
1

2005-07-22

Steve Loughran
HP Laboratories
steve.loughran@gmail.com

Meeting new challenges
with Ant 1.7

Hello, I'm Steve Loughran.

I'm here to talk about Ant1.7. I'm also going to cover stuff that has been in Ant1.6 for a
while, but not been broadly noticed.

This is not an introductory talk. If you are new to Ant, this talk will probably scare you
off. Leave the room now!

2

Page 2

Me:

Researcher at HP
Laboratories on
Grid-Scale Deployment

Ant team member

Co-author of
Java Development with Ant

Writing the 2nd “Ant1.7”
edition; due late 2005

All about me. By day: a research scientist at HPLabs, Bristol, UK. Out of hours Ant
dev team (it’s a long story), and co-author of Java Dev with Ant. I am now busy writing
the second edition, which is due later this year, and targeting Ant1.7

3

Page 3

State of the Nation: Ant

• Standard way to build Java code. (90%*)
• 100% IDE coverage
• Foundation for testing, automated builds
• So successful, MSBuild is a strategic product
• Only Java alternative is Maven, our sibling tool

* syscon survey; possible participant bias

Ant is Java's primary build tool.

We are the build tool. That gives us responsibility more than power.

4

Page 4

Limits of Ant: scale & change

• Bad defaults on <javac>, <java>, <exec>, …

• Custom tasks generally written in Java

(=extra work, complexity)

• Big projects get complex fast

• Library management

• Not that good at workflow or deployment

1. Defaults
2. Custom tasks
3. Big projects
4. Libraries
5. Deployment

How are we going to fix these?

So where is Ant bad?

If you've been in a big project, you'll know. If not, ask the maven team for a list :)

It comes down to the classic problem of scale. If one project succeeds, you try harder
the following time round.

5

Page 5

Correct defaults with <presetdef>

<presetdef name="java2">

<java

includeantruntime="false"

fork="true"

failonerror="true" >

<assertions enableSystemAssertions="true">

<enable />

</assertions>

</java>

</presetdef>

<java2 jar="${target.jar}" />

<presetdef> defines a new task with new values

<java2> ::= <java> with fork,
failure, assertions and
an empty classpath

<java2> ::= <java> with fork,
failure, assertions and
an empty classpath

1.6

1. Defaults
2. Custom tasks
3. Big projects
4. Libraries
5. Deployment

the trouble with bad defaults is that you have to remember to correct them everywhere
you use them.

With <presetdef> you can declare a new task, which declares new default values for
an existing task (or presetdef).

DO NOT REDEFINE EXISTING TASKS.

That is the C++ evil -redefining existing behaviour.

1. you can't copy and paste stuff into different builds without them behaving slightly
differently, which is hard to track down. Not having a task called java2 is obvious,
but having java's failonerror change is not

2. any code that goes (Java)Project.createTask("java") crashes at runtime. I stripped
all of them out of our codebase, but third party tasks are vulnerable.

Instead give tasks a new name/prefix/namespace and use the new name

6

Page 6

<macrodef> for macros

<macrodef name="typeMustExist"

backtrace="false">

<attribute name="type" />

<attribute name="message"

default="Missing type @{type}" />

<sequential>

<fail message="@{message}">

<condition>

<not><typefound name="@{type}" /></not>

</condition>

</fail>

</sequential>

</macrodef>

<typeMustExist type="junit" />

Fails the build if the 'junit'
task cannot be instantiated

Fails the build if the 'junit'
task cannot be instantiated

1.6

1.6.2

1.7

1.7

1. Defaults
2. Custom tasks
3. Big projects
4. Libraries
5. Deployment

Preset sets defaults; <macrodef> lets you define new tasks. This page shows a lot of
new features

1. Macrodef: new for ant1.6

2. Backtrace: a 1.7 flag that says 'don’t trace into the macro on a failure'. It makes a
macro look more like a real task -leave it off during debugging, turn it on when
finished.

3. Nested conditions in a <fail> task. This is ideal for macros, but useful everywhere.

4. <typefound> a condition that tests that a task is declared and can be instantiated.

7

Page 7

Hello, Scripting!

1.1?Inline script<script>

1.7Map filenames<scriptmapper>

1.7Select files<scriptselector>

1.7Implement a
condition<scriptcondition>

1.6Transform chars in a
filter chain<scriptfilter>

1.6Define a task<scriptdef>

BSH, Jython, Groovy, JavaScript, JRuby, Rexx …

1. Defaults
2. Custom tasks
3. Big projects
4. Libraries
5. Deployment

Look at the <script> task doc for all the main details on scripting within Ant.

These are all the ways that Ant1.7 lets you write scripts (inline or in files) to do bits of
your build. Its easier than writing java code, but relies on the relevant JARs being on
the classpath. As scripts get used more, this may become less of an issue.

8

Page 8

Extend Ant with scripts

<scriptdef name="repeat" language="ruby">

<attribute name="from"/>

<attribute name="to"/>

<attribute name="message" />

attr=$bsf.lookupBean("attributes")

from=attr.get("from")

to=attr.get("to")

message=attr.get("message")

from.upto(to) {|i| print "#{i}:",message,"\n"}

</scriptdef>

<target name="1to5">

<repeat from="1" to="5" message="hello, world"/>

</target>

to users, scripts look just
like any classic task
declaration.

to users, scripts look just
like any classic task
declaration.

1. Defaults
2. Custom tasks
3. Big projects
4. Libraries
5. Deployment

1.6

This is an task declared inline in ruby.

You can also refer to declarations in files, which would seem a better approach for
anything complex. To callers (with the right library), a scripted task behaves just like a
'legacy' java task.

9

Page 9

Use <import> for project re-use

<import file="${home}/common.xml">

• Imported file is appended to the current document
not where declared

• Special target handling logic

• Filename in ant.file.project-name

Ant-specific replacement for XML &includes;

1.6

1. Defaults
2. Custom tasks
3. Big projects
4. Libraries
5. Deployment

Ant1.6 added something new, a way to import existing build files. This is an Ant-
specific replacement for XML &includes;.

10

Page 10

Imported target logic

<project name="main">

<import file="import.xml" />

<target name="a">

<echo>main#a</echo>

</target>

<target name="c"
depends="a,1" />

</project>

<project name="import">

<target name="a">

<echo>import.a</echo>

</target>

<target name="1" depends="a" />

<target name="2"
depends="import.1,import.a"
/>

</project>

Use the prefixed name to prevent overrides

import.xmlmain.xml

1. Defaults
2. Custom tasks
3. Big projects
4. Libraries
5. Deployment

This is the Ant1.7 import logic

1. Import files are effectively appended to the tail of the build file (it’s a depth-first
import, BTW)

2. Every imported target is prefixed with its project name, so can be explicitly
addressed

3. If there is not yet a target with the unprefixed name in the project, it is also
imported with the unprefixed name

Ant 1.6 only renamed targets if they clashed with one in the base class. Because
Ant1.7 prefixes every file, you can use prefixed references to prevent overrides.

11

Page 11

Effective <import>

1. Use the task with care and caution
2. Give every project a unique name attribute

3. Have a common.xml for common stuff
4. In the <import>, define <presetdef>,

<macrodef> tasks, scripts, shared types

5. Use prefixed dependencies to avoid overrides

6. Remember imports are imported to the tail

1. Defaults
2. Custom tasks
3. Big projects
4. Libraries
5. Deployment

I think we are all still learning how to use this properly. I have used it in very large
projects, and while it helped us to scale, it was still fairly brittle.

12

Page 12

antlib: automatic task binding

• Since Ant1.6; <typedef> has let you declare the URI
of an XML namespace, into which the tasks live

• If the uri begins antlib: Ant autoloads a descriptor,
here org/antbook/tasks/antlib.xml

• Antlib descriptors can declare: tasks, types,
presetdefs, macrodefs, scripted tasks.

• Useful with -lib on the command line

<target xmlns:t1="antlib:org.antbook.tasks" >
<delete dir="${build.dir}" />
<t1:delete user="steve" />

</target>

1.6

1. Defaults
2. Custom tasks
3. Big projects
4. Libraries
5. Deployment

•This has been in ant1.6, but only now are people taking use of it

•This means they have to embrace XML namespaces :(

•But on a positive note, antlib provides an extensibility point, which, through the
miracle that is XML namespaces, is very unique.

13

Page 13

Library management

Ant1.7 does not provide any built in library
management tasks.

Maven2 <artifact:> tasks are the “Apache” means
of retrieving libraries/managing dependencies
http://maven.apache.org/maven2/ant-tasks.html

Consider also Ivy
http://jayasoft.org/ivy

1. Defaults
2. Custom tasks
3. Big projects
4. Libraries
5. Deployment

CVS_HEAD Ant had a <libraries> task that was layout agnostic, protocol independent.
But it was complex, and didn’t work perfectly. Rather than get it right, we have chose

—works today, single codebase, can use .pom dependency rules; Maybe even makes
it easier to move to maven…

There is also Ivy; an Ant extension which is not from Apache, but can also work with
the Ivy repository. Arguably it is more mature.

14

Page 14

Maven2 <artifacts:dependencies>

<property file="libraries.properties"/>

<artifact:dependencies pathID="xerces.classpath"
xmlns:artifact="antlib:org.apache.maven.artifact.an t"

>
<dependency groupID="xerces"

artifactID="xercesImpl"
version="${xerces.version}"/>

<dependency groupID="xerces"
artifactID="xmlParserAPIs"
version="${xerces.version}"/>

</artifact:dependencies>

<javac classpathref="xerces.classpath">
…

</javac>

define versions

path to create

declare artifacts
(fetched on demand)

use the path in tasks

1.6

1. Defaults
2. Custom tasks
3. Big projects
4. Libraries
5. Deployment

This is the Maven2 task. It lves in its own antlib URI:
antlib:org.apache.maven.artifact.ant
This is all under development; here we are using Maven2.0 Alpha 2

We are importing and using Xerces, by declaring a dependency on two Xerces
artifacts, the API and the parser.

The task actually does transitive dependencies, which are powerful, but a bit
troublesome. Sometimes you get more than you can expect. A solution to this is
planned.

15

Page 15

Repositories

• http://ibiblio.org/maven2 is the primary server
• Mirrors round the world
• Only does OSS libraries, not those with click-

through licenses (like Sun's)
• Open security issues
• Intranet projects may want to have their own

repository for private and Sun libraries:
<artifact:remoteRepository

id="internal.repository"
url="http://internal/maven2"/>

1. Defaults
2. Custom tasks
3. Big projects
4. Libraries
5. Deployment

The ibiblio.org lib is the centre of the universe, but you can tell the tasks to fetch from
any of a list of sources. Future versions of the tasks may use mirrors automatically,
but don’t bet on it. Better to locate your local mirror and list it first.

Using internal repositories is good for security. You can control which versions of
libraries it is possible to depend on, and only release versions you are happy with. You
could even sign the jars, though that has other consequences;

16

Page 16

Embrace Repositories

• Filename of JAR files should include the version
• Get used to signing JARs: <signjar>
• Provide a Maven POM for every JAR created
• Use the <artifact:dependencies> task to set up

the classpaths
• Define the versions of libraries you need in a

properties file.
• OSS developers: publish to the repository!

(file request on maven JIRA)

1. Defaults
2. Custom tasks
3. Big projects
4. Libraries
5. Deployment

From now on, all JAR files should have a version marker: artifact-1.6.jar

Write a POM file too. Even a simple one will suffice.

Use the dependencies task, but provide an override point of a properties file. This is
essential for letting people override your decisions.

Finally, all OSS developers should publish to the repository. The Ant/Maven teams will
help you do this securely.

17

Page 17

S
teve's opinions only

Deployment

• No complex workflow (concurrency, failure)
• No automatic roll-back/undeploy
• No integrated monitoring/liveness
• No remote process management
• No security
• Little dynamic application configuration
• Ant was never designed to run for days

Stop using Ant as the deployment engine!

Use Ant to start deployment, not describe it

1. Defaults
2. Custom tasks
3. Big projects
4. Libraries
5. Deployment

Little bit of controversy here.

Ant is better than deployment than its predecessors. But that only gives people ideas,
and they start using ant as generic workflow engine (c.f. gridant), or for complex
deployments (c.f chapter "advanced deployment" in java dev with ant).

But it isnt really the right tool for the job. It cannot handle failure, rollback, or
coordinated deployment to multiple systems.

18

Page 18

SmartFrog: a deployment system

• Deployment counterpart to Ant
• Ant tasks to initiate deployment across machines
• Integrated configuration, undeploy, liveness checks
• Template-driven
• LPGL Java library; sourceforge hosted.
• HPLabs research project;

http://smartfrog.org/

1. Defaults
2. Custom tasks
3. Big projects
4. Libraries
5. Deployment

This is a personal opinion. I am on the team that works on this, so am biased. Other
ant developers have the right to have their own opinions :)

This is what we use for our big projects. It’s a deployment system.

Now, a deployment system is kind of a new concept -this is research technology after
all- but its interesting. A tool focused on deployment.

19

Page 19

Declarative Distributed Deployment

• Templates configure components of a system
• Cross-binding across templates, and hence machines
• Manages deploy, undeploy and liveness

1. Defaults
2. Custom tasks
3. Big projects
4. Libraries
5. Deployment

System {
 appServer { … }
 database { … }
 logging { … }
}

database extends MySql {
 log LAZY logging;
 users [
 ["web",""]
 ["admin","secReT"]
];
 }

appServer extends Jetty {
 db LAZY database;
 log LAZY logging;
}

Logging extends Log {
 level=3;
 dir="/logs";
}

appServer database

logging logging

For anyone who has used <presetdef> in ant, you have a hint of what is done here.

Every template you declare is just a set of name-value pairs, nested children or cross-
references to other templates

The template you actually instantiate must describe the application you are deploying.

Every instantiated template is bound to a "component" class instantiated on a local or
remote host

These components configure and deploy the real systems,

Monitor their health (throw exceptions on failure, handling policy is the choice of the
parent)

Undeploy the app when terminated.

20

Page 20

Deploy from the build

<sf:deploy classpathref="run.classpath"

host="${deploy.host}" >
<codebase url="${codebase}"/>
<application name="alpine">

sfCodeBase PROPERTY org.smartfrog.codebase;
#include "/alpine.sf"
</application>

</sf:deploy>

server extends AlpineServerOnJetty {
echo extends EchoEndpoint {
path "/echo/";

servlet LAZY servlets:alpineServlet;
}
ping extends LivenessPage {

enabled PARENT:liveness;
host LAZY PARENT:servlets:ipaddr;
port PARENT:port;

page LAZY endpoint:absolutePath;
}
liveness true;
}

alpine.sf

build.xml

1. Defaults
2. Custom tasks
3. Big projects
4. Libraries
5. Deployment

This is a deployment of

1. Jetty web server

2. A servlet "alpineServlet" on jetty that supports SOAP endpoints

3. An endpoint that echos posted soap request. It is bound to the alpineServlet -at
deploy time it tells the servlet to map request to its path to its class

4. A liveness page that checks that a GET of the echo endpoint returns without an
error

It does so much in so few lines, because most of the stuff is inherited from other
deployment descriptors.

21

Page 21

Java1.5 support

• New source="1.5", target="1.5" switches for
<javac> with compiler workarounds (sigh)

• Fixed <rmic> defaults to work again
• <apt> to process annotations
• <isreachable> condition to probe hosts

ex: dynamic use of proxy on a laptop

<fail message="host missing" status="-3">
<condition property="proxy.enabled">

<isreachable host="${host}"/>
</condition>

</fail>

1.7

•Some fixes for the inevitable changes of the JDK, so your builds work as before. We
don’t know why Sun keep changing the defaults, but we have switched them back so
that build files that work on older systems behave consistently on java1.5

•isreachable is a network test that isnt guaranteed to work through firewalls; use it for
local probing, not checking for long-distance connectivity.

•Note the use of a nested condition in the failure and an exit code. These are
(ant1.6.2+) features.

22

Page 22

Apt: annotation processor tool

• Compile Java1.5 annotations in source,
• Invoke annotation factories (slow)
• Can generate new source or compile to .class

<apt srcdir="${src}"
destdir="${classes2.dir}"
compile="true"
fork="true"
factory="DistributedAnnotationFactory"
preprocessdir="${preprocess.dir}">
<factorypath path="${classes.dir}" />
<option name="build.dir" value="${build.dir}" />

</apt>

1.7

•I say could. I don’t use it myself, yet.

•If/When jikes adds 1.5 support, life will be better.

23

Page 23

What will an Ant1.7 build file look like?

1. Common build files across a big project

2. <import> into dependent files

3. Antlib declarations

4. use of <presetdef>/<macrodef>/scripts

5. (maven2 dependency management)

6. (smartfrog deployment)

So here are all the features to deal with scale. What will a build system that uses this
stuff look like?

24

Page 24

When will Ant1.7 ship?

Ask Stefan, Jan, Stephane...

Prerequisites:
• ResourceCollection retrofitting
• Locals in <macrodef>
• More M2 integration
• Documentation rework (automation)
• Move to SVN
• (Get more of my book done)

...later this year. Probably.

Big question: when will ant1.7 ship? Answer: after we have full integrated some major
changes.

One interesting complexity is that there is now pressure from the IDEs to align with
their schedule. This isnt explicit "you must ship", but more "if you have it done by oct 1
we can ship with it in our next release". I think this is a bit dangerous to ship unstable
there. We are too core to sacrifice stability for short deadlines.

25

Page 25

Moving to Ant1.7

• Get the Ant 1.7 Beta -when available!

• Use with Ant1.6.x-compatible builds
– <import> <presetdef>
– Maven2 <artifact:dependencies>
– Explore SmartFrog deployment

• Java1.5 users: adopt Ant1.7 as soon as you can

• Write more tests!

If Ant1.7 is coming, how do you get ready for it?

1. Look at the leading edge stuff in Ant1.6: import, presetdef, macrodef, scriptdef,
and use where appropriate

2. Pull down the maven2 tasks to work with their library management. Ant1.7
supports these slightly better.

3. Explore SmartFrog for deployment. Again, Ant1.7 works better here, but ant1.6.3
still functions.

4. Write more tests. Always.

26

Page 26

Questions?

