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Intel Cloud & BigData Engineering Team

Work with community to optimize Apache Spark and
Hadoop on Intel platform

Improve Spark scalability and reliability

Deliver better tools for management, benchmarking, tuning
e.g., HiBench, HiMeter

Build Spark based solutions



Tachyon Nexus

* Team consists of Tachyon creators, top contributors

 Series A (57.5 million) from Andreessen Horowitz
« Committed to Tachyon Open Source Project

* www.tachyonnexus.com



http://www.tachyonnexus.com
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= Memory trend and challenges



Performance Trend: Memory Is Fast

* RAM throughput * Disk throughput increasing
increasing slowly
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Price Trend: Memory is Cheaper
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New Memory Technology: Intel's Crazy-Fast 3D
XPoint Memory

« 1,000X faster than NAND

* 10X denser than DRAM

* less costly than DRAM

» Shipments may start in 2017




Realized By Many Frameworks:
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Challenges

Effectively share in-memory data among
distributed applications.

GC overhead introduced by in memory caching

Data set could be larger than memory capacity
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Outline

= Memory trend and challenges
= Introduction of Tachyon & NVM
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What is Tachyon?



‘* TACHYON

Distributed
Storage System



Tachyon Stack
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How kasy to Use lachyonin - §5arK

scala> val file = sc.textFile(“hdfs://fo00”)

scala> val file = sc.textFile(” . //f00”)




lSSlﬁal]a Sharing bottleneck in analytics
pipeline: Slow writes to disk

storagg enging & Spark Job Hadoop MR Job
execution engine

Same process

Spark

Memory YARN

| block1 | block2
HDFS /| Amazon S3
 block3 || block4
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| G%J(e)r;/_[s%%%\gle atyg Igm;%ggyaoﬂong different

Jobs and different frameworks

storage engine & Spark Job Hadoop MR Job
execution engine e T S e S
same process Spark inem YARN
block 1 Tachyon
block 3 block 4 in-memory
| block1 || block2 _
HDFS / Amazon S3
| blocks | block4

TACHYON ;
N E X U S



ISIgnu-ﬁ/lgmory data loss when computation

storage engine &
execution engine
same process

TACHYON
N E X U S

crashes

Spark Task

Spark Memory

block manager

HDFS /| Amazon S3
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Issue, 2
fn-fﬂemory data loss when computation

storage engine &
execution engine
same process

crashes

crash

Spark Memory

block manager

HDFS / Amazon S3
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Issue 2
fn-ﬁﬂemory data loss when computation
crashes

storage engine &
execution engine
same process

N—

| block1 | block2
HDFS / Amazon S3



Issue 2 resolved with Tachyon
Keep In-memory data safe, even when

computation crashes

storage engine & Spark Task
execution engine

Same process

Spark Memory

block manager

block 1 Tachyon
block 3 block 4 in-memory

TACHYON
N E X U S



Issue 2 resolved with Tachyon

storage engine &
execution engine
same process

block 1

block 3

block 4

Tachyon

in-memory

block 1 block 2
block 3 block 4

HDFS /| Amazon S3 ;



Issue
:l)'n-memory Data Duplication &

Java Garbage Collection

storage engine & Spark Job1 Spark Job2

Same process m Spark

Spark

| block3 ] | block1 S

| block1 | block2
HDFS /| Amazon S3

N—
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Issueﬁor

storage engine &
execution engine
same process

TACHYON
N E X U S

solved with Tachyo
?n-memory data dgp}ljcation,

much less GC

Spark Job1

..
Sparii mem

Spark Job2

Spalk mem

block 1

block 3

block 4

Tachyon

in-memory

HDFS /| Amazon S3
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Challenges

Effectively share in-memory data sharing among
distributed applications.

=> HDFS compatible, Spark/MapReduce can
access Tachyon in-memory data with no
modification

GC overhead introduced by in memory caching
=> No GC overhead as working set files are in
memory but off-heap

Data set could be larger than memory capacity



Tiered block storage: extend Tachyon space with external storage
(e.g., SSD HDD etc.)

= |t is available since Tachyon 0.6 Release
 The JIRA for tiered storage: TACHYON-33

* Different tiers have _ MEM
different speed and priority 1N

« “hot” data in upper tier
e “warm” data in lower tier

* Multiple directories in single tier

26


https://tachyon.atlassian.net/browse/TACHYON-33

Data migration among tiers

Data can be evicted to lower layer if it is less “hot”

« Data can be promote to upper layer if it is “hot”

again. Promote hot data Evict stale data t

to upper tier

« Pluggable Eviction Policy R O -
 LRU, LRFU pre-defined ol ol ol e

lower tier
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Non-Volatile Memory (NVM)

= NVM is the next era of computer memory

* Including 3D NAND, solid-state drives, and Intel 3D XPoint™
technology.

m Advantages of NVM

Fast, comes to memory performance, low latency

* Non-Volatile, Capable of retrieving stored data even after a power
outage.

* |nexpensive
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When Tachyon Meets NVM

= Data caching & sharing at memory speed

* Local cache for remote data
« Data share in job chain / among different applications

= Eliminate GC overhead
« Storing data off heap on NVM

= Efficient cache management

« Storage hierarchy knowledge for different storage media, MEM SSD
HDD etc

* Quota management for different storage
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Outline

= Memory trend and challenges
= Introduction of Tachyon & NVM
= Performance testing and key learning
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PCI-E SSD(P3700) SPEC

Intel SSD DC P37M

Specification Unit
400GB 800GB { 1.6TB \ 2TB
Sequential Read (up to)’ MB/s 2,700 2,800 2,800 2,800
Sequential Write (up to)’ MB/s 1,080 1,900 \ 1,900 ) 2,000

Due to availability of NVM hardware, use high speed SSD to simulate the

usage of NVM

The NVM can be just used as block device like SSD, with lower latency and higher

bandwidth

The performance of NVM will be better than PCI-E SSD, with similar behavior
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Test Bed

One Tachyon master node
Four Tachyon worker nodes

Worker node Configuration

CPU IVB E5-2680 @ 2.8G 40 logical cores
Memory 192GB DDR3 @ 1066 MHZ
Disk P3700 SSD * 1 + HDD * 11

OS Distribution Redhat 6.2 (kernel
2.6.32-220.el6.x86_64)

JDK version JDK1.8.0_60 (64 bit server)
Spark version 1.4.1 release
Tachyon version 0.8.1 release

HaAdAnan vvarcinn 272 B N
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Experiment 1: Big Graph Computation

= Background: Calculate similarity between videos

= A case of Graph Analysis
» Friends-of-friend

= |teratively compute association
between nodes

= Challenge

= Generating huge Intermediate data after each iter
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Architecture: Bagel over Tachyon

= Bagel is a graph processing framework.
= Spark implementation of Google Pregel
= jobs run as a sequence of iterations.

= [n each iteration, each vertex runs a user-
specified function

= update state associated with the vertex and
= send messages to other vertices for use in the

next iteration. e '
= The message generated and new vertex data compute o
will be cached after each iteration new vertex data o

= Intermediate data can be cache in Tachyon

* Tachyon can make full use of high speed device for data
caching.

Tachyon
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Configuration

Input data size: 22G
Caching data size: 1.5TB
Four configuration to test

Framework Storage Configuration

Spark Spark: 11HDD + 1 SSD
Spark Spark: 11HDD + 4 SSD

Spark + Tachyon Spark: 11 HDD
Tachyon (1 tier): 1 SSD (500GB)

Spark + Tachyon Spark: 11 HDD
Tachyon (2 tiers): 1 SSD (250GB) + 11 HDD (100GB per disk)

Eviction strategy: LRU
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Test Result

4899

Spark(11HDD + 1 SSD)

Duration (Second)

4516

3848

Spark + Tachyon(SSD)

3913

= Tachyon with SSD & SSD + HDD
outperforms original Spark, gets
about 20% performance gain

= In Spark + Tachyon(2 tiers), 2/3
of caching data is putted on SSD
and 1/3 on Disk

» Spark + Tachyon(1 tier) and
Spark + Tachyon(2 tiers) have
very similar performance

36



Performance Analysis — Disk utilization
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Performance Analysis — CPU utilization
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Experiment 1: Summary

» Tachyon significantly speeds up Spark

» Spark takes all kinds of storage as the same storage media, it

randomly allocates space and access to all local directories
configured.

= With tiered storage and smarter cache management,

Tachyon achieves comparable performance while
requiring less fast memory resource

* Tachyon tries to use the fast device as much as possible, and

has efficient data cache management for “hot” and “warm”
data.
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Experiment 2: Recommendation System

= Background: data analysis of user event logs
= Job1: Top-K online videos
= |0 Bound

D JobZk: Visits of advertisement by unique users in one day/
wee

= CPU Bound

= Challenges:

= storage and computation cluster are separate.

= Data must be transferred from remote data cluster during
computation

= Same Input data is used by different applications
= causing redundant network |/0.
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Architecture: Tachyon as local cache

* Deploy Tachyon in compute cluster to avoid the
duplicated network 1/0
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Configuration

= |nput data size: 1.2TB
= Tachyon
1 tier with 500GB SSD on each worker

= Network

* 1 Gb connection between computation cluster and data service
cluster

10 Gb connection inside computation cluster

42



Test Result
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Performance Analysis — Job1
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Performance Analysis — Job?2
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Experiment 2: Summary

» Using Tachyon as local cache accelerates the

application
* For the application is I/0 bound, Tachyon greatly improves the
performance(3X)

* For the application is CPU bound, Tachyon still brings much
performance gain(2X)

46



Experiment 3: Data Sharing within a Pipeline

= Background:

» Intermediate data is shared in a job chain , the output of
one job is the input of another job

= Challenge:

= Without Tachyon, output of the previous job needs to be
written into HDFS, and read by another job

47



Architecture

*With Tachyon, the output can be cached in Tachyon caching space,
and makes the jobs share data without heavy network & HDD [/0

Spark / MR job

Intermediate

data read /

Spark/ MR job
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Data share in job chain — Terasort

= Two jobs in Terasort:

« Data-preparation
« Data-processing

= Data sharing between two jobs:

* Written into HDFS, with 1 replication
« Written into Tachyon

49



Configuration

» |Input data size: 1TB

= Tachyon caching space
« 1 layer with 500G SSD on each worker

= Two rounds of testing for the second phase:
« Data processing-round1:
Write result into HDFS with 3 replications

« Data processing-round2:
Write result into HDFS with 1 replication / tachyon
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Test Result
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Performance Analysis — Data preparation
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Performance Analysis — Data processing-round1
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Performance Analysis — Data processing-round?2
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Experiment 3: Summary

= Sharing Intermediate data via Tachyon with NVM
boost the execution

* For the first phase, which is purely I/0 intensive, it brings
(2X) performance gain

* For the second phase, it brings 1.2X ~1.6X performance
gain

55



Outline

= Summary
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Conclusion

= Memory is the new disk

= Tachyon resolves the challenges in in-memory
data management

= NVM will offer great performance for data
access in Tachyon
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Q&A
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Test 1: Friends-of-friend

Compute associations between two vertices n-hops
away in a Graph
*  Getting weights between Vertices that have N degree association

«  Weightn(u,v) = JA=1TM@Wp (UV)k (M is the number of
paths that have exactly n edges)

« Wp(UV)k-=][]e=1TnéWe (We is the weight of edge)
A Graph Analysis case

* E.g., friends of friend in social network

Graph-parallel implementation
* Bagel (Pregel on Spark)
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Problem statement

= |n memory becomes more important and popular

 Cost / capacity of Memory is lower and lower, which makes it possible to handle huge size
of data in memory

Many computation frameworks leverage memory
How to manage huge caching data is an interesting problem

= There are still some challenges
« Data sharing among applications
GC overhead introduced by in memory caching
When data is huge, external storage is still needed
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Introduction of Tachyon

http://www.tachyonproject.org/

= Tachyon is an memory-centric distributed storage system enabling data
sharing at memor-speed acorss cluster frameworks, such as Spark
Mapreduce etc.
« Caches working set files in memory and off-heap
« Enables different jobs/queries and frameworks to access cached files at memory speed

= Features | |
. Java-like file API Spark i ¢ S?S[k OIS WO

* Hadoop file system compatible
*  Pluggable under layer file system

= Tiered block storage

Source: http://www.cs.berkeley.edu/~haoyuan/talks/Tachyon_2014-10-16-Strata.pdf
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http://www.tachyonproject.org/

Test cases for remote data cache

= |nput data is used by different applications
* Input: event logs

« Data format:
Timestamp\Category\Objectid\EventID\ ...

= |nput data location:
«  Without Tachyon, all data is putted on remote HDFS cluster
«  With Tachyon, all data is cached in local Tachyon

= There are two cases, which share the same input data:

« Casel1 TopN
« (Case2 Nreach
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Intro for TopN

Compute the top N object in each category
« Used fields from input data:
. <Category\Objectld\...>

« select Category, Objectld, count(*) as events from Input_data group by Category ,Objectld
order by events desc limit N where category="a’;(for all categories)

OQutput:
. Category\Objectld\Visits

It can be used to calculate:
 The best selling products in each category
*  Most popular videos in each category
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Intro for Nreach

= Computing unique event occurrence across the time range
« Used fields from input data:
. <TimeStamp, Objectld, Eventld, ...>
OQutput:
. <Objectld, TimeRange, Unique Event#, Unique Event(=2)#, ..., Unique Event(zn)#>
. Accumulated unique event# for each object and certain time range

= |t is used to calculate:
Visits of certain advertisement by unique users in one day/week

65



Tiered storage in Tachyon

= Tiered block storage is used to extend Tachyon’s caching space with
external storage, such as SSD HDD etc.
« Different tiers have different speed and priority
« “Hot” data and “warm” data are putted on different layers
«  Multiple directories in single tier

. . . Promote to h Evict from top
= Data migration among tiers top layer layer to bottom
«  “Hot” data can be evicted to lower layer, when it Iayer
is not “hot” any longer by eviction strategies.
«  “Warm” data can be promote to top layer, when
it becomes “hot” again.

= |t is available since Tachyon 0.6 Release
66

« The JIRA for tiered storage: TACHYON-33



https://tachyon.atlassian.net/browse/TACHYON-33

