Make Tachyon ready for next-gen data
center platforms with NVM

Bin Fan Mingfei Shi

Tachyon Nexus Intel
binfan@tachyonnexus.commingfei.shi@intel.com

mailto:binfan@tachyonnexus.com
mailto:binfan@tachyonnexus.com
mailto:binfan@tachyonnexus.com
mailto:binfan@tachyonnexus.com

Intel Cloud & BigData Engineering Team

Work with community to optimize Apache Spark and
Hadoop on Intel platform

Improve Spark scalability and reliability

Deliver better tools for management, benchmarking, tuning
e.g., HiBench, HiMeter

Build Spark based solutions

Tachyon Nexus

* Team consists of Tachyon creators, top contributors

 Series A (57.5 million) from Andreessen Horowitz
« Committed to Tachyon Open Source Project

* www.tachyonnexus.com

http://www.tachyonnexus.com

Outline

Memory trend and challenges
Introduction of Tachyon & NVM
Performance testing and key learning
Summary

Outline

= Memory trend and challenges

Performance Trend: Memory Is Fast

* RAM throughput * Disk throughput increasing
increasing slowly

A @ 5o cs OO | f 1000
25.6
“:7'
g 100
2 0
S o0
=]
: =
-
= 10
1
(2003 2004 2005 2006 2007 2008 2009 2010 2017 2012 2013 ¥ 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
incdwidths shown for 64-bit memory module. Date indicates approximate industry product introductior Date Ava i Ia ble

[Memory-locality is important!]

Price Trend: Memory is Cheaper

DRAM Disk Memory
(s/GB)

10!?

year

1960 1970 1980 1990 2000 2010 2020

source: jcmit.com

New Memory Technology: Intel's Crazy-Fast 3D
XPoint Memory

« 1,000X faster than NAND

* 10X denser than DRAM

* less costly than DRAM

» Shipments may start in 2017

Realized By Many Frameworks:
rK

clouders
IMPALA

Spa

Challenges

Effectively share in-memory data among
distributed applications.

GC overhead introduced by in memory caching

Data set could be larger than memory capacity

10

Outline

= Memory trend and challenges
= Introduction of Tachyon & NVM

11

What is Tachyon?

‘* TACHYON

Distributed
Storage System

Tachyon Stack

. &... H20 fcower
NN /[S
‘* TACHYON

A N N\
]’:53 M @ n NFS @

GlasterFS openstack ceph

How kasy to Use lachyonin - §5arK

scala> val file = sc.textFile(“hdfs://fo00”)

scala> val file = sc.textFile(” . //f00”)

lSSlﬁal]a Sharing bottleneck in analytics
pipeline: Slow writes to disk

storagg enging & Spark Job Hadoop MR Job
execution engine

Same process

Spark

Memory YARN

| block1 | block2
HDFS /| Amazon S3
 block3 || block4

16

| G%J(e)r;/_[s%%%\gle atyg Igm;%ggyaoﬂong different

Jobs and different frameworks

storage engine & Spark Job Hadoop MR Job
execution engine e T S e S
same process Spark inem YARN
block 1 Tachyon
block 3 block 4 in-memory
| block1 || block2 _
HDFS / Amazon S3
| blocks | block4

TACHYON ;
N E X U S

ISIgnu-ﬁ/lgmory data loss when computation

storage engine &
execution engine
same process

TACHYON
N E X U S

crashes

Spark Task

Spark Memory

block manager

HDFS /| Amazon S3

18

Issue, 2
fn-fﬂemory data loss when computation

storage engine &
execution engine
same process

crashes

crash

Spark Memory

block manager

HDFS / Amazon S3

19

Issue 2
fn-ﬁﬂemory data loss when computation
crashes

storage engine &
execution engine
same process

N—

| block1 | block2
HDFS / Amazon S3

Issue 2 resolved with Tachyon
Keep In-memory data safe, even when

computation crashes

storage engine & Spark Task
execution engine

Same process

Spark Memory

block manager

block 1 Tachyon
block 3 block 4 in-memory

TACHYON
N E X U S

Issue 2 resolved with Tachyon

storage engine &
execution engine
same process

block 1

block 3

block 4

Tachyon

in-memory

block 1 block 2
block 3 block 4

HDFS /| Amazon S3 ;

Issue
:l)'n-memory Data Duplication &

Java Garbage Collection

storage engine & Spark Job1 Spark Job2

Same process m Spark

Spark

| block3] | block1 S

| block1 | block2
HDFS /| Amazon S3

N—

TACHYON ;
N E X U S

Issueﬁor

storage engine &
execution engine
same process

TACHYON
N E X U S

solved with Tachyo
?n-memory data dgp}ljcation,

much less GC

Spark Job1

..
Sparii mem

Spark Job2

Spalk mem

block 1

block 3

block 4

Tachyon

in-memory

HDFS /| Amazon S3

24

Challenges

Effectively share in-memory data sharing among
distributed applications.

=> HDFS compatible, Spark/MapReduce can
access Tachyon in-memory data with no
modification

GC overhead introduced by in memory caching
=> No GC overhead as working set files are in
memory but off-heap

Data set could be larger than memory capacity

Tiered block storage: extend Tachyon space with external storage
(e.g., SSD HDD etc.)

= |t is available since Tachyon 0.6 Release
 The JIRA for tiered storage: TACHYON-33

* Different tiers have _ MEM
different speed and priority 1N

« “hot” data in upper tier
e “warm” data in lower tier

* Multiple directories in single tier

26

https://tachyon.atlassian.net/browse/TACHYON-33

Data migration among tiers

Data can be evicted to lower layer if it is less “hot”

« Data can be promote to upper layer if it is “hot”

again. Promote hot data Evict stale data t

to upper tier

« Pluggable Eviction Policy R O -
 LRU, LRFU pre-defined ol ol ol e

lower tier

27

Non-Volatile Memory (NVM)

= NVM is the next era of computer memory

* Including 3D NAND, solid-state drives, and Intel 3D XPoint™
technology.

m Advantages of NVM

Fast, comes to memory performance, low latency

* Non-Volatile, Capable of retrieving stored data even after a power
outage.

* |nexpensive

28

When Tachyon Meets NVM

= Data caching & sharing at memory speed

* Local cache for remote data
« Data share in job chain / among different applications

= Eliminate GC overhead
« Storing data off heap on NVM

= Efficient cache management

« Storage hierarchy knowledge for different storage media, MEM SSD
HDD etc

* Quota management for different storage

29

Outline

= Memory trend and challenges
= Introduction of Tachyon & NVM
= Performance testing and key learning

30

PCI-E SSD(P3700) SPEC

Intel SSD DC P37M

Specification Unit
400GB 800GB { 1.6TB \ 2TB
Sequential Read (up to)’ MB/s 2,700 2,800 2,800 2,800
Sequential Write (up to)’ MB/s 1,080 1,900 \ 1,900) 2,000

Due to availability of NVM hardware, use high speed SSD to simulate the

usage of NVM

The NVM can be just used as block device like SSD, with lower latency and higher

bandwidth

The performance of NVM will be better than PCI-E SSD, with similar behavior

31

Test Bed

One Tachyon master node
Four Tachyon worker nodes

Worker node Configuration

CPU IVB E5-2680 @ 2.8G 40 logical cores
Memory 192GB DDR3 @ 1066 MHZ
Disk P3700 SSD * 1 + HDD * 11

OS Distribution Redhat 6.2 (kernel
2.6.32-220.el6.x86_64)

JDK version JDK1.8.0_60 (64 bit server)
Spark version 1.4.1 release
Tachyon version 0.8.1 release

HaAdAnan vvarcinn 272 B N

32

Experiment 1: Big Graph Computation

= Background: Calculate similarity between videos

= A case of Graph Analysis
» Friends-of-friend

= |teratively compute association
between nodes

= Challenge

= Generating huge Intermediate data after each iter

33

Architecture: Bagel over Tachyon

= Bagel is a graph processing framework.
= Spark implementation of Google Pregel
= jobs run as a sequence of iterations.

= [n each iteration, each vertex runs a user-
specified function

= update state associated with the vertex and
= send messages to other vertices for use in the

next iteration. e '
= The message generated and new vertex data compute o
will be cached after each iteration new vertex data o

= Intermediate data can be cache in Tachyon

* Tachyon can make full use of high speed device for data
caching.

Tachyon

34

Configuration

Input data size: 22G
Caching data size: 1.5TB
Four configuration to test

Framework Storage Configuration

Spark Spark: 11HDD + 1 SSD
Spark Spark: 11HDD + 4 SSD

Spark + Tachyon Spark: 11 HDD
Tachyon (1 tier): 1 SSD (500GB)

Spark + Tachyon Spark: 11 HDD
Tachyon (2 tiers): 1 SSD (250GB) + 11 HDD (100GB per disk)

Eviction strategy: LRU

35

5000

4500

4000

3500

3000

Test Result

4899

Spark(11HDD + 1 SSD)

Duration (Second)

4516

3848

Spark + Tachyon(SSD)

3913

= Tachyon with SSD & SSD + HDD
outperforms original Spark, gets
about 20% performance gain

= In Spark + Tachyon(2 tiers), 2/3
of caching data is putted on SSD
and 1/3 on Disk

» Spark + Tachyon(1 tier) and
Spark + Tachyon(2 tiers) have
very similar performance

36

Performance Analysis — Disk utilization

SR484 DISK THROUGHOUTPUT SR484 DISK THROUGHOUTPUT

1569,
1.7%€9
1.83891 19€9 |
1€91 12569
K v .
189
= £ |
2 z SES |
En i
3 SEB |
£
- SES |
04 QEQ ¢

1,000 1,500 2,000 2,500 3 TR
time(s) time(s)

—omee=oe] Spark (11 HDD + 1 SSD) L= Spark + Tachyon (1
SR484 DISK THROUGHOUTPUT SR484 DISK THROUGHOUTHIST)

|

$ B |
2 = 7ses| | ‘ T
 d ‘ 5E: ; k' ¥ AL Y
0) ,2 'r,j..'l ' “ N .". b ["'. l" v-k“.f .58 3 ",ﬁlr“!"‘. 'h
G- . A4 bk b Al B]) |
0 1,0 1,504 3,000 3,500 4,000 = $00 1,000 1,500 2,000 2,500 000 3,500

.”tlme(s) 5 - time(s)

Coimi=] Spark (11 HDD + 4 Lo —owdl Spark + Tachyon (2 tiers)
SSD)

37

Performance Analysis — CPU utilization

SR484 CPU UTILIZATION SR484 CPU UTILIZATION
1902 , 12
. 0 : il
§ % | £ 5ol
8 i +
2 3
> T 1500 2,000 2,500 3,000 3,500 4000 4500 %6 2% se0 730 1,000 1,250 1,500 1,750 2,000 2,250 2,500 2,750 3,000 3,250 3,500 3,750
time(s) time(s)
[as o wnars] Spark (11 HDD + 1 SSD) e« Spark + Tachyon (1
i SR484 CPU UTILIZATION . SR484 CPU UTILIZATION t'lel")
. — -
;E i | Ay |) :E
s <. 1 o
i £
10 10
- 1,000 1,500 2,000 2,500 3,000 3,500 4,000 °% 1,000 1,500 2,000 2,500 3,000 3,500
time(s) time(s)
[®use @ sys wict - wai ahig » sia Spark (1 1 HDD + 4 SSD) |8 usr @sys asn wa @ teg & sia) Spark + TaChyon (2

tiers)

Tachyon helps achieve higher CPU utilization due to less time in |10

Experiment 1: Summary

» Tachyon significantly speeds up Spark

» Spark takes all kinds of storage as the same storage media, it

randomly allocates space and access to all local directories
configured.

= With tiered storage and smarter cache management,

Tachyon achieves comparable performance while
requiring less fast memory resource

* Tachyon tries to use the fast device as much as possible, and

has efficient data cache management for “hot” and “warm”
data.

39

Experiment 2: Recommendation System

= Background: data analysis of user event logs
= Job1: Top-K online videos
= |0 Bound

D JobZk: Visits of advertisement by unique users in one day/
wee

= CPU Bound

= Challenges:

= storage and computation cluster are separate.

= Data must be transferred from remote data cluster during
computation

= Same Input data is used by different applications
= causing redundant network |/0.

40

Architecture: Tachyon as local cache

* Deploy Tachyon in compute cluster to avoid the
duplicated network 1/0

41

Configuration

= |nput data size: 1.2TB
= Tachyon
1 tier with 500GB SSD on each worker

= Network

* 1 Gb connection between computation cluster and data service
cluster

10 Gb connection inside computation cluster

42

Test Result

6000

4500

3000

1500

Duration

Spark Only Spark + Tachyon

Job1 (10 Bound)

3400

2550

1700

850

Duration

Spark Only Spark + Tachyon

Job2 (CPU Bound)

43

Performance Analysis — Job1

SR484 CPU UTILIZATION

—

peicentage

6 6 1000 1500 2000 2500 3,000 3500 4000 4500 500 5500
tirne(s)

[aew avs asx wa &g =g

SR484 DISK THROUGHOUTPUT

s e

byte

ser

257

0o ’¥ . s - - . - ~ . - . -
o <0y 1,000 1500 2,000 2500 3,000 3500 4000 4500 5000 S50
tirnwel(s)

SR484 NETWORKT THROUGHOUTPUT

3s5es
12
2508

L5Es

e
oro

6 SO3 1,000 1500 2000 2500 3,080 3500 4000 4500 5000 5530
tirnels)

Spark-only

SR484 CPU UTILIZATION

percent

s00 750 1,000
tveds)
|8 v asvs aox wa @iy 5w
SR484 DISK THROUGHOUTPUT
SES ¢
€8
o (> ¥
} 3
8
1.
W
0
Lveds)
SR484 NETWORKT THROUGHOUTPUT
T8
2EN
N3
L7368 ‘
s 1568
SLaes:
e8!
TSEY S
67
23E7:
0 -
0 250 S00 750 1,000 1,250 1500

e 44
Spark+Tachyon

Performance Analysis — Job?2

SR484 CPU UTILIZATION SR484 CPU UTILIZATION

»
0
70
-
¥ 0
T v
& 30
20
0
04} 8 . - .
(-] 250 $00 730 1000 1290 1500 L730 2000 2290 2500 2,730 LOOO 12% 3 S0 IS0 1000
timeds) tirels)
[sur ans asa wa anig « sal [senr avs i wa atig 5 g
SR484 DISK THROUGHOUTPUT SR484 DISK THROUGHOUTPUT
o] 1 '] ; [1 ' 11 1 oeell S S S SN S
ol o2
BES TER
. :::: ' 62
568 | 2 =
a2 | awe
8 368
2es | 268
168 4 ies
oo oro g ' ¥ - . ’
(] 250 $00 730 1000 1230 13500 L3S0 2000 2,290 2500 2790 LOOO 12%) %0 S00 750 1000 1150 1500
timeds) tirels)
SR484 NETWORKT THROUGHOUTPUT SR484 NETWORKT THROUGHOUTPUT
Qm,I e ——————————————————————t ettt e ————————————————————————————
008 | e
708 |] 6Es]
cu{ Ses
. e .
! 4E2
atn e
3!31
268 200
e 1 s
oro ! - - - - - - - - - - . S oo - - - — —- -
o %0 00 750 L0000 1250 1500 L1750 2000 2250 2500 2,750 3000 325] %50 S0 150 1000 1250 1500

tirnwels) tirnels)

45
Spark-only o= Spark+Tachyon

Experiment 2: Summary

» Using Tachyon as local cache accelerates the

application
* For the application is I/0 bound, Tachyon greatly improves the
performance(3X)

* For the application is CPU bound, Tachyon still brings much
performance gain(2X)

46

Experiment 3: Data Sharing within a Pipeline

= Background:

» Intermediate data is shared in a job chain , the output of
one job is the input of another job

= Challenge:

= Without Tachyon, output of the previous job needs to be
written into HDFS, and read by another job

47

Architecture

*With Tachyon, the output can be cached in Tachyon caching space,
and makes the jobs share data without heavy network & HDD [/0

Spark / MR job

Intermediate

data read /

Spark/ MR job

48

Data share in job chain — Terasort

= Two jobs in Terasort:

« Data-preparation
« Data-processing

= Data sharing between two jobs:

* Written into HDFS, with 1 replication
« Written into Tachyon

49

Configuration

» |Input data size: 1TB

= Tachyon caching space
« 1 layer with 500G SSD on each worker

= Two rounds of testing for the second phase:
« Data processing-round1:
Write result into HDFS with 3 replications

« Data processing-round2:
Write result into HDFS with 1 replication / tachyon

50

Test Result

360

270

180

90

0

Duration

prepare-hdfs-1rep prepare-tachyon

Data preparation

1500

1125

750

375

0

Duration

Run-hdfs-hdfs-1rep

Data processing

Run-tachyon-tachyon

51

Performance Analysis — Data preparation

SR484 CPU UTILIZATION

SR484 CPU UTILIZATION

100 Lo
20 ”
oo 2
70 N
§ 60 § (5]
| T w0
c a0 E
4 30 a 30
0 'y
10 10
o 0 J
50 s 100 128 150 178 00 NS5 250 10 2 30 40 S0 66 T 80 0 100 110 120 130 140 150 0 170
time(s) timels)
|[auer mos aia wa ania 5 sal [aver ans o v ang s sa]
SR484 DISK THROUGHOUTPUT SR484 DISK THROUGHOUTPUT
p— e T o T 4 = T T ' 1 1790 17 11 T : 3 1 - 12 v ' = 1 11
we !
868 | L809 r ‘
7ES 12589 ¢ '
o 9681 v 198 |
2558 £ £
4E5 4 75¢2
368 €8 4
Ry
e 2568 L
e 050 -
° s so s 100 18 0 1 N0 NS M0 7S 300 NS 10 30 30 40 S0 60 YO 83 20 300 130 120 330 140 150 le0 170
time(s) tirme(s)
SR484 NETWORKT THROUGHOUTPUT SR484 NETWORKT THROUGHOUTPUT
| sié..’ o — - s - D —— 3 y - R v— - - - T
ool asge
17565 4 a5l
1565 4 35ee
1509 4 e
= 3 25664
L I b4
7 5E4 205 |
L4 LSE6 49
A 166 4
TSEe “ws -
€0 OO M 2
0 28 50 75 100 128 150 s 200 128 250 278 300 74 10 20 10 0 SO € 70 £ 0 0O 110 10 10 1& 150 160 170
timels) timels) 52

| st aracy —recaniana)

Prepare-hdfs-1rep

Prepare-Tachyon

Performance Analysis — Data processing-round1

SR484 CPU UTILIZATION

percentage

00 Joo 400 $cO [2=s) 700 o0

titme(s)

00 LOLO LISO 3200 L)NO L&

[‘uv.m N ﬂ.ma.‘q]

SR484 DISK THROUGHOUTPUT

see
e |
e
see |
v
gcnv
es

B

2E8

H'r

‘ 1]:”'

u ih.u..uuul Ll ik L

“\
700 002 200 L0000 3300 3200 L0 L&
time(s)

SR484 NETWORKT THROUGHOUTPUT

CEO ’

100 200 100 ®00 500 600

235684
Peiz 2
208 4

1 'QEBH

v 1384
; 12%e8 4
IB-'
7SE7 Y
SE7 §
J9E7 2
“0“—"-

0 100

200 300 400 SO0 600 00 800 900 LO00 L1100 1200 L3N0 L1400

timels)
| st aricy —recaviana)

Run-hdfs-hdfs-1rep

s
| B 1569

SR484 CPU UTILIZATION

250 00 XS0 400 450 SO0 %0
tirme(s)

€00 430 700 T30 B0 &0 0

° S0

100 % 200

AUV AT AT W NG s ug

SR484 DISK THROUGHOUTPUT

3694
15691
9

1E5 ¢
SES ¢

€0 -

W00 150 200 250 I 3‘) 400 450 SO0 S50 €00 650 00 TS0 &30 850 M

time(s)

SR484 NETWORKT THROUCHOUTPUT

468 1
25681l

g2
2568 |

1588

263 300 350 400 450 SO0 SSO €00 650 YOO 750 800 B854 900

103 350 200
teme(s)

53
Run-tachyon-tachyon

Performance Analysis — Data processing-round?2

SR484 CPU UTILIZATION

percentage

700 ool
titme(s)

0 (3] 00 100 400 $cO (2= 00 LOLO LISO 31200 L3N0 L&

[auwr awps s wa ania »)

SR484 DISK THROUGHOUTPUT

“lf

“\
700 o2 200 LO0O 3200 3200 LI L&
time(s)

SR484 NETWORKT THROUGHOUTPUT

\luu

| L
m .u..uné lddi *u

O 100 200 100 ®00 500 600

600 700 800 920 L1000 L1100 1200 L300 31400
timels)

| st aricy —recaviana)

300 400 SO0

0 100

Run-hdfs-hdfs-1rep

200

percentage
LR s

LE¥

75684

byte

ses

we

2568
-
% 15ES .
-

SE7 ¢

0E0 -

SR484 CPU UTILIZATION

e

100 200 100 00 o) 00 700) 900 1000 1,300

timels)

|avw ans asa wa anig o ual
SR484 DISK THROUGHOUTPUT

(] 13;) 7 ?2)6 200 Vk‘lb ‘;)07 o ;40 7(;0 200 m l:ﬁr)0 Lioo

time(s)

SR484 NETWORKT THROUGHOUTPUT

200 100 o S0 500 o0 &0 om 1,000 1100

tamels)

| rorwra oy — 1ot

Run-tachyon-hdfs-1 rsgp

Experiment 3: Summary

= Sharing Intermediate data via Tachyon with NVM
boost the execution

* For the first phase, which is purely I/0 intensive, it brings
(2X) performance gain

* For the second phase, it brings 1.2X ~1.6X performance
gain

55

Outline

= Summary

56

Conclusion

= Memory is the new disk

= Tachyon resolves the challenges in in-memory
data management

= NVM will offer great performance for data
access in Tachyon

57

Q&A

59

Test 1: Friends-of-friend

Compute associations between two vertices n-hops
away in a Graph
* Getting weights between Vertices that have N degree association

« Weightn(u,v) = JA=1TM@Wp (UV)k (M is the number of
paths that have exactly n edges)

« Wp(UV)k-=][]e=1TnéWe (We is the weight of edge)
A Graph Analysis case

* E.g., friends of friend in social network

Graph-parallel implementation
* Bagel (Pregel on Spark)

60

Problem statement

= |n memory becomes more important and popular

 Cost / capacity of Memory is lower and lower, which makes it possible to handle huge size
of data in memory

Many computation frameworks leverage memory
How to manage huge caching data is an interesting problem

= There are still some challenges
« Data sharing among applications
GC overhead introduced by in memory caching
When data is huge, external storage is still needed

61

Introduction of Tachyon

http://www.tachyonproject.org/

= Tachyon is an memory-centric distributed storage system enabling data
sharing at memor-speed acorss cluster frameworks, such as Spark
Mapreduce etc.
« Caches working set files in memory and off-heap
« Enables different jobs/queries and frameworks to access cached files at memory speed

= Features | |
. Java-like file API Spark i ¢ S?S[k OIS WO

* Hadoop file system compatible
* Pluggable under layer file system

= Tiered block storage

Source: http://www.cs.berkeley.edu/~haoyuan/talks/Tachyon_2014-10-16-Strata.pdf

62

http://www.tachyonproject.org/

Test cases for remote data cache

= |nput data is used by different applications
* Input: event logs

« Data format:
Timestamp\Category\Objectid\EventID\ ...

= |nput data location:
« Without Tachyon, all data is putted on remote HDFS cluster
« With Tachyon, all data is cached in local Tachyon

= There are two cases, which share the same input data:

« Casel1 TopN
« (Case2 Nreach

63

Intro for TopN

Compute the top N object in each category
« Used fields from input data:
. <Category\Objectld\...>

« select Category, Objectld, count(*) as events from Input_data group by Category ,Objectld
order by events desc limit N where category="a’;(for all categories)

OQutput:
. Category\Objectld\Visits

It can be used to calculate:
 The best selling products in each category
* Most popular videos in each category

64

Intro for Nreach

= Computing unique event occurrence across the time range
« Used fields from input data:
. <TimeStamp, Objectld, Eventld, ...>
OQutput:
. <Objectld, TimeRange, Unique Event#, Unique Event(=2)#, ..., Unique Event(zn)#>
. Accumulated unique event# for each object and certain time range

= |t is used to calculate:
Visits of certain advertisement by unique users in one day/week

65

Tiered storage in Tachyon

= Tiered block storage is used to extend Tachyon’s caching space with
external storage, such as SSD HDD etc.
« Different tiers have different speed and priority
« “Hot” data and “warm” data are putted on different layers
« Multiple directories in single tier

. . . Promote to h Evict from top
= Data migration among tiers top layer layer to bottom
« “Hot” data can be evicted to lower layer, when it Iayer
is not “hot” any longer by eviction strategies.
« “Warm” data can be promote to top layer, when
it becomes “hot” again.

= |t is available since Tachyon 0.6 Release
66

« The JIRA for tiered storage: TACHYON-33

https://tachyon.atlassian.net/browse/TACHYON-33

