
Amazon Web Services – RDBMS in the Cloud: PostgreSQL on AWS June 2013

Page 1 of 23

RDBMS in the Cloud: PostgreSQL on AWS
June 2013

Miles Ward (AWS)

Laine Campbell, Jay Edwards, and Emanuel Calvo (PalominoDB)

(Please consult http://aws.amazon.com/whitepapers/ for the latest version of this paper.)

Amazon Web Services – RDBMS in the Cloud: PostgreSQL on AWS June 2013

Page 2 of 23

Table of Contents

Introduction .. 3
Relational Databases on Amazon EC2 .. 3

Amazon EC2 Instances Versus Your Server ... 3
PostgreSQL on Amazon EC2 .. 4

Overview ... 4
Concepts.. 4
Basic Installation ... 5
Temporary Data and SSD Instance Storage .. 7

Step-by-Step Laboratory ... 7
Architecture .. 9

Anti-Patterns ... 10
Performance Suggestions ... 10

Storage .. 10
Amazon EBS Details .. 13
Benchmarking AWS Storage ... 14

Operations .. 15
Maintenance and Vacuuming ... 15
Read-Only Servers ... 15

Back Up Using an Amazon EC2 Snapshot .. 16
Restore Using an Amazon EC2 Snapshot .. 16

Storing Backups and WAL Files ... 17
PostgreSQL Replication ... 17

Basic Streaming Setup ... 18
Minimal Master Configuration .. 18
Tunables .. 19
Monitoring .. 21

Using Amazon CloudWatch Custom Metrics .. 21
Security ... 22

Disk Encryption ... 22
Row-Level Encryption ... 22
SSL ... 22

Authentication and Network .. 23
Conclusion ... 23

Amazon Web Services – RDBMS in the Cloud: PostgreSQL on AWS June 2013

Page 3 of 23

Introduction

Amazon Web Services (AWS) is a flexible, cost-effective computing platform. Running your own relational data store on
Amazon Elastic Compute Cloud (Amazon EC2) is ideal for users whose application requires the familiar operating
characteristics of an RDBMS as well as the cloud’s flexibility. In this whitepaper, we help you understand one of the most
popular options available on Amazon EC2—the open source database system, PostgreSQL. We provide an overview of
general best practices and examine important PostgreSQL characteristics such as performance, durability, and security.
We also specifically highlight features that support scalability, high-availability, and fault-tolerance.

Relational Databases on Amazon EC2
AWS is an excellent platform for running traditional relational database systems (RDBMS). The public cloud provides
strong benefits for database workloads. Understanding the ways that AWS differs from physical infrastructure with
respect to RDBMS workloads helps you to design the best architecture possible.

Amazon EC2 Instances Versus Your Server

Let’s compare a typical single, 1U rack-mount server to an EC2 instance.

At first glance, these two computers are similar: they provide roughly equivalent CPU, RAM, local disk resources, and
network infrastructure. However, the operational differences are enormous:

 The EC2 instance is rapidly replaceable, duplicable, and available on-demand.

 The EC2 instance can dynamically grow and shrink from a single logical CPU with 1.7GB of RAM up to 16 logical
CPUs with 244GB of RAM. This requires a simple configuration change through the API or CLI and an instance
reboot.

 The EC2 instance only costs you money while powered on. Shutting down even part of your fleet during non-
peak times can save significant budget dollars. Persistent storage options protect your data, but have on-going
costs even when your instances are “stopped.”

 The EC2 instance is supported by the AWS network and facilities infrastructure; you never have to touch the
hardware.

 While there is no contention for CPU or memory, the network itself is a shared resource. You might have access
to only a fraction of the physical infrastructure’s network connection depending on instance size.

 AWS facilities (called Availability Zones) are likely larger than your network environment, and EC2 instances
(except for some specialized instances) start in random physical locations within the Availability Zone. This is
good for reliability, but server-to-server communications may have higher latencies than on a smaller local
network.

 Because of virtualization overhead, there are non-rounded memory sizes (613MB, 1.7GB, 7.5GB, 15GB, 17.1GB,
22GB, 23GB, 34.2GB, 68.4GB, etc.); applications tuned for specific memory footprints might need to opt for
more memory than absolutely required or be retuned for these sizes.

Amazon Web Services – RDBMS in the Cloud: PostgreSQL on AWS June 2013

Page 4 of 23

 There is more local disk storage (referred to as “instance storage”) on the EC2 instance than our example server;
however, instance storage is ephemeral and is deleted when the instance is stopped or terminated. We
recommend that you use persistent storage resources in addition to your EC2 instance.

In addition to your EC2 instance, Amazon provides other valuable resources available via our internal network:

 Amazon Elastic Block Store (Amazon EBS)—Amazon EBS volumes are durable, high-performance, network-
attached block device resources. These “virtual disks” can be attached to your servers and can persist when
servers are stopped or terminated, providing durable storage for databases. Amazon EBS volumes that operate
with 20GB or less of modified data after their most recent snapshot can expect an annual failure rate (AFR)
between 0.1% – 0.5%.

 Amazon Simple Storage Service (Amazon S3)—Amazon S3 provides a highly durable storage infrastructure
designed for mission-critical and primary data storage; it provides backup storage for snapshots of Amazon EBS
disks as well as any other static content your application needs. Amazon S3 is designed for 99.999999999% data
durability, making it an ideal target for your database backups.

 Amazon CloudWatch—CloudWatch is the AWS monitoring service. It provides detailed and customizable CPU,
disk, and network utilization metrics for each enabled EC2 instance and Amazon EBS disk. This data is available
in the web-based AWS Management Console as well as through the API, allowing for infrastructure automation
and orchestration based on availability and load metrics.

PostgreSQL on Amazon EC2

Overview
PostgreSQL is an open-source RDBMS known for a rich set of features and extraordinary stability. A strong focus on
performance enhancements in recent releases has enabled PostgreSQL to become a strong competitor to other
database solutions on the market today. PostgreSQL provides full ACID compliance for applications requiring reliability
and durability.

Using this Whitepaper

Items beginning with “$ “ are entered at a Bash shell prompt. Items beginning with “ > “ are typed into the
PostgreSQL shell and represent commands to the PostgreSQL database process.

Concepts
To get started, let’s clarify some concepts and terminology used in this whitepaper.

A PostgreSQL master host accepts both writes and reads, and may have many replicas. Records are transferred to the
replicas via write-ahead logging (WAL). The current PostgreSQL community version allows only one master, although
there are third-party solutions that provide multi-master clustering.

A secondary host receives WAL records from the master. Replication can be real-time through streaming replication or
delayed through WAL archiving.

Amazon Web Services – RDBMS in the Cloud: PostgreSQL on AWS June 2013

Page 5 of 23

A hot standby is a secondary host that can receive read queries. PostgreSQL supports a warm standby state—a host that
receives WAL archives but does not receive traffic.

Streaming replication is the native PostgreSQL method of real time replication, and is akin to MySQL’s row-based
replication.

Replication on PostgreSQL supports two levels of durability: asynchronous and synchronous. Only one replica can be in
synchronous mode. You may provide an ordered list of candidate synchronous replicas if the primary replica is down.
Requiring synchronous replication can cause severe performance degradation in cases where the network connection
between the master and replica is not high quality.

For version 9.2 and later, PostgreSQL supports cascading replication, so that replicas transfer WAL records from the
primary server to other hosts, and create a replication topology. You can run the backups against any of the replicas and
use them to build new cascading replicas.

If you want faster replicas and do not mind rebuilding them each time they restart, consider using SSD storage for their
data. It is a good practice to have one replica for seeding new copies online using pg_basebackup.

Basic Installation
Here's how to get started with PostgreSQL on AWS.

1. Launch an EC2 instance using the AMI of your choice. (For this example, use the Amazon Linux 64-bit AMI.)

2. Create an Amazon EBS volume to use for your PostgreSQL storage, and attach it to the instance.

Note: You need the operating system device name (/dev/xvdc for instance) to complete step 6.

3. Connect to the instance by SSH.

4. Make a file system on your Amazon EBS volume:

$ yum install xfsprogs

$ sudo mkfs -t xfs /dev/xvdc

5. Make a directory to serve as a mount point:

$ sudo mkdir -p /data

$ sudo chown `id -u` /data

6. Edit your fstab to mount the volume on startup:

$ sudo –I

$ echo ‘/dev/xvdc /data auto noatime,noexec,nodiratime 0 0’ >> /etc/fstab

7. Mount the volume:

$ sudo mount -a /dev/xvdc /data

8. Either download and install PostgreSQL from the source, or install it as a package:

Amazon Web Services – RDBMS in the Cloud: PostgreSQL on AWS June 2013

Page 6 of 23

a. Basic source installation:

$ wget http://ftp.postgresql.org/pub/source/v9.2.1/postgresql-9.2.1.tar.gz

$ tar xzvf postgresql-9.2.1.tar.gz

i. Install the following packages:

$ sudo yum install zlib-devel.x86_64 readline-devel.x86_64 python27-

devel.x86_64 python27.x86_64 perl-ExtUtils-MakeMaker.x86_64 perl-

ExtUtils-CBuilder.x86_64 perl-ExtUtils-Embed.x86_64

$./configure --prefix=/opt/pg --with-libxml --with-libxslt --with-perl

--with-python

$ make ; sudo make install

We are installing PostgreSQL with Perl and Python support. This is necessary if you want to use those
languages for triggers or install third-party replication tools trigger based on them (for example, Bucardo
uses Perl, Londiste uses Python).

The prefix location is for binaries and libraries.

b. If you aren’t comfortable building from the source, you can install a binary package from the AWS repository.
Check the most recent version available on the repository, and install:

$ yum info postgresql9-server.x86_64 | grep Version

$ yum install postgresql9-server

9. Both installation methods require you to initialize the cluster data folder for Amazon EC2:

sudo -u postgres /opt/pg/bin/initdb -D /data/

Check /etc/init.d/postgresql to ensure that the PGATA variable points to the mounted data directory:

PGDATA=/data/pg

10. Verify permissions for data and binaries.

a. If you compiled from the source:

sudo useradd postgres ; chown -R postgres: /data ; chown -R postgres:

/opt/pg

b. If you installed binary packages:

chown -R postgres: /data

11. Edit your Amazon EC2 security group to allow ingress from your application servers to the database server on port
5432.

Amazon Web Services – RDBMS in the Cloud: PostgreSQL on AWS June 2013

Page 7 of 23

12. Pre-configuration steps:

a. Edit the postgresql.conf file so that the postgres.exe or PostgreSQL process listens on every IP address:

listen_addresses = ‘*’

b. If you are planning to run a master-slave configuration from the beginning, you may want to set
max_wal_senders > 0. This variable indicates the number of processes that ship WAL records to replicas.
Each replica requires max_wal_sender to be incremented by one. Changing this variable require a restart so
you need to plan carefully. A total of four connected replicas is more than enough for most situations. If you
need more than four replicas, you should run cascade streaming to avoid overloading the master with the
business of shipping WAL records.

13. Start PostgreSQL.

a. If you compiled from the source:

/opt/pg/bin/pg_ctl start -l logfile -D /data/pg

b. If you installed binary packages:

service postgresql start

Temporary Data and SSD Instance Storage
As an advanced technique, you can create a normal tablespace on instance storage with unlogged tables to take
advantage of increased performance available with SSDs, like those available on Amazon EC2’s hi1.4xlarge and
cr1.8xlarge instance types. It is important to remember that instance storage isn’t permanent and will be lost if your EC2
instance is terminated or fails. This technique is only suited for data that you can afford to lose, typically because you
have it replicated elsewhere in your setup.

When you create a new table, query the relfilenode of the new table and back up the filesystem identified by the
query results into permanent storage. (Be sure to do this before you put any data in the table.)

To restore, just copy the backup to the same location, and run the ANALYZE command on those tables. This technique is
compatible with unlogged tables if you want to have a primary-replica configuration. This avoids replication
inconsistencies, as unlogged tables do not get replicated. For standalone servers, you can use this technique with
permanent tables. You can create handmade materialized views here too.

Step-by-Step Laboratory

This example walks through a basic example of a temporary data configuration over ephemeral storage, and what to do
after a server shutdown.

postgres=# CREATE UNLOGGED TABLE prueba(i serial primary key, something

text);

NOTICE: CREATE TABLE will create implicit sequence "prueba_i_seq" for

serial column "prueba.i"

NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index

"prueba_pkey" for table "prueba"

CREATE TABLE

Amazon Web Services – RDBMS in the Cloud: PostgreSQL on AWS June 2013

Page 8 of 23

The OID column contains the name under the folder “base” of the data directory where the relfilenode resides. Copy
that file into a permanent storage:

postgres=# SELECT relfilenode, (SELECT oid FROM pg_database o WHERE

o.datname = current_database()::text) FROM pg_class WHERE relname =

'prueba';

 relfilenode | oid

-------------+-------

 16386 | 12870

(1 row)

[root@ip-10-250-227-15 temp_ts]# ls -l

total 0

drwx------ 3 postgres postgres 18 Dec 3 01:24 PG_9.2_201204301

[root@ip-10-250-227-15 temp_ts]# ls -l PG_9.2_201204301/

total 0

drwx------ 2 postgres postgres 129 Dec 3 01:24 12870

[root@ip-10-250-227-15 temp_ts]# ls -l PG_9.2_201204301/*

total 24

-rw------- 1 postgres postgres 0 Dec 3 01:24 16396

-rw------- 1 postgres postgres 0 Dec 3 01:24 16396_init

-rw------- 1 postgres postgres 0 Dec 3 01:24 16397

-rw------- 1 postgres postgres 0 Dec 3 01:24 16397_init

-rw------- 1 postgres postgres 8192 Dec 3 01:24 16398

-rw------- 1 postgres postgres 8192 Dec 3 01:24 16398_init

-rw------- 1 postgres postgres 0 Dec 3 01:24 16401

-rw------- 1 postgres postgres 0 Dec 3 01:24 16405

-rw------- 1 postgres postgres 8192 Dec 3 01:24 16407

[root@ip-10-250-227-15 ~]# mkdir /data/temp_ts

[root@ip-10-250-227-15 ~]# chown -R postgres: /data/

postgres=# CREATE TABLESPACE temp_ts LOCATION '/data/temp_ts';

CREATE TABLESPACE

postgres=# ALTER TABLE prueba SET TABLESPACE temp_ts;

ALTER TABLE

postgres=# CREATE TABLE prueba2 (i serial primary key, misc text, start

timestamp) TABLESPACE temp_ts;

NOTICE: CREATE TABLE will create implicit sequence "prueba2_i_seq" for

serial column "prueba2.i"

NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index

"prueba2_pkey" for table "prueba2"

CREATE TABLE

[root@ip-10-250-227-15 data]# cp -R temp_ts/ bak_temp_ts/

postgres=# INSERT INTO prueba(something) VALUES ('o');

INSERT 0 1

postgres=# INSERT INTO prueba2() VALUES ('o');

i misc start

postgres=# INSERT INTO prueba2(start) VALUES (now());

INSERT 0 1

Amazon Web Services – RDBMS in the Cloud: PostgreSQL on AWS June 2013

Page 9 of 23

What happens to the table if nothing exists on the ephemeral storage? You are not able to access the table itself.
Consequently, PostgreSQL raises an error. This example shows a file deletion and a subsequent attempt to access the
table:

[root@ip-10-250-227-15 data]# rm -rf temp_ts/

[root@ip-10-250-227-15 data]# psql -Upostgres

psql (9.2.1)

Type "help" for help.

postgres=# SELECT * FROM prueba;

ERROR: could not open file

"pg_tblspc/16395/PG_9.2_201204301/12870/16396": No such file or directory

How do you restore the contents? Just copy the content from your backup to the temporary folder:

[root@ip-10-250-227-15 data]# cp -R bak_temp_ts/ temp_ts

[root@ip-10-250-227-15 data]# chown -R postgres: temp_ts/

The tables are empty, as expected:

postgres=# SELECT * FROM prueba2;

 i | misc | start

---+------+-------

(0 rows)

postgres=# SELECT * FROM prueba;

 i | something

---+-----------

(0 rows)

Architecture
The design of your PostgreSQL installation on Amazon EC2 is largely dependent on the scale at which you are trying to
operate. Given the building blocks of a master and streaming replication, how would a system scale to accommodate an
increasing load over time?

 Functional partitioning—Separate distinct workloads to their own masters and replicas to minimize contention
for resources.

 Vertical scaling—Scale to the largest sizes of instances and storage as AWS can provide for each component.

 Tuning—Carefully tune for the available hardware including connection pool tuning, archival and purging of
unneeded data, or using PostgreSQL partitioning where appropriate.

 Replication—If bound by reads, whether on I/O or CPU, use replication to create multiple replicas to distribute
query load.

 Sharding—If bound by writes, sharding your data set across multiple clusters is an appropriate next step.

Amazon Web Services – RDBMS in the Cloud: PostgreSQL on AWS June 2013

Page 10 of 23

Anti-Patterns

 Vertical scaling doesn’t offer all of the same benefits of horizontal scaling. Higher-performance instances can
provide many of the performance benefits of a more complex replicated and sharded topology, but they offer
none of the significant fault-tolerance benefits.

 Scaling step by step when you know you need a big system isn’t efficient. This is an exercise in probability of
success. Planning for growth in AWS is easier because of your ability to scale both quickly. You do need a plan
for identifying growth triggers.

 ACID compliance has a cost. If logs or session data are a large subset of your data, you may not need the
guarantees offered by ACID and should consider a NoSQL key store such as Amazon DynamoDB, Cassandra, or
Riak.

 You might not need to do everything in your database. You can keep your databases running a lot more
smoothly by adding caching tiers, using specialized search engines, and off-loading certain work to your
application servers.

Performance Suggestions

Storage

In many ways, the methods you use to scale your I/O workload are so closely tied to the characteristics of your specific
case that it is difficult to provide detailed information. For instance, increasing the number of Amazon EBS volumes in a
software RAID set increases performance up to a certain number. While we have seen 8 volumes work well for some
workloads, we’ve seen 22 volumes work better for other workloads. With that caveat in place, we provide some general
guidance and suggest that you test everything.

Figure 1: Minimum Storage Scale: Use Amazon EBS

Amazon Web Services – RDBMS in the Cloud: PostgreSQL on AWS June 2013

Page 11 of 23

Minimum production scale

Always use Amazon EBS. Amazon EBS has significant write cache, superior random I/O performance, and provides
enhanced durability in comparison to the ephemeral disks on the instance. If you are going to use ephemeral disk on
instances that expose more than a single volume, mirror those volumes to enhance operational durability. Remember, if
the instance is lost or terminated, you’ll lose all of your data even though the volumes are mirrored. Non-SSD instance
storage is slower than Amazon EBS; don’t put data or WAL files on it.

Figure 2 Basic Multi-AZ PostgreSQL architecture

Medium production scale

Move up to higher bandwidth instance types (m1.xlarge, c1.xlarge, or m2.4xlarge), and increase the number of volumes
in your RAID set.

Figure 3: Medium Scale: pIOPS Amazon EBS RAID0

Amazon Web Services – RDBMS in the Cloud: PostgreSQL on AWS June 2013

Page 12 of 23

Extra-large production scale

If you are working in our US East (Northern Virginia), US West (Oregon), Asia Pacific (Tokyo), or EU (Ireland) regions,
AWS offers Cluster Compute instances, which have more bandwidth for communications with Amazon EBS; CC2 and CR1
instances would make excellent primary nodes, particularly when paired with a large number of Amazon EBS volumes (8
or more).

Amazon EBS with Provisioned IOPS volumes in a RAID set can support very I/O-intensive applications.

Figure 4: Extra-Large Scale: Cluster Compute and pIOPS RAID0

Alternately, you can use a hi1.4xlarge instance with two ephemeral SSD volumes. These are well suited for replicas,
where you can rebuild from backups or using pg_basebackup online.

Figure 5: Extra-Large Scale: Replicas on SSD

Amazon Web Services – RDBMS in the Cloud: PostgreSQL on AWS June 2013

Page 13 of 23

 RAID configuration could be improved from the PostgreSQL configuration setting

effective_io_concurrency, which needs to be set to the number of stripes of your RAID.

 If you have replicas running on SSDs, you can disable all the integrity features like fsync and
full_page_writes on those hosts to improve the performance. The throughput on the COMMIT rate
improves, as shown in the following graph (Figure 6: the orange rectangle represents the commit graph with
the integrity features enabled and the green rectangle represents the graph with those variables disabled).

Figure 6 Improved throughput with integrity features enabled (orange rectangle)

 Consider using PIOPS (http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSPerformance.html).

 How to calculate the IOPS performance? The basic formula is:

(NUM_IOPS * BLOCK_SIZE) /1024 = Megabytes/Sec

That is, 400 IOPS is only 3 MB/s at 8K block size.

Amazon EBS Details
Amazon EBS has important details worth noting for your production deployments:

 There are default account limits that you can increase by filling out a request at
http://aws.amazon.com/contact-us/ebs_volume_limit_request/.

 The maximum IOPS per Provisioned IOPS volume is 4000, which requires a minimum of 400 GB provisioned
storage and the use of the EBS-optimized flag. These can be aggregated up to the expected throughput
maximum for the instance you’ve selected.

 Non cluster-compute EC2 instances using the EBS-optimized flag are connected to Amazon EBS through a
1000mbps or 500mbps link, so the theoretical maximum performance will be ~120 MB/s or ~60 MB/s
respectively.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSPerformance.html
http://aws.amazon.com/contact-us/ebs_volume_limit_request/

Amazon Web Services – RDBMS in the Cloud: PostgreSQL on AWS June 2013

Page 14 of 23

Benchmarking AWS Storage
If you are using Amazon EBS, you are using a networked device. We strongly suggest that you benchmark your storage
after it is created. If you are migrating from a system in your own datacenter, this is a great chance to compare
performance and confirm that you are setting up Amazon EBS correctly to meet your throughput needs.

To do basic disk tests, you can use dd (sequential) and sysbench.

 Sequential test example command:

dd if=/dev/zero of=<location in the disk> bs=8192 count=10000 oflag=direct

 Seek test example command:

sysbench --num-threads=16 --test=fileio --file-total-size=3G --file-test-

mode=rndrw prepare

sysbench --num-threads=16 --test=fileio --file-total-size=3G --file-test-

mode=rndrw --file-fsync-all run

sysbench --num-threads=16 --test=fileio --file-total-size=3G --file-test-

mode=rndrw cleanup

NOTE: For more aggressive testing, you can add the --file-fsync-all option. We recommend this if you want to
benchmark and compare different filesystem types (EXT4 vs. XFS, for instance).

To test performance through PostgreSQL, you can use pgbench. When you understand whether constraints exist in your
storage layer or in your RDBMS layer, you can configure your system better.

 Pgbench command example:

o Install the set with the respective scale:

pgbench -i -s1000 -Upostgres database

o Run a simple test with 20 clients with 100 transactions each against the master:

pgbench -c 20 -t 100 -Upostgres database

o Also, you can run a “only-read/no vacuum” test against the slave:

pgbench -S -n -c 20 -t 1000 -h slave -Upostgres database

If you are planning to use a query balancer (such as pgpool), remember to test against the balancer instead of directly
against the databases.

Amazon Web Services – RDBMS in the Cloud: PostgreSQL on AWS June 2013

Page 15 of 23

Operations

Maintenance and Vacuuming
One of the main maintenance tasks of a PostgreSQL instance is the vacuum. Vacuuming recovers free space available on
the blocks from old versions or deleted rows.

Autovacuum is enabled by default; we recommend not turning it off. We also suggest scheduled vacuum tasks on off-
hours. The primary tunable variable for the autovacuum process is the number of concurrent workers. By default,

autovacuum_workers is set as 3. You can set the value for autovacuum_workers to between 5 and 8 in most
production environments. Also, decreasing the thresholds/factors per table basis can help for the most updated tables.
It is fine to change the thresholds during the day according to your system’s load. Remember that vacuuming is
expensive, so you may not want run this process in the middle of a high workload. The ANALYZE command on its own is
less expensive but can also consume important resources.

For example, if you want to have statistics updated more frequently on a specific table, you could execute one or both of
the following SQL statements:

ALTER TABLE stat SET (autovacuum_analyze_threshold=20);

ALTER TABLE stat SET (autovacuum_analyze_scale_factor=0.10);

The ANALYZE command is triggered according to the following formula:

autovacuum_analyze_threshold + (autovacuum_analyze_scale_factor * # rows

in table)

In large or busy tables, you should generally reduce the scale factor to update statistics more frequently.

If you have good maintenance windows or low-load hours, you may prefer to run vacuums during those hours and

increase the autovacuum_analyze_threshold value during working hours.

However, autovacuum isn’t enough. It was designed to run concurrently and with minimal impact against the server.
Autovacuum tasks can be cancelled during increased periods of load with minimal impact. You should schedule normal
vacuums during non-peak hours.

A sample line, on the crontab, to vacuum and analyze a specific table every 6 hours:

0 */6 * * * /opt/pg/bin/vacuumdb -z -d <database> -t <table> -

Uuser_for_maintenance

Read-Only Servers
For some operations or specific projects, you may need to put your server in a read-only state. There is typically no need
to put the server in this state for general maintenance.

To do this, you need to add the following two variables in the postgresql.conf file and then reload the server with pg_ctl
reload:

transaction_read_only=on

default_transaction_read_only=on

Amazon Web Services – RDBMS in the Cloud: PostgreSQL on AWS June 2013

Page 16 of 23

To start accepting writes again, uncomment or delete these variables and reload the server again.

Back Up Using an Amazon EC2 Snapshot

If you want to snapshot a mounted volume, execute the following command:

SELECT pg_start_backup(‘label’,true);

Note that this operation is non-blocking.

The second parameter turned as “true” forces the backup to start as soon as possible, but affects the query processing
due to higher I/O operations. By default, this value is "false" and backups can take a while to finish. From the official
documentation (http://www.postgresql.org/docs/9.2/static/continuous-archiving.html):

“This is because it performs a checkpoint, and the I/O required for the checkpoint will be spread out over a
significant period of time, by default half your inter-checkpoint interval (see the configuration parameter
checkpoint_completion_target). This is usually what you want, because it minimizes the impact on query
processing.”

Perform the snapshot:

ec2-create-snapshot -d "postgres clon" vol-24592c0e

SNAPSHOT snap-219c1308 vol-24592c0e pending 2012-12-

03T01:34:12+0000 052088341151 10 postgres clon

SELECT pg_stop_backup();

Note: For the duration of a snapshot (until it's listed as “completed”), there is a variable impact to Amazon EBS disk
performance. If you are operating near maximum I/O capacity, we recommend that you use a replica for this purpose.

For more information about consistent snapshot backups, go to http://alestic.com/2009/09/ec2-consistent-snapshot.

Restore Using an Amazon EC2 Snapshot

To restore from a backup, follow these steps:

1. Check the available snapshots:

$ ec2-describe-snapshots

SNAPSHOT snap-219c1308 vol-24592c0e completed 2012-12-

03T01:34:12+0000 100% 052088341151 10 postgres clon

2. Create an Amazon EBS volume from each snapshot used to back up your data (this could be more than one volume).
You can find the snapshot IDs (and create the volumes, if you like) in the AWS Management Console or using the

ec2-describe-snapshots CLI tool.

$ ec2-create-volume --snapshot snap-219c1308 --availability-zone eu-west-1c

VOLUME vol-eb1561c1 10 snap-219c1308 eu-west-1c creating

2012-12-03T10:13:44+0000

http://www.postgresql.org/docs/9.2/static/continuous-archiving.html
http://alestic.com/2009/09/ec2-consistent-snapshot

Amazon Web Services – RDBMS in the Cloud: PostgreSQL on AWS June 2013

Page 17 of 23

3. Attach the volumes to the instance. Remember, if you are restoring a RAID set, replace them in the same order for
easiest re-creation of the RAID volume in the OS.

$ ec2-attach-volume -i i-96ec5edd -d /dev/sdc vol-eb1561c1

ATTACHMENT vol-eb1561c1 i-96ec5edd /dev/sdc attaching 2012-

12-03T10:23:37+0000

4. Mount the volume and assign the corresponding permissions:

$ dmesg | tail

[3889500.959401] blkfront: xvdc: barrier or flush: disabled

[3889500.961193] xvdd: unknown partition table

[root@ip-10-208-8-123 ~]# mkdir -p /data

[root@ip-10-208-8-123 ~]# chown -R postgres: /data

echo “/dev/xvdd /data auto noatime,noexec,nodiratime 0 0” >> /etc/fstab

mount -a

With this restore—depending on how you configured the master—you are able to restore to a point-in-time recovery,
configure a new replica, or use a restored standalone instance for testing.

Storing Backups and WAL Files
There is a specific project to work around WAL and backups over Amazon S3:

https://github.com/wal-e/wal-e

You need to install the dependencies and run setup.py install. You’ll need to have the AWS_ACCESS_KEY_ID and
the AWS_SECRET_ACCESS_KEY values loaded in your user environment.

The following commands are available:

 backup-push—Stores the full backup on the Amazon S3 buckets.

 backup-fetch—Gets the full backup for restore purposes from Amazon S3.

 wal-push—Stores the WAL files using archive_command.

 wal-fetch—Gets the WAL files using restore_command.

 backup-list—Gets the backup list.

 delete—Deletes pieces prior to a specified date.

This tool supports encryption, GPG-based, load measurement, and compression.

These types of backups aren’t Amazon EBS snapshots so they can take some time to complete. The advantage is that
they allow restoration on non-AWS machines.

PostgreSQL Replication
In this section, you see how to configure a master, replica, and cascading replica. The cascading server is configured to
run as a Multi-AZ deployment. You also walk through using replicas as backup targets.

Amazon Web Services – RDBMS in the Cloud: PostgreSQL on AWS June 2013

Page 18 of 23

Basic Streaming Setup

You set up a streaming replication-based slave by restoring a backup to a separate instance before configuring
replication.

When you have attached and mounted the snapshot volume, you can configure streaming replication between the
hosts. This can be broken down into five steps: create the user, give the account grants to run replication processes,
grant access to the server, configure the slave to point to the primary server, and start replication.

On the new database server, create a minimal set of configuration files:

/data/pg/recovery.conf

standby_mode = on

primary_conninfo = 'host=10.250.227.15 port=5432 user=repl password=repl'

postgresql.conf

host_standby = on

If you are planning to have all your nodes as hot standby nodes, you can enable this variable on the master, so that the
variable maintains its value when you run a snapshot of the data.

There are variables that must be the same across the entire cluster, such as max_connections or wal_level.

You can use a replica for backups. The following backup tools are available:

 snapshot—This technique is fast, but requires some additional steps.

 pg_basebackup—You can use it for direct backups or for store them for PITR.

 wal-e—It allows you to store backups into Amazon S3 buckets.

 pg_dump / pg_dumpall—These tools are not for replication setup purposes.

An example of running pg_basebackup online:

pg_basebackup -D new_data -U replication_user -h source_host -p

source_port

Minimal Master Configuration
On the master, we need to assure that the WAL verbosity is set high enough for streaming replication and that the
replication user is created (by default, there is no replication user created).

Minimal WAL configuration setup:

wal_level=hot_standby

wal_keep_segments=<recommended to start >800 >

max_wal_senders=<number of servers you are planning to set up is the

minimal>

User creation and authentication configuration:

$ psql -Upostgres

postgres=# CREATE USER repl WITH PASSWORD 'repl';

Amazon Web Services – RDBMS in the Cloud: PostgreSQL on AWS June 2013

Page 19 of 23

CREATE ROLE

postgres=# ALTER USER repl REPLICATION;

ALTER ROLE

echo "host replication repl 10.208.8.123/32 md5" >>

pg_hba.conf

service postgresql reload

Tunables
The behavior of PostgreSQL is significantly impacted by the settings of internal configuration values, or tunables. Some
significant values include:

 Swappiness, vm, kernel tuning

o By default, shmmax and shmall have really small values. Those values are linked to shared_buffers
in postgresql.conf; if this value is higher than the kernel parameters, PostgreSQL won’t start.

o We recommend setting up vm.swappiness with a value under 5. This avoids using swap space unless it is
necessary.

 Filesystem tuning

o XFS (nobarrier,noatime,noexec,nodiratime)

o ext3 or ext4

 You can use ext3 or nonjournaled filesystems for logs.

 Memory tuning

o shared_buffers is the most important and difficult memory variable to tune up. A starting
recommendation could be to start with a quarter of your RAM.

 WAL

o We strongly recommend separating the data from the pg_xlog (WAL) folder. For the WAL files, we
strongly recommend the XFS filesystem, due to the high amount of fsync generated.

o The value of the checkpoint_segments variable depends strictly on the amount of data modified
on the instance. At the beginning, you can start with a moderate value and monitor the logs looking for
HINTS, which are logged as follows:

pg_log/postgresql-2012-12-02_134148.log:LOG: checkpoints are

occurring too frequently (5 seconds apart)

pg_log/postgresql-2012-12-02_134148.log:HINT: Consider increasing

the configuration parameter "checkpoint_segments".

o File segments are 16 MB each so it will be easy to fill them if you have a batch of processes adding or
modifying data. You could easily need more than 30 file segments on a busy server.

Amazon Web Services – RDBMS in the Cloud: PostgreSQL on AWS June 2013

Page 20 of 23

o We recommend not using the ext3 filesystem if you plan to have the WALs in the same directory as the
data. This filesystem handles fsync calls inefficiently.

 Pgtune

o Pgtune is a Python script that recommends a configuration according to the hardware on your server.
For basic installation and execution:

wget https://github.com/gregs1104/pgtune/archive/master.zip

unzip master.zip

./pgtune -i /opt/pg/data/postgresql.conf -o test.conf -TOLTP

o Pgtune supports three interesting options:

 -M TOTALMEMORY, --memory=TOTALMEMORY

Total system memory, will attempt to detect if unspecified

 -T DBTYPE, --type=DBTYPE

Database type, defaults to Mixed, valid options are DW, OLTP, Web, Mixed, Desktop

 -c CONNECTIONS, --connections=CONNECTIONS

Maximum number of expected connections, default depends on the database type

o The new lines are followed by the “CUSTOMIZED OPTIONS” label:

egrep 'CUSTOMIZED' -A 40 test.conf

CUSTOMIZED OPTIONS

#--

Add settings for extensions here

#--

pgtune wizard run on 2013-02-21

Based on 1696956 KB RAM in the server

#--

default_statistics_target = 100

maintenance_work_mem = 96MB

checkpoint_completion_target = 0.9

effective_cache_size = 1152MB

work_mem = 5632kB

wal_buffers = 8MB

checkpoint_segments = 16

shared_buffers = 384MB

max_connections = 300

o Pgtune advises about the most common variables in the postgresql.conf file; however, there are some
factors and variables that depend directly on usage. The max_connections value is a perfect
example of this; 300 could be considered high for some environments.

Amazon Web Services – RDBMS in the Cloud: PostgreSQL on AWS June 2013

Page 21 of 23

o Pgtune currently supports PostgreSQL version 9.1. You need to be careful with the advice if you use it on
a newer version.

Monitoring
AWS provides robust monitoring of EC2 instances, Amazon EBS volumes, and other services using the Amazon
CloudWatch service. CloudWatch can alarm, via SMS or email, upon user-defined thresholds for individual AWS services.
One example would be triggering an alarm based on excessive storage throughput, as shown here. Another approach
would be to create a custom metric in CloudWatch—current free memory, for instance—and to alarm or trigger
automatic responses from those measures.

The main things you should monitor on a PostgreSQL cluster:

 checkpoint_segments warnings: if an instance runs out of checkpoint segments, it raises a warning in the
log. You can detect if your instance needs to increase the checkpoint_segments value by monitoring the
logfile for that error.

 Number of connections.

 Memory usage and load average.

 Slow queries: execute the following query:

SELECT pid, QUERY FROM pg_stat_activity WHERE (query_start - now()) > '30

seconds'::interval;

 Replication lag: On the replica, execute the following query:

SELECT (extract('epoch' from now()) - extract('epoch' from

pg_last_xact_replay_timestamp())) AS result;

Using Amazon CloudWatch Custom Metrics

You need first to download and configure the tool environment. For more information, see
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/choosing_your_cloudwatch_interface.html#t
ools-download.

The latest version is: http://ec2-downloads.s3.amazonaws.com/CloudWatch-2010-08-01.zip.

For more information on CloudWatch metrics, see
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/publishingMetrics.html.

The following example turns on instance monitoring, pushes some metrics, and gets the statistics:

$ ec2-monitor-instances i-08fe4e43

i-08fe4e43 monitoring-pending

while true ; do CloudWatch-1.0.13.4/bin/mon-put-data --metric-name

backends --namespace Postgres --dimensions "InstanceId=i-08fe4e43" --

value `psql -Upostgres -Atc 'SELECT sum(numbackends) FROM

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/choosing_your_cloudwatch_interface.html%23tools-download
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/choosing_your_cloudwatch_interface.html%23tools-download
http://ec2-downloads.s3.amazonaws.com/CloudWatch-2010-08-01.zip
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/publishingMetrics.html

Amazon Web Services – RDBMS in the Cloud: PostgreSQL on AWS June 2013

Page 22 of 23

pg_stat_database'` --timestamp `date +%Y-%m-%dT%H:%M:%S.000Z` ; sleep 60

; done

CloudWatch-1.0.13.4/bin/mon-list-metrics | grep -i backends

backends Postgres

{InstanceId=i-08fe4e43}

CloudWatch-1.0.13.4/bin/mon-get-stats backends --namespace Postgres --

statistics "Average,Maximum" --dimensions "InstanceId=i-08fe4e43" --

start-time 2013-03-04T23:00:00.000Z

2013-03-05 13:15:00 1.0 1.0 None

2013-03-05 13:16:00 1.0 1.0 None

2013-03-05 13:17:00 1.0 1.0 None

2013-03-05 13:22:00 1.0 1.0 None

2013-03-05 13:23:00 1.0 1.0 None

2013-03-05 13:24:00 1.0 1.0 None

…

The previous example was a simple test to store and retrieve the statistics on the number of backends. Some statistics
require collection in scripts before you push a value to CloudWatch.

Security
This is a large topic. The only aspect we cover in some detail in this whitepaper is configuring SSL communication
between the servers.

Disk Encryption

PostgreSQL has no native support for encrypting the data folder, but PostgreSQL should work with any tool that encrypts
data at the filesystem or operating system level.

Row-Level Encryption

Pgcrypto is a tool which is included on the source distribution in the /contrib directory. For more information, go to the
PostgreSQL documentation at http://www.postgresql.org/docs/current/static/pgcrypto.html.

SSL

If you install PostgreSQL using a package, this option is normally included and enabled. You can check this setting by
running the following command on your servers:

postgres=# show ssl;

 ssl

 on

If you are compiling from source tarball, you need to include the option --with-openssl when you run the
configurecommand.

The following configuration options are available:

#ssl_ciphers = 'ALL:!ADH:!LOW:!EXP:!MD5:@STRENGTH' # allowed SSL

ciphers

Amazon Web Services – RDBMS in the Cloud: PostgreSQL on AWS June 2013

Page 23 of 23

#ssl_renegotiation_limit = 512MB # amount of data between

renegotiations

On the data directory, you should point to the server certificates, as follows:

lrwxrwxrwx 1 root root 36 Jan 28 16:56 server.crt ->

/etc/ssl/certs/ssl-cert.pem

lrwxrwxrwx 1 root root 38 Jan 28 16:56 server.key ->

etc/ssl/private/ssl-cert.key

Authentication and Network
Although the main authentication configuration file is pg_hba.conf, there is a variable called listen_addresses in
postgresql.conf. Changing this variable requires a restart. A common practice is to set this variable wide open with a
wildcard (‘*’) and then specify the host in pg_hba.conf.

PostgreSQL uses port 5432 by default. You can have several instances running on the same server on different ports and
data directories. We do not recommend this for production servers due to resource consumption.

The best practice in a multi-tier architecture is to permit operational access to the PostgreSQL tier only from servers in
the security groups that require access, and control access only from known administrative IP addresses.

The authentication methods supported are: "trust", "reject", "md5", "password", "gss", "sspi", "krb5", "ident", "peer",
"pam", "ldap", "radius" or "cert".

We recommend “md5” over “password” as the latter sends the password in the clear.

For storing your PostgreSQL login, you can configure your ~/.pgpass file. For more information, see
http://www.postgresql.org/docs/current/static/libpq-pgpass.html.

Conclusion

The AWS cloud provides a unique platform for any RDBMS, including PostgreSQL. With capabilities that can meet
dynamic needs, cost based on usage, and easy integration with other AWS products such as Amazon CloudWatch, the
AWS cloud enables you to run a variety of applications without having to manage the hardware yourself.

http://www.postgresql.org/docs/current/static/libpq-pgpass.html

