PROGRESS

SOFTWARE

Adopting Open Source in the Enterprise

ApacheCon Europe 2009

Track: Business
Level: Overview

"FUSE

Adrian Trenaman
Distinguished Consultant
http://trenaman.blogspot.com

Ade's Consultancy Map

Trafic || More.. || Map | Satelite | Terrain
Greenland
Suomi
Findand
lceland
Fo
Canada : i
ol ! ‘.-'lépama" .
- Eheraing 2 Kazakhstan
Uni] ;
rkive h
Sta Aﬁur!{!_] k-, . =
antic
OEEaH Irag %Argha_mstan |
3
: Algeria Libya Egypt — Pakistan
México Arabia India
M L
auritania |y oSy |
: (Chad” g 5an
Venezuela Higena Ethiopia
Colombia |
e 1 i e e s T Aty s L b i el A e e e el B DR (.KENyd seeccsssccese e
Congo |
: Tanzania
o) Brasil o
et —nBrazi Angola
Eolivia
Namibia :
Indian
Botswana Madagascar, Ocear

1000 mi
||—|—I" Chile
ilicZ000 km

South

2009 q#l‘gﬂg- Map data ©2009 Europa Technologies - oo of Lse e

Open Source is a very big word...
... S0 is 'Enterprise'

Let's focus on adoption of Apache-based Open Source for
Middleware and Integration.

Focus on in ISVs, Sls, and large enterprises.
Focus on ServiceMix, ActiveMQ, CXF, Camel

Discussion:
Why adopt open source?
Who is driving the adoption?

How is open source being adopted? What works? What
doesn't? The role of the OS vendor.

What are the implications?

Some context..

Lirwxard Server Dperaing Seem - LTI
Appicaions Dendopmentand PP - ik
Applicaion tegraion and hiddeware irr “ kA
Secuntyand Swem and Meworkhbragement i “ IR
OaErase and Storage MEnagament Soivare - BT “ &
Friormiaion hragement - T “ i
mnlmm:;?ﬂ;ﬁiihmmm T “ T
el ”
Enginiearing - T “ BT
ERPard SupplyChan - TIE “ TE
i i
0% 1IZII"E. i'IIII% SIZII‘E 4IIII"£ ﬂ:ll"ﬁ ﬂ]l"ﬁ I"IZII"E E[II"L QIII"E 1II:"£
| o Curenth kng p Planio Usen 12 hbrife o Mo Plasto Usaon't Know |

Source: Gartner

“Opinion is the lowest form of fact”

And yet, strangely, we value respected opinion greater that facts
themselves.

The opinions and observations in this presentation are based on
years of experience in open source 'from the trenches'

Thanks to Wolfgang Schulze, Roland Tritsch, Rich Bonneau, Rich
Newcomb, Martin Murphy, Andreas Gies, Ashwin Karpe, ... and others at
Progress.
“Flattery gets you nowhere”
You are a fabulously intelligent audience...

... probably in the top 10% of coders / hackers / architects /
business-people in the world!

Remember: it is a mistake to believe everyone else will be as
passionate / excellent / brilliant / committed as you.

Aside (cont’)

commons | changing | challenging | rewarding

-

“Proof by analogy is fraud” ... and yet, analogy is very useful in
helping us discuss and flesh out ideas.

Open Source Code = Mountains
Open Source Vendor = Mountain Guide

Why are enterprises adopting open source?

Motivations for adopting open source

Price is a deciding factor.
... price is not the deciding factor

Any investment [time or money] requires an investigation of risk
and ROI.

Price (or rather, price scalability) is very important for Slis, ISVs,
and enterprises with large-scale or geography-wide deployment.

Some closed-source vendors haven't figured this out.
Agility

Faster detection and resolution of issues cuts development time
and increases time-to-market

Control

Avoid vendor lock-in (only applies to permissive licenses)

Motivations for adopting open source (cont')

Quality.
Sometimes the open source alternative is simply better.

Better = wider adoption, easier to use, multi-platform, standards-
based.

Who is driving adoption?

Adoption

Top-down

Sabre: CTO initiative to adopt standards-based, open-source
container

Adopted ServiceMix / ActiveMQ in their Supplier Side
Gateway project.

1.5m transactions per day; 14 months zero down-time.

US Federal Aviation Authority — http://www.swim.gov
System Wide Information Management
Towards NGATS (Next Generation Air Transportation System)

Bottom-up

Retail-pharmacy: application manager sketched solution with
gregorgrams, and implemented using EIPs in ServiceMix

Driving adoption top-down from the CT(1)O or

program level

Make a strategic plan around open source
Vision. Goals. Milestones. Resources.

Involve technology leaders in your organization.
You won't succeed without their buy-in.

Create a centre of competence around chosen open-source
technologies

We'll discuss this in more detail later on.

Execute the plan.
“The plan rarely survives contact with the enemy”

You've opened the door: make sure there's someone to walk
through it.

Aside: Open Source Maturity Model (TM)

OSMM from http://www.navicasoft.com provides a
framework to assess 'maturity' of an open source product.

Maturity: a number based on weighted assessment of different
areas

Functionality
Training
Documentation
Support
Integration
Threshold of acceptance is then based on the your organization
Innovator, or
Pragmatist

Bottom-up adoption

Driven at a project level by architects and senior engineers
Drivers: code quality, standards, ease-of-access, cost, ...

Sometimes skunk-works projects bubble up to the service.

e.g. replacement for JEE stack at a major financial services
company.

e.g. Integration backbone for another major FS company.

Tends to emerge in organizations who pride themselves in
their engineering expertise.

“Hang on a minute: we can do this better/cheaper/faster with
open-source”

Open Stealth

Avoid big-bang, boil-the-ocean approaches
Many will resist.

Particularly, and ironically, your IT department, the bastion of
conservatism.

Select a 'beach-head' project.
With clear, strategic value and potential for 'poster-child’' success
Make it successful...
... and use it as a platform for organizational learning.
Successful innovation attracts followers (think of Apple!)
... build a constituency; gather support.

Plan wider roll-out.

Adoption in the enterprise

“Open the door...”
a Technology recommendations
Vendor selection

CTO/CIO Evangelism
Office Centre of competence

o

|
. Beach-head > _
Project Roll-ou? in
Architects/ / other projects
Project \
Managers
“...Walk through it” “... Learn what works”
g Business case Use your best people
Requirements Get outside help if
Compelling event necessary

Prepare to learn

Community Involvement

Download 'n' Go!

Can you just freeload?

How engaged with the community/source must you be?

Depends on how mature the source is. Here's one way of looking
at it: projects are either nascent, active or mature.

Where there is innovation, there will be issues.

Enhancements/ A
New Features

> Time

|
Nascent Active Mature

Model 1: No interaction with community

Treat the project as a product
No need to download the source, just the binaries please!

Suited to mature open source projects; e.g. Apache Server,
PostgreSQL, Open Office, ...

Suited to 'product’ rather than 'framework’ style projects.
Product: finished article; does what is says on the tin.

Framework: tools or building blocks with which to build
solutions.

Enterprise
Users

Model 2: Direct interaction with community

Hmmm: this project is great, but needs more work... we're
happy to help!

|deal for nascent projects, and early adopters
Engineers can become committers, and drive adoption.
But does it scale?
Must all engineers have intimate knowledge of the code?

What if | use n open source projects?
L7

Enterprise
Users

The dark side of the source

Good fences make good neighbors
Clear boundaries tend to be a good thing!

Opening up the code can “increase the problem space”

Abstractions make things easier; detail makes things more
complex.

[/ £ 2 concepts at a time, please.

Cross fertilization of code can be mind boggling.
‘| once found myself debugging jetty continuations...”

Not all developers have time for (or are up to) the challenge.
This is not a criticism; just a fact of life.

PFUSE.

Enterprise vs. Community: culture clash?

“| value the finished product.”
=> “| can't stand incomplete product.”

“I'm focussed on my work”
=> “| do not want to help you with yours”

‘I want my team to be actively contributing to achieving its
goals”

=> “| do not want them 'distracted' by community work”

“I should be able to use this without knowing the nuts and
bolts”

=> “You can use it best by understanding the nuts and bolts”

The successful project team

In any project team, there are:
Achievers (top 20%): motivated, talented, engaged

Adequates (top 75%): need direction, effective when given a
cookie cutter.

Wasters (the rest): Useless. Move them on if you can. Contain
them if you can't.

When it comes to projects adopting open-source, attitude is
the most important thing.

Open-Source Positive.

Focus on solutions through the source, not problems due to
the source.

Hire for attitude and ability, train for skill.
Consider training as necessary but not sufficient.
/ v Need training + practice + coaching.

Scaling open-source knowledge

The problem is not the achievers.
They will always adopt the 'right attitude'.

The problem is the adequates.
Or rather, how to make/keep them effective.

CEUSE.

The Law of Comparative Advantage

Entities should specialize in
areas where they have
competitive advantage.

E.g.: | am very good at DIY.
On my weekends, should I:

Put in a patio? or

Provide $$$ consultancy
services?

| may have absolute
advantage, however, LOCA
says | should specialize.

| win, as does the
landscaper.

.

David Riccardo (source Wikipedia)

Scaling open-source knowledge (cont')

So, how do we apply LoCA to teams where only a few
players have absolute advantage in open source?

In a team of, say, ten...

In the 80-20 model, two things can happen.

'Hero' model: two guys do all the work, eight guys watch by in
amazement, shock and awe.

The eight step back and take on peripheral tasks.

Very like the 'Mythical Man Month' surgical-team model.
Except in that model, everyone had a assertive, positive role.

Drawbacks: high-dependency, fatigue, fracture, prima-donnas.

'Lever' model: two guys work out the architecture, the patterns,
the archetypes.

Their role is to lead by example.
Their focus: remove blocks for the eight.
Drawbacks: need the right kind of hero.

LoCA in action — lever model

We know the achievers have absolute advantage.

But they should focus on architecture, patterns, technology
expertise, mentoring.

The challenge is to stop them doing everything and get them to
act as enablers rather than doers.

The adequates have comparative advantage on some
aspects.

Local domain knowledge. Implementation (based on patterns).
Testing. Documentation.

The challenge is to make sure that blocks are removed.

... Model 3: Centre of competence

Larger enterprises can use a CoC to leverage specialization.

Create a dedicated technology/architecture group to own the
relationship with the community.

Let rest of organization become 'users’, focussed on the core
business.

Projects can pull-in skills and resources from the CoC.

Enterprise Center of
Jﬁi”(n)ompetence

-
Enterprise

Users Community

Role of an open source centre of competence

Provide regular stable releases of project(s)
Potentially with in-house fixes
Track issues and merge fixes to community

Maintain a 'forge'
For internal releases and internal projects / plugins
SCM, Issue-management, Wiki, Forums, IRC, Maven ...

Support developers
Training, documentation, how-to, use-cases, patterns ...

Enforce licensing compliance

Enterprise Center
_of Competence

Evangelize open source technology &
philosophy

Enterprises will support themselves unless the cost
associated with that support exceeds the cost of
outsourcing it.

Out-sourcing the centre of competence

Vendors can play a part as an out-sourced centre of
competence.

“We can resolve your issues faster and cheaper than you can”
Stay agile, reduce cost.

Prefer 'part-sourced' rather than 'out-sourced'
Stay in control.

Centre of

Competence Vendor

Enterprise

Users

Getting it wrong.

Remember the project phases?
Nascent, active, mature

The worst mistake is to misjudge an open-source project.
‘Hmmm. I'll use a commodity open source framework...
... with adequate developers ...
... and I'll save massive amount of money!”

If the project is active, there will be issues

.. which will require a team of committed, engaged, quality
developers.

... and, perhaps, a culture change.
Pro-active, code-hunting, engaging.

Aside: Progress OSCoC

Team of consultants dedicated to Open Source
Contributors, committers

Goals:
Make users successful

Drive adoption (writing, blogging, contributing, forums,
initiatives, ...)

“Scale out” skills throughout the larger PS organization

Back to the hills!

Is a trusted guide going to get you there quicker, safer and easier?

Advice: enterprises should simplify rules around
licensing

Understand Open Source Licensing

Some licenses such as GPL can be restrictive.

GPL.: if you use this GPL software in your solution, and then
redistribute, then your software must also be GPL.

Dual-licensers tend to use GPL: any competitor who attempts to
Improve on the code must release these improvements to the
community for free!

LGPL (Library/Lesser GPL): you can link LGPL software with
your own commercial non-LGPL software, so long as it is not
considered a “derivative work”.

Definition of “derivative work” is ambiguous and untested.

Apache License: simply provide an acknowledgement,
disclaimer and copyright notice. Very Friendly!

Keep it simple, keep it safe.

Example policy for a software vendor using open-source
internally

Legal department vets all licenses used in products to ensure
compliance with license T&C'’s

Apache (v1.1, v2.0), BSD, MIT,
X, OpenSSL, OpenSSLeay

CPL v1.0, EPL, LGPL, MPL No: unless certain conditions
are met

GPL

What can we do to increase adoption?

From a community perspective...

Make heroes out of technical writers.
Why are they less important than engineering committers?
Their input can drive adoption.
They can impact on the perception of risk
Use cases, patterns, ...

Reduce source-code 'barrier to entry'.
Surely there must be a way to mark 'trails' in the code?
Automatically discover well-trod execution / browse paths.

Make it easy for adopters to submit success stories
Templates? Gentle nudges on the forums?

From a user's perspective

Contribute to the source!
Raise issues, even when you find workarounds.

“Poor usability is a bug” - raise issues when something annoys
yOu.

Submit demonstrations

If your project has been successful, tell the world!
And if it's not, don't grumble in silence. Tell the world!

Thing's we're doing beyond the Source

Progress Knowledge Services
Major documentation drive, impacting Apache & FUSE materials.
Reference Material
User Guides
Deployment Guides

Progress Professional Services
Phase 0 initiative: the first two hours after download.
Getting Started Screen-casts
Webinars
Usability on common use-cases.
Technology white-papers
Masterclass Webinars

Adoption is driven from many areas: top-down and bottom up
Nothing builds success like success
Thing big, start small.

OS project maturity plays a big part in how you adopt
Design your team to facilitate specialization

Vendors play a part in reducing costs through specialization
Knowing the territory is key — the “mountain guide”

Vendors play a part in 'rounding out' the project.
Documentation, ease-of-use, education, etc.

	Introduction to FUSE Open Source SOA
	Slide 2
	Introduction to FUSE
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

