark/MapReduce can
access Tachyon in-memory data with no
modification

• GC overhead introduced by in memory caching
=> No GC overhead as working set files are in
memory but off-heap

• Data set could be larger than memory capacity
=> Tiered storage

25

Tiered block storage: extend Tachyon space with external storage
(e.g., SSD HDD etc.)

▪ It is available since Tachyon 0.6 Release
• The JIRA for tiered storage: TACHYON-33

• Different tiers have  
different speed and priority
• “hot” data in upper tier

• “warm” data in lower tier

• Multiple directories in single tier

MEM
SSD

HDD

26

https://tachyon.atlassian.net/browse/TACHYON-33

Data migration among tiers

•Data can be evicted to lower layer if it is less “hot”  

• Data can be promote to upper layer if it is “hot”
again.

• Pluggable Eviction Policy
• LRU, LRFU pre-defined

Evict stale data to
lower tier

Promote hot data
to upper tier

27

Non-Volatile Memory (NVM)

▪ NVM is the next era of computer memory
• Including 3D NAND, solid-state drives, and Intel 3D XPoint™

technology.  

▪ Advantages of NVM
• Fast, comes to memory performance, low latency

• Non-Volatile, Capable of retrieving stored data even after a power
outage.

• Inexpensive

28

When Tachyon Meets NVM

▪ Data caching & sharing at memory speed
• Local cache for remote data
• Data share in job chain / among different applications

▪ Eliminate GC overhead
• Storing data off heap on NVM

▪ Efficient cache management
• Storage hierarchy knowledge for different storage media, MEM SSD

HDD etc
• Quota management for different storage

29

Outline

▪ Memory trend and challenges

▪ Introduction of Tachyon & NVM
▪ Performance testing and key learning

▪ Summary

30

PCI-E SSD(P3700) SPEC

▪ Due to availability of NVM hardware, use high speed SSD to simulate the
usage of NVM
• The NVM can be just used as block device like SSD, with lower latency and higher

bandwidth
• The performance of NVM will be better than PCI-E SSD, with similar behavior

31

Test Bed
▪ One Tachyon master node
▪ Four Tachyon worker nodes

Worker node Configuration

CPU IVB E5-2680 @ 2.8G 40 logical cores

Memory 192GB DDR3 @ 1066 MHZ

Disk P3700 SSD * 1 + HDD * 11

OS Distribution Redhat 6.2 (kernel
2.6.32-220.el6.x86_64)

JDK version JDK1.8.0_60 (64 bit server)

Spark version 1.4.1 release

Tachyon version 0.8.1 release

Hadoop version 2.5.0
32

U
B

C
D

V

X

Y

A

Experiment 1: Big Graph Computation

▪ Background: Calculate similarity between videos

▪ A case of Graph Analysis
▪ Friends-of-friend
▪ Iteratively compute association  

between nodes

▪ Challenge
▪ Generating huge Intermediate data after each iter

33

Architecture: Bagel over Tachyon

▪ Bagel is a graph processing framework.
▪ Spark implementation of Google Pregel
▪ jobs run as a sequence of iterations.
▪ In each iteration, each vertex runs a user-

specified function
▪ update state associated with the vertex and
▪ send messages to other vertices for use in the

next iteration.
▪ The message generated and new vertex data

will be cached after each iteration

▪ Intermediate data can be cache in Tachyon
• Tachyon can make full use of high speed device for data

caching.

aggregate & generate
msg for next superstep

compute
new vertex data

Tachyon

OffHeap

Bagel

34

▪ Input data size: 22G
▪ Caching data size: 1.5TB
▪ Four configuration to test

Configuration

Framework Storage Configuration
Spark Spark: 11HDD + 1 SSD

Spark Spark: 11HDD + 4 SSD

Spark + Tachyon Spark: 11 HDD  
Tachyon (1 tier): 1 SSD (500GB)

Spark + Tachyon Spark: 11 HDD
Tachyon (2 tiers): 1 SSD (250GB) + 11 HDD (100GB per disk)
Eviction strategy: LRU

35

Test Result

▪ Tachyon with SSD & SSD + HDD
outperforms original Spark, gets
about 20% performance gain  

▪ In Spark + Tachyon(2 tiers), 2/3
of caching data is putted on SSD
and 1/3 on Disk 

▪ Spark + Tachyon(1 tier) and
Spark + Tachyon(2 tiers) have
very similar performance

Duration (Second)

3000

3500

4000

4500

5000

Spark(11HDD + 1 SSD) Spark + Tachyon(SSD)

3913
3848

4516

4899

36

Performance Analysis – Disk utilization

Spark (11 HDD + 1 SSD)

Spark (11 HDD + 4
SSD)

Spark + Tachyon (2 tiers)

Spark + Tachyon (1
tier)

Tachyon helps achieve higher disk
utilization

37

Performance Analysis – CPU utilization

Spark (11 HDD + 1 SSD)

Spark (11 HDD + 4 SSD)

Spark + Tachyon (1
tier)

Spark + Tachyon (2
tiers)

Tachyon helps achieve higher CPU utilization due to less time in IO
38

▪ Tachyon significantly speeds up Spark
▪ Spark takes all kinds of storage as the same storage media, it

randomly allocates space and access to all local directories
configured.

▪ With tiered storage and smarter cache management,
Tachyon achieves comparable performance while
requiring less fast memory resource
• Tachyon tries to use the fast device as much as possible, and

has efficient data cache management for “hot” and “warm”
data.

Experiment 1: Summary

39

Experiment 2: Recommendation System
▪ Background: data analysis of user event logs
▪ Job1: Top-K online videos
▪ IO Bound

▪ Job2: Visits of advertisement by unique users in one day/
week
▪ CPU Bound

▪ Challenges:
▪ storage and computation cluster are separate.

▪ Data must be transferred from remote data cluster during
computation

▪ Same Input data is used by different applications

▪ causing redundant network I/O.

40

Architecture: Tachyon as local cache

• Deploy Tachyon in compute cluster to avoid the
duplicated network I/O

Storage serviceComputation Cluster
Spark /MR

Tachyon

Cache
data

41

Configuration

▪ Input data size: 1.2TB

▪ Tachyon
• 1 tier with 500GB SSD on each worker

▪ Network
• 1 Gb connection between computation cluster and data service

cluster
• 10 Gb connection inside computation cluster

42

Test Result

Job1 (IO Bound)

Duration

0

850

1700

2550

3400

Spark Only Spark + Tachyon

Job2 (CPU Bound)

Duration

0

1500

3000

4500

6000

Spark Only Spark + Tachyon

43

Performance Analysis – Job1

Spark-only Spark+Tachyon
44

Performance Analysis – Job2

Spark-only Spark+Tachyon
45

▪ Using Tachyon as local cache accelerates the
application
• For the application is I/O bound, Tachyon greatly improves the

performance(3X)
• For the application is CPU bound, Tachyon still brings much

performance gain(2X)

Experiment 2: Summary

46

Experiment 3: Data Sharing within a Pipeline

▪ Background:
▪ Intermediate data is shared in a job chain , the output of

one job is the input of another job 

▪ Challenge:
▪ Without Tachyon, output of the previous job needs to be

written into HDFS, and read by another job

47

Architecture

•With Tachyon, the output can be cached in Tachyon caching space,
and makes the jobs share data without heavy network & HDD I/O

Spark / MR job

HDFS
Tachy

on

Spark/ MR job

Input

Output

Intermediate
data read /
write

48

Data share in job chain – Terasort

▪ Two jobs in Terasort
• Data-preparation
• Data-processing  

▪ Data sharing between two jobs:
• Written into HDFS, with 1 replication
• Written into Tachyon

49

Configuration

▪ Input data size: 1TB

▪ Tachyon caching space
• 1 layer with 500G SSD on each worker

▪ Two rounds of testing for the second phase:
• Data processing-round1:

• Write result into HDFS with 3 replications

• Data processing-round2:
• Write result into HDFS with 1 replication / tachyon

50

Test Result

Data preparation Data processing

Duration

0

90

180

270

360

prepare-hdfs-1rep prepare-tachyon

Duration

0

375

750

1125

1500

Run-hdfs-hdfs-1rep Run-tachyon-tachyon

51

Performance Analysis – Data preparation

Prepare-hdfs-1rep Prepare-Tachyon
52

Performance Analysis – Data processing-round1

Run-hdfs-hdfs-1rep Run-tachyon-tachyon
53

Performance Analysis – Data processing-round2

Run-tachyon-hdfs-1repRun-hdfs-hdfs-1rep
54

Experiment 3: Summary

▪ Sharing Intermediate data via Tachyon with NVM
boost the execution
• For the first phase, which is purely I/O intensive, it brings

(2X) performance gain
• For the second phase, it brings 1.2X ~1.6X performance

gain

55

Outline

▪ Introduction and problem statement

▪ Introduction of Tachyon & NVM
▪ Performance testing and key learning

▪ Summary

56

Conclusion

▪ Memory is the new disk

▪ Tachyon resolves the challenges in in-memory
data management

▪ NVM will offer great performance for data
access in Tachyon

57

Q & A

58

59

•

U
B

C
D

V

X

Y

A

Test 1: Friends-of-friend

60

Problem statement

▪ In memory becomes more important and popular
• Cost / capacity of Memory is lower and lower, which makes it possible to handle huge size

of data in memory
• Many computation frameworks leverage memory
• How to manage huge caching data is an interesting problem

▪ There are still some challenges
• Data sharing among applications
• GC overhead introduced by in memory caching
• When data is huge, external storage is still needed

61

Introduction of Tachyon

▪ Tachyon is an memory-centric distributed storage system enabling data
sharing at memor-speed acorss cluster frameworks, such as Spark
Mapreduce etc.
• Caches working set files in memory and off-heap
• Enables different jobs/queries and frameworks to access cached files at memory speed

▪ Features
• Java-like file API
• Hadoop file system compatible
• Pluggable under layer file system

▪ Tiered block storage

http://www.tachyonproject.org/

Source: http://www.cs.berkeley.edu/~haoyuan/talks/Tachyon_2014-10-16-Strata.pdf

62

http://www.tachyonproject.org/

Test cases for remote data cache

▪ Input data is used by different applications
• Input: event logs
• Data format:

• Timestamp\Category\ObjectId\EventID\ …

▪ Input data location:
• Without Tachyon, all data is putted on remote HDFS cluster
• With Tachyon, all data is cached in local Tachyon

▪ There are two cases, which share the same input data
• Case1 TopN
• Case2 Nreach

63

Intro for TopN

▪ Compute the top N object in each category
• Used fields from input data:

• <Category\ObjectId\...>
• select Category, ObjectId, count(*) as events from Input_data group by Category ,ObjectId

order by events desc limit N where category='a';(for all categories)
• Output:

• Category\ObjectId\Visits

▪ It can be used to calculate:
• The best selling products in each category
• Most popular videos in each category

64

Intro for Nreach

▪ Computing unique event occurrence across the time range
• Used fields from input data:

• <TimeStamp, ObjectId, EventId, ...>
• Output:

• <ObjectId, TimeRange, Unique Event#, Unique Event(≥2)#, …, Unique Event(≥n)#>
• Accumulated unique event# for each object and certain time range

▪ It is used to calculate:
• Visits of certain advertisement by unique users in one day/week

65

Tiered storage in Tachyon

▪ Tiered block storage is used to extend Tachyon’s caching space with
external storage, such as SSD HDD etc.
• Different tiers have different speed and priority
• “Hot” data and “warm” data are putted on different layers
• Multiple directories in single tier

▪ Data migration among tiers
• “Hot” data can be evicted to lower layer, when it
 is not “hot” any longer by eviction strategies.
• “Warm” data can be promote to top layer, when
 it becomes “hot” again.

▪ It is available since Tachyon 0.6 Release
• The JIRA for tiered storage: TACHYON-33

66

https://tachyon.atlassian.net/browse/TACHYON-33

