
Jim Riggs, System Administrator, Rustici Software

Begone mod_php! It is time to finally treat
PHP like the application
that it is!

Timeline

Bothersome Things
% sudo chmod -R 777 /var/www

% sudo chown -R www:www /var/www

User www
Group www

DocumentRoot
 /var/www

% ls -la /var/www/*

/var/www/example.com:
total 16
drwxrwxrwx 5 www www 170 Apr 9 2001 .
drwxrwxrwx 4 www www 136 Apr 10 2001 ..
-rwxrwxrwx 1 www www 537 Apr 9 2001 config.php
drwxrwxrwx 2 www www 68 Apr 10 2001 data
-rwxrwxrwx 1 www www 1723 Apr 6 2001 index.php

/var/www/example2.com:
total 16
drwxrwxrwx 5 www www 170 Apr 10 2001 .
drwxrwxrwx 4 www www 136 Apr 10 2001 ..
-rwxrwxrwx 1 www www 395 Apr 9 2001 config.php
drwxrwxrwx 2 www www 68 Apr 12 2001 data
-rwxrwxrwx 1 www www 938 Apr 9 2001 index.php

% ls -la /var/www/*

/var/www/example.com:
total 16
drwxrwxrwx 5 www www 170 Apr 9 2001 .
drwxrwxrwx 4 www www 136 Apr 10 2001 ..
-rwxrwxrwx 1 www www 537 Apr 9 2001 config.php
drwxrwxrwx 2 www www 68 Apr 10 2001 data
-rwxrwxrwx 1 www www 1723 Apr 6 2001 index.php

/var/www/example2.com:
total 16
drwxrwxrwx 5 www www 170 Apr 10 2001 .
drwxrwxrwx 4 www www 136 Apr 10 2001 ..
-rwxrwxrwx 1 www www 395 Apr 9 2001 config.php
drwxrwxrwx 2 www www 68 Apr 12 2001 data
-rwxrwxrwx 1 www www 938 Apr 9 2001 index.php

Thus begins…

The Quest
Surely, there must be some way to:
❖ isolate applications or virtual hosts

from each other (user/group)
❖ not have the public-facing web server

own or have write access to code,
data, or configuration

Caliz de Donna-Urraca by Locutus Borg (José-Manuel Benito Álvarez)
is licensed under CC BY-SA 3.0.

Crusade #1
safe_mode, open_basedir, disable_functions, etc.

Pros Cons
❖ uses existing mod_php

setup
❖ relatively simple to

implement
❖ doesn’t break (too much)

code

❖ still sharing a user/
group

❖ prone to configuration
error

❖ frustration results in
disabling restrictions

Crusade #2
CGI, setuid/setgid, suEXEC

Pros Cons
❖ distinct user/group
❖ (fairly?) well tested/

verified/validated for
security

❖ setuid/setgid
❖ so many restrictions
❖ easy to misconfigure

Crusade #3
per-user, per-vhost, user-/group-changing MPMs, etc.

Pros Cons
❖ distinct user/group ❖ worker(s) running as

root
❖ core patches
❖ stalled development
❖ not production-ready

Crusade #4
master-slave proxy httpd instances

Pros Cons
❖ distinct user/group per

slave instance
❖ -D + IfDefine allows for

shared master/slave
configuration files

❖ resource usage
❖ tricky configuration
❖ lots of proxying and

listening

— All of you

“So, what does it look like today?”

Attempting a demo here. Did it work? Yes No

Sample Results

JMeter test: 50 threads, 50 loops

Light Shines into the Darkness

❖ December 2005:  
mod_proxy_fcgi appears in trunk courtesy
of pquerna shortly after 2.2.0 is released

❖ 2006: 
jim, rooneg, and others pick up the torch

❖ 2007–2009: 
The Quiet Years™

❖ 2010–present:  
development accelerates, and the code is
production-ready as part of the 2.3 and 2.4
development cycle

mod_proxy_fcgi

❖ use familiar mod_proxy directives:
❖ ProxyPass & ProxyPassReverse
❖ BalancerMember fcgi://...*
❖ RewriteRule ... fcgi://... [P]

❖ run FastCGI process locally or remotely, so you can:
❖ move application processing to application tier
❖ spread resource load across backend servers
❖ share backend server(s) with multiple frontend servers

* use of mod_proxy_fcgi in a load balancer with FPM actually requires a patch to PHP

Meanwhile in PHP Land…

❖ June 2007:  
Andrei Nigmatulin releases PHP-FPM 0.1, a
patch against PHP 4.4.7, with the intent of
making a production-ready PHP FastCGI
implementation

❖ 22 July 2010: 
PHP 5.3.3 released with FPM included as an
SAPI

PHP-FPM

❖ works as a process manager using a multi-process, child/
worker model similar to the prefork MPM

❖ handles multiple “pools” of configuration settings (think of
each pool as an application or domain or user) that can:
❖ have their own configuration (user, group, listen settings,

limits, PHP directives, etc.)
❖ spawn, kill, and restart workers/children

Putting Them
Together

How does this change things?
Is this the grail?

Copyright © 2013 freegraphicdownload.com

Attempting a demo here. Did it work? Yes No

Sample Results

JMeter test: 50 threads, 50 loops

Summary
mod_proxy_fcgi + PHP-FPM

Pros Cons
❖ distinct user/group per FPM pool
❖ PHP application can reside,

process, and utilize resources in a
different address space, in a
separate jail, or on a separate
host/VM

❖ httpd can load-balance to
multiple FPM backends or
multiple httpd frontends can
share a single FPM backend

❖ latency
❖ PHP-FPM process manager tuning
❖ mod_proxy configuration

Considerations

❖ File system: 
If httpd and PHP-FPM are not sharing a file system, the files must be
synchronized, proxied, or both.

❖ Access control:
❖ Be sure that httpd only serves/allows access to the files it should.
❖ Take extra care with Files, Directory, Location, and Require

directives.
❖ File ownership:

❖ Ensure httpd has read-only access. (And only to what it needs!)
❖ Ensure PHP has read-only access to everything except things that

require write access.

— All of you

“Great, but who cares? This was a valuable
conversation ten years ago. Who really needs this

information today? PHP is so passé!”

Still Relevant Today

0%

25%

50%

75%

100%

2010 2011 2012 2013 2014 Jan 2015 Apr 2015

4.0% 3.8% 4.0% 4.1% 2.7% 2.8% 2.9%

24.4% 23.4% 21.7% 20.2% 18.2% 17.1% 17%

72.5% 75.3% 77.3% 78.7% 81.6% 82.0% 82.0%

PHP
ASP.NET
Java
ColdFusion
Ruby
Perl
Python

Data Copyright © 2009-2015 Q-Success DI Gelbmann GmbH. All rights reserved.

71.5% 69.7% 66.7% 63.9% 64.8%
58.8% 58.0%

Apache
Nginx
Microsoft-IIS
LiteSpeed
Google Servers
Tomcat
ATS
Lighttpd

Pleas from Your Friendly SysAdmin

❖ Treat PHP just like any other application language. Would
you run Java, Ruby, or Language X in the frontend? Run it in
the application “tier” (whatever that looks like in your
environment).

❖ ACLs, ownership, and permissions matter, so limit write
and read access to as-needed. When http/PHP/LangX gets
compromised, what does it have access to?

❖ Let httpd do what it does best: serve static content quickly,
efficiently, and securely. Proxy everything else to backend
processes that can do their work in the same way.

Questions

? ?

??

?

