
Apache Cassandra™ 2.0
Documentation

December 5, 2014

© 2014 DataStax. All rights reserved.

Apache, Apache Cassandra, Apache Hadoop, Hadoop and the
eye logo are trademarks of the Apache Software Foundation

Contents

3

Contents

About Apache Cassandra... 8
What's new in Cassandra... 8

CQL..11

Understanding the architecture... 12
Architecture in brief... 12
Internode communications (gossip).. 14

Failure detection and recovery...14
Data distribution and replication..15

Consistent hashing... 15
Virtual nodes...16
Data replication...17

Partitioners...18
Murmur3Partitioner..19
RandomPartitioner.. 19
ByteOrderedPartitioner... 19

Snitches... 20
Dynamic snitching...20
SimpleSnitch... 20
RackInferringSnitch...20
PropertyFileSnitch...21
GossipingPropertyFileSnitch...21
EC2Snitch... 22
EC2MultiRegionSnitch.. 23
GoogleCloudSnitch... 24
CloudstackSnitch.. 24

Client requests...24
Planning a cluster deployment..25

Selecting hardware for enterprise implementations... 25
Planning an Amazon EC2 cluster.. 27
Calculating usable disk capacity.. 28
Calculating user data size.. 29
Anti-patterns in Cassandra... 29

Installing..33
Installing on RHEL-based systems... 33
Installing on Debian-based systems... 34
Installing the binary tarball.. 35
Installing on Windows systems... 36
Installing on cloud providers... 36

Installing on Amazon EC2..36
Installing on GoGrid..44

Installing Oracle JRE and JNA... 45
Installing the JRE on RHEL-based systems.. 45
Installing the JRE on Debian-based systems.. 46
Installing the JNA on RHEL-based systems.. 47

Contents

4

Installing the JNA on Debian-based systems.. 48
Installing the JNA from the JAR file...48

Recommended production settings...48

Initializing a cluster... 51
Initializing a multiple node cluster (single data center)...51
Initializing a multiple node cluster (multiple data centers).. 53

Security... 57
Securing Cassandra.. 57
SSL encryption.. 57

Client-to-node encryption..57
Node-to-node encryption.. 58
Using cqlsh with SSL encryption..58
Preparing server certificates...59

Internal authentication... 60
Internal authentication.. 60
Configuring authentication.. 60
Logging in using cqlsh..61

Internal authorization... 62
Object permissions... 62
Configuring internal authorization...62

Configuring firewall port access.. 63

Database internals... 64
Managing data...64

Separate table directories...64
Cassandra storage basics...64

The write path to compaction...64
How Cassandra stores indexes... 67
About index updates...67

The write path of an update... 67
About deletes...67
About hinted handoff writes.. 68
About reads... 70

How off-heap components affect reads... 71
Reading from a partition...72
How write patterns affect reads... 72
How the row cache affects reads.. 72

About transactions and concurrency control...72
Lightweight transactions... 73
Atomicity..73
Consistency...73
Isolation...74
Durability... 74

About data consistency... 74
Configuring data consistency... 75
Read requests.. 79
Write requests...83

Configuration..85
The cassandra.yaml configuration file...85
Configuring gossip settings... 97

Contents

5

Configuring the heap dump directory..98
Generating tokens... 99
Configuring virtual nodes...99

Enabling virtual nodes on a new cluster.. 99
Enabling virtual nodes on an existing production cluster... 100

Logging configuration.. 100
Logging configuration... 100
Changing the rotation and size of the Cassandra output.log... 101
Changing the rotation and size of the Cassandra system.log..102

Commit log archive configuration..102
Hadoop support... 103

Operations.. 106
Monitoring Cassandra... 106

Monitoring a Cassandra cluster..106
Tuning Bloom filters.. 110
Data caching..111

Configuring data caches...111
Monitoring and adjusting caching...112

Configuring memtable throughput... 113
Configuring compaction...113
Compression..114

When to compress data... 114
Configuring compression.. 115

Testing compaction and compression...115
Tuning Java resources..116
Purging gossip state on a node..118
Repairing nodes.. 119
Adding or removing nodes, data centers, or clusters... 120

Adding nodes to an existing cluster... 120
Adding a data center to a cluster...121
Replacing a dead node.. 122
Replacing a dead seed node... 123
Replacing a running node.. 123
Decommissioning a data center...124
Removing a node... 124
Switching snitches.. 125
Edge cases for transitioning or migrating a cluster..126

Backing up and restoring data.. 127
Taking a snapshot...127
Deleting snapshot files.. 128
Enabling incremental backups.. 128
Restoring from a Snapshot... 128

Node restart method...129
Restoring a snapshot into a new cluster.. 130

Cassandra tools... 131
The nodetool utility.. 131

cfhistograms..131
cfstats..134
cleanup..138
clearsnapshot..139

Contents

6

compact...139
compactionhistory... 140
compactionstats.. 140
decommission... 141
describering...142
disableautocompaction... 142
disablebackup... 143
disablebinary... 143
disablegossip.. 143
disablehandoff...144
disablethrift..144
drain.. 145
enableautocompaction.. 145
enablebackup..146
enablebinary..146
enablegossip... 146
enablehandoff... 147
enablethrift.. 147
flush...148
getcompactionthreshold.. 148
getendpoints..149
getsstables.. 149
getstreamthroughput... 150
gossipinfo.. 150
info.. 150
invalidatekeycache..151
invalidaterowcache..151
join...152
move... 152
netstats..153
pausehandoff.. 154
proxyhistograms..154
rangekeysample..156
rebuild... 156
rebuild_index...157
refresh... 158
removenode.. 158
repair... 159
resetlocalschema.. 161
resumehandoff.. 161
ring.. 162
scrub... 163
setcachecapacity...163
setcachekeystosave..164
setcompactionthreshold.. 165
setcompactionthroughput..165
sethintedhandoffthrottlekb...166
setstreamthroughput... 166
settraceprobability... 167
snapshot..168
status...170
statusbinary...171
statusthrift..171
stop... 171
stopdaemon.. 172
taketoken...172

Contents

7

tpstats..173
truncatehints..175
upgradesstables..176
version...176

Cassandra bulk loader (sstableloader)... 177
The cassandra utility... 178
The cassandra-stress tool...181

Options for cassandra-stress..181
Using the Daemon Mode... 183
Interpreting the output of cassandra-stress..183

The sstablescrub utility..184
The sstablesplit utility.. 184
sstablekeys.. 185
The sstableupgrade tool..186

References.. 187
Starting and stopping Cassandra..187

Starting Cassandra as a service.. 187
Starting Cassandra as a stand-alone process... 187
Stopping Cassandra as a service.. 187
Stopping Cassandra as a stand-alone process... 187
Clearing the data as a service... 188
Clearing the data as a stand-alone process.. 188

Install locations.. 188
Tarball installation directories... 188
Package installation directories.. 189

Cassandra-CLI utility (deprecated)..189
Table attributes... 190

Moving data to/from other databases... 193

Troubleshooting... 194
Peculiar Linux kernel performance problem on NUMA systems...194
Reads are getting slower while writes are still fast...194
Nodes seem to freeze after some period of time... 194
Nodes are dying with OOM errors..195
Nodetool or JMX connections failing on remote nodes.. 195
View of ring differs between some nodes...195
Java reports an error saying there are too many open files...196
Insufficient user resource limits errors...196
Cannot initialize class org.xerial.snappy.Snappy.. 197
Firewall idle connection timeout causing nodes to lose communication...198

Release notes...199

Using the docs...200

About Apache Cassandra

8

About Apache Cassandra

This guide provides information for developers and administrators on installing, configuring, and using the
features and capabilities of Cassandra.

What is Apache Cassandra?

Apache Cassandra™ is a massively scalable open source NoSQL database. Cassandra is perfect
for managing large amounts of data across multiple data centers and the cloud. Cassandra delivers
continuous availability, linear scalability, and operational simplicity across many commodity servers with no
single point of failure, along with a powerful data model designed for maximum flexibility and fast response
times.

How does Cassandra work?

Cassandra has a “masterless” architecture, meaning all nodes are the same. Cassandra provides
automatic data distribution across all nodes that participate in a “ring” or database cluster. There is nothing
programmatic that a developer or administrator needs to do or code to distribute data across a cluster
because data is transparently partitioned across all nodes in a cluster.

Cassandra also provides customizable replication, storing redundant copies of data across nodes that
participate in a Cassandra ring. This means that if any node in a cluster goes down, one or more copies
of that node’s data is still available on other machines in the cluster. Replication can be configured to work
across one data center, many data centers, and multiple cloud availability zones.

Cassandra supplies linear scalability, meaning that capacity may be easily added simply by adding new
nodes online. For example, if 2 nodes can handle 100,000 operations per second, 4 nodes will support
200,000 operations/sec and 8 nodes will tackle 400,000 operations/sec:

To gain an understanding of Cassandra's origins and where it has evolved to today, please read
"Facebook’s Cassandra paper, annotated and compared to Apache Cassandra 2.0", authored by project
chair Jonathan Ellis.

What's new in Cassandra

Cassandra 2.0 included major enhancements to CQL, security, and performance. CQL for Cassandra 2.0.6
adds several important features including batching of conditional updates, static columns, and increased
control over slicing of clustering columns.

http://www.datastax.com/documentation/articles/cassandra/cassandrathenandnow.html
/documentation/cql/3.1/cql/cql_intro_c.html

About Apache Cassandra

9

Key features of Cassandra 2.0 are:

• Support for lightweight transactions

• Use of the IF keyword in CQL INSERT and UPDATE statements
• New SERIAL consistency level

• Triggers

The first phase of support for triggers for firing an event that executes a set of programmatic logic,
which runs either inside or outside a database cluster

• CQL paging support

Paging of result sets of SELECT statements executed over a CQL native protocol 2 connection, which
eliminates the need to use the token function to page through results. For example, to page through
data in this table, a simple SELECT statement after Cassandra 2.0 replaces the complex one using the
token function before Cassandra 2.0.

• Prepared statement support

Atomic BATCH guarantees for large sets of prepared statements

You can batch Prepared Statements with Java Driver 2.1
• Bind variable support

One-shot binding of optional variables or prepared statements and variables for server-side request
parsing and execution using a BATCH message containing a list of query strings--no reparsing

• Improved authentication

SASL support for easier and better authentication over prior versions of the CQL native protocol
• Drop column support

Re-introduction of the ALTER TABLE DROP command
• SELECT column aliases

Support for column aliases in a SELECT statement, similar to aliases in RDBMS SQL:

SELECT hdate AS hired_date
 FROM emp WHERE empid = 500

• Conditional DDL

Conditionally tests for the existence of a table, keyspace, or index before issuing a DROP or CREATE
statement using IF EXISTS or IF NOT EXISTS

• Index enhancements

/documentation/cql/3.1/cql/cql_using/use_ltweight_transaction_t.html
/documentation/cql/3.1/cql/cql_reference/trigger_r.html
https://git-wip-us.apache.org/repos/asf?p=cassandra.git;a=blob_plain;f=doc/native_protocol_v2.spec
/documentation/cql/3.1/cql/cql_reference/batch_prepared_r.html
/documentation/developer/java-driver/2.1/java-driver/reference/batch-statements.html
/documentation/cql/3.1/cql/cql_reference/prepared_stmt_c.html
/documentation/cql/3.1/cql/cql_reference/alter_table_r.html?scroll=reference_ds_xqq_hpc_xj__drop-column
/documentation/cql/3.1/cql/cql_reference/select_r.html?scroll=reference_ds_d35_v2q_xj__ref-col-alias
/documentation/cql/3.1/cql/cql_reference/drop_table_r.html
/documentation/cql/3.1/cql/cql_reference/create_table_r.html

About Apache Cassandra

10

Indexing of any part, partition key or clustering columns, portion of a compound primary key
• One-off prepare and execute statements

Use of a prepared statement, even for the single execution of a query to pass binary values for a
statement, for example to avoid a conversion of a blob to a string, over a native protocol version 2
connection

• Performance enhancements

• Off-heap partition summary
• Eager retries support

Sending the user request to other replicas before the query times out when a replica is unusually
slow in delivering needed data

• Compaction improvements

Hybrid (leveled and size-tiered) compaction improvements to the leveled compaction strategy to
reduce the performance overhead on read operations when compaction cannot keep pace with
write-heavy workloads

Other changes in Cassandra 2.0 are:

• New commands to disable background compactions

nodetool disableautocompaction and nodetool enableautocompaction
• A change to random token selection during cluster setup

Auto_bootstrapping of a single-token node with no initial_token
• Removal of super column support

Continued support for apps that query super columns, translation of super columns on the fly into CQL
constructs and results

• Removal of the cqlsh ASSUME command

Use the blobAsType and typeAsBlob conversion functions instead of ASSUME
• Cqlsh COPY command support for collections
• Inclusion of the native protocol version in the system.local table
• Inclusion of default_time_to_live, speculative_retry, and memtable_flush_period_in_ms in cqlsh

DESCRIBE TABLE output
• Support for an empty list of values in the IN clause of SELECT, UPDATE, and DELETE commands,

useful in Java Driver applications when passing empty arrays as arguments for the IN clause

/documentation/cql/3.1/cql/cql_reference/tabProp.html?scroll=tabProp__moreCompaction
/documentation/cql/3.1/cql/cql_reference/cql_function_r.html
/documentation/cql/3.1/cql/cql_reference/copy_r.html

CQL

11

CQL

Cassandra Query Language (CQL) is the default and primary interface into the Cassandra DBMS. Using
CQL is similar to using SQL (Structured Query Language). CQL and SQL share the same abstract idea
of a table constructed of tables and rows. The main difference from SQL is that Cassandra does not
support joins or subqueries, except for batch analysis through Hive. Instead, Cassandra emphasizes
denormalization through CQL features like collections and clustering specified at the schema level.

CQL is the recommended way to interact with Cassandra. Performance and the simplicity of reading and
using CQL is an advantage of modern Cassandra over older Cassandra APIs.

The CQL documentation contains a data modeling section, examples, and command reference. The cqlsh
utility for using CQL interactively on the command line is also covered.

/documentation/cql/3.1/cql/ddl/ddl_intro_c.html
/documentation/cql/3.1/index.html
/documentation/cql/3.1/cql/cql_reference/cqlsh.html
/documentation/cql/3.1/cql/cql_reference/cqlsh.html

Understanding the architecture

12

Understanding the architecture

Architecture in brief

Cassandra is designed to handle big data workloads across multiple nodes with no single point of failure.
Its architecture is based on the understanding that system and hardware failures can and do occur.
Cassandra addresses the problem of failures by employing a peer-to-peer distributed system across
homogeneous nodes where data is distributed among all nodes in the cluster. Each node exchanges
information across the cluster every second. A sequentially written commit log on each node captures
write activity to ensure data durability. Data is then indexed and written to an in-memory structure, called
a memtable, which resembles a write-back cache. Once the memory structure is full, the data is written to
disk in an SSTable data file. All writes are automatically partitioned and replicated throughout the cluster.
Using a process called compaction Cassandra periodically consolidates SSTables, discarding obsolete
data and tombstones (an indicator that data was deleted).

Cassandra is a row-oriented database. Cassandra's architecture allows any authorized user to connect
to any node in any data center and access data using the CQL language. For ease of use, CQL uses
a similar syntax to SQL. From the CQL perspective the database consists of tables. Typically, a cluster
has one keyspace per application. Developers can access CQL through cqlsh as well as via drivers for
application languages.

Client read or write requests can be sent to any node in the cluster. When a client connects to a node with
a request, that node serves as the coordinator for that particular client operation. The coordinator acts as
a proxy between the client application and the nodes that own the data being requested. The coordinator
determines which nodes in the ring should get the request based on how the cluster is configured. For
more information, see Client requests.

Key structures

• Node

Where you store your data. It is the basic infrastructure component of Cassandra.
• Data center

A collection of related nodes. A data center can be a physical data center or virtual data center.
Different workloads should use separate data centers, either physical or virtual. Replication is set by
data center. Using separate data centers prevents Cassandra transactions from being impacted by
other workloads and keeps requests close to each other for lower latency. Depending on the replication
factor, data can be written to multiple data centers. However, data centers should never span physical
locations.

• Cluster

A cluster contains one or more data centers. It can span physical locations.
• Commit log

All data is written first to the commit log for durability. After all its data has been flushed to SSTables, it
can be archived, deleted, or recycled.

• Table

A collection of ordered columns fetched by row. A row consists of columns and have a primary key. The
first part of the key is a column name.

• SSTable

/documentation/cql/3.1/cql/cql_reference/tabProp.html?scroll=tabProp__moreCompaction

Understanding the architecture

13

A sorted string table (SSTable) is an immutable data file to which Cassandra writes memtables
periodically. SSTables are append only and stored on disk sequentially and maintained for each
Cassandra table.

Key components for configuring Cassandra

• Gossip

A peer-to-peer communication protocol to discover and share location and state information about the
other nodes in a Cassandra cluster. Gossip information is also persisted locally by each node to use
immediately when a node restarts.

• Partitioner

A partitioner determines how to distribute the data across the nodes in the cluster and which node to
place the first copy of data on. Basically, a partitioner is a hash function for computing the token of a
partition key. Each row of data is uniquely identified by a partition key and distributed across the cluster
by the value of the token. The Murmur3Partitioner is the default partitioning strategy for new Cassandra
clusters and the right choice for new clusters in almost all cases.

You must set the partitioner and assign the node a num_tokens value for each node. The number
of tokens you assign depends on the hardware capabilities of the system. If not using virtual nodes
(vnodes), use the initial_token setting instead.

• Replication factor

The total number of replicas across the cluster. A replication factor of 1 means that there is only one
copy of each row on one node. A replication factor of 2 means two copies of each row, where each
copy is on a different node. All replicas are equally important; there is no primary or master replica.
You define the replication factor for each data center. Generally you should set the replication strategy
greater than one, but no more than the number of nodes in the cluster.

• Replica placement strategy

Cassandra stores copies (replicas) of data on multiple nodes to ensure reliability and fault tolerance.
A replication strategy determines which nodes to place replicas on. The first replica of data is simply
the first copy; it is not unique in any sense. The NetworkTopologyStrategy is highly recommended for
most deployments because it is much easier to expand to multiple data centers when required by future
expansion.

When creating a keyspace, you must define the replica placement strategy and the number of replicas
you want.

• Snitch

A snitch defines groups of machines into data centers and racks (the topology) that the replication
strategy uses to place replicas.

You must configure a snitch when you create a cluster. All snitches use a dynamic snitch layer,
which monitors performance and chooses the best replica for reading. It is enabled by default and
recommended for use in most deployments. Configure dynamic snitch thresholds for each node in the
cassandra.yaml configuration file.

The default SimpleSnitch does not recognize data center or rack information. Use it for single-data
center deployments or single-zone in public clouds. The GossipingPropertyFileSnitch is recommended
for production. It defines a node's data center and rack and uses gossip for propagating this information
to other nodes.

• The cassandra.yaml configuration file

The main configuration file for setting the initialization properties for a cluster, caching parameters for
tables, properties for tuning and resource utilization, timeout settings, client connections, backups, and
security.

By default, a node is configured to store the data it manages in a directory set in the cassandra.yaml
file.

Understanding the architecture

14

• Packaged installs: /var/lib/cassandra
• Tarball installs: install_location/data/data

In a production cluster deployment, you can change the commitlog-directory to a different disk drive
from the data_file_directories.

• System keyspace table properties

You set storage configuration attributes on a per-keyspace or per-table basis programmatically or using
a client application, such as CQL.

Internode communications (gossip)
Cassandra uses a protocol called gossip to discover location and state information about the other nodes
participating in a Cassandra cluster.

Gossip is a peer-to-peer communication protocol in which nodes periodically exchange state information
about themselves and about other nodes they know about. The gossip process runs every second and
exchanges state messages with up to three other nodes in the cluster. The nodes exchange information
about themselves and about the other nodes that they have gossiped about, so all nodes quickly learn
about all other nodes in the cluster. A gossip message has a version associated with it, so that during a
gossip exchange, older information is overwritten with the most current state for a particular node.

To prevent partitions in gossip communications, use the same list of seed nodes in all nodes in a cluster.
This is most critical the first time a node starts up. By default, a node remembers other nodes it has
gossiped with between subsequent restarts.

Note: The seed node designation has no purpose other than bootstrapping the gossip process for
new nodes joining the cluster. Seed nodes are not a single point of failure, nor do they have any
other special purpose in cluster operations beyond the bootstrapping of nodes.

Failure detection and recovery

Failure detection is a method for locally determining from gossip state and history if another node in the
system is up or down. Cassandra uses this information to avoid routing client requests to unreachable
nodes whenever possible. (Cassandra can also avoid routing requests to nodes that are alive, but
performing poorly, through the dynamic snitch.)

The gossip process tracks state from other nodes both directly (nodes gossiping directly to it) and indirectly
(nodes communicated about secondhand, thirdhand, and so on). Rather than have a fixed threshold
for marking failing nodes, Cassandra uses an accrual detection mechanism to calculate a per-node
threshold that takes into account network performance, workload, and historical conditions. During gossip
exchanges, every node maintains a sliding window of inter-arrival times of gossip messages from other
nodes in the cluster. Configuring the phi_convict_threshold property adjusts the sensitivity of the failure
detector. Lower values increase the likelihood that an unresponsive node will be marked as down, while
higher values decrease the likelihood that transient failures will cause a node failure. Use the default
value for most situations, but increase it to 12 for Amazon EC2 (due to frequently enountered network
congestion).

Node failures can result from various causes such as hardware failures and network outages. Node
outages are often transient but can last for extended periods. Because a node outage rarely signifies a
permanent departure from the cluster it does not automatically result in permanent removal of the node
from the ring. Other nodes will periodically try to re-establish contact with failed nodes to see if they are
back up. To permanently change a node's membership in a cluster, administrators must explicitly add or
remove nodes from a Cassandra cluster using the nodetool utility or OpsCenter.

When a node comes back online after an outage, it may have missed writes for the replica data
it maintains. Once the failure detector marks a node as down, missed writes are stored by other
replicas for a period of time providing hinted handoff is enabled. If a node is down for longer than
max_hint_window_in_ms (3 hours by default), hints are no longer saved. Nodes that die may have stored

/documentation/cql/3.1/cql/cql_reference/tabProp.html

Understanding the architecture

15

undelivered hints. Run a repair after recovering a node that has been down for an extended period.
Moreover, you should routinely run nodetool repair on all nodes to ensure they have consistent data.

For more explanation about hint storage, see Modern hinted handoff.

Data distribution and replication

In Cassandra, data distribution and replication go together. Data is organized by table and identified by a
primary key, which determines which node the data is stored on. Replicas are copies of rows. When data is
first written, it is also referred to as a replica.

Factors influencing replication include:

• Virtual nodes: assigns data ownership to physical machines.
• Partitioner: partitions the data across the cluster.
• Replication strategy: determines the replicas for each row of data.
• Snitch: defines the topology information that the replication strategy uses to place replicas.

Consistent hashing
Consistent hashing allows distributing data across a cluster which minimizes reorganization when nodes
are added or removed.

Consistent hashing partitions data based on the partition key. (For an explanation of partition keys and
primary keys, see the Data modeling example in CQL for Cassandra 2.0.)

For example, if you have the following data:

name age car gender

jim 36 camaro M

carol 37 bmw F

johnny 12 M

suzy 10 F

Cassandra assigns a hash value to each partition key:

Partition key Murmur3 hash value

jim -2245462676723223822

carol 7723358927203680754

johnny -6723372854036780875

suzy 1168604627387940318

Each node in the cluster is responsible for a range of data based on the hash value:

http://www.datastax.com/dev/blog/modern-hinted-handoff
/documentation/cql/3.1/cql/ddl/ddl_intro_c.html

Understanding the architecture

16

Hash values in a 4 node cluster

Data Center Alpha

A

B

C

D

4611686018427387904
to

9223372036854775807

- 4611686018427387904
to
- 1

- 1
to

4611686018427387903

- 9223372036854775808
to

- 4611686018427387903

Cassandra places the data on each node according to the value of the partition key and the range that
the node is responsible for. For example, in a four node cluster, the data in this example is distributed as
follows:

Node Start range End range Partition
key

Hash value

A -9223372036854775808 -4611686018427387903 johnny -6723372854036780875

B -4611686018427387904 -1 jim -2245462676723223822

C 0 4611686018427387903 suzy 1168604627387940318

D 4611686018427387904 9223372036854775807 carol 7723358927203680754

Virtual nodes
Overview of virtual nodes (vnodes).

Vnodes simplify many tasks in Cassandra:

• You no longer have to calculate and assign tokens to each node.
• Rebalancing a cluster is no longer necessary when adding or removing nodes. When a node joins the

cluster, it assumes responsibility for an even portion of data from the other nodes in the cluster. If a
node fails, the load is spread evenly across other nodes in the cluster.

• Rebuilding a dead node is faster because it involves every other node in the cluster.
• Improves the use of heterogeneous machines in a cluster. You can assign a proportional number of

vnodes to smaller and larger machines.

For more information, see the article Virtual nodes in Cassandra 1.2 and Enabling virtual nodes on an
existing production cluster.

How data is distributed across a cluster (using virtual nodes)

Prior to version 1.2, you had to calculate and assign a single token to each node in a cluster. Each token
determined the node's position in the ring and its portion of data according to its hash value. Starting in
version 1.2, Cassandra allows many tokens per node. The new paradigm is called virtual nodes (vnodes).
Vnodes allow each node to own a large number of small partition ranges distributed throughout the cluster.
Vnodes also use consistent hashing to distribute data but using them doesn't require token generation and
assignment.

http://www.datastax.com/dev/blog/virtual-nodes-in-cassandra-1-2
http://www.datastax.com/docs/1.1/initialize/token_generation

Understanding the architecture

17

Figure 1: Virtual vs single-token architecture

The top portion of the graphic shows a cluster without vnodes. In this paradigm, each node is assigned
a single token that represents a location in the ring. Each node stores data determined by mapping the
partition key to a token value within a range from the previous node to its assigned value. Each node also
contains copies of each row from other nodes in the cluster. For example, range E replicates to nodes 5, 6,
and 1. Notice that a node owns exactly one contiguous partition range in the ring space.

The bottom portion of the graphic shows a ring with vnodes. Within a cluster, virtual nodes are randomly
selected and non-contiguous. The placement of a row is determined by the hash of the partition key within
many smaller partition ranges belonging to each node.

Data replication
Cassandra stores replicas on multiple nodes to ensure reliability and fault tolerance. A replication strategy
determines the nodes where replicas are placed.

The total number of replicas across the cluster is referred to as the replication factor. A replication factor of
1 means that there is only one copy of each row on one node. A replication factor of 2 means two copies
of each row, where each copy is on a different node. All replicas are equally important; there is no primary
or master replica. As a general rule, the replication factor should not exceed the number of nodes in the
cluster. However, you can increase the replication factor and then add the desired number of nodes later.

Two replication strategies are available:

• SimpleStrategy: Use for a single data center only. If you ever intend more than one data center, use
the NetworkTopologyStrategy.

• NetworkTopologyStrategy: Highly recommended for most deployments because it is much easier
to expand to multiple data centers when required by future expansion.

SimpleStrategy

Understanding the architecture

18

Use only for a single data center. SimpleStrategy places the first replica on a node determined by
the partitioner. Additional replicas are placed on the next nodes clockwise in the ring without considering
topology (rack or data center location).

NetworkTopologyStrategy

Use NetworkTopologyStrategy when you have (or plan to have) your cluster deployed across multiple
data centers. This strategy specify how many replicas you want in each data center.

NetworkTopologyStrategy places replicas in the same data center by walking the ring clockwise until
reaching the first node in another rack. NetworkTopologyStrategy attempts to place replicas on distinct
racks because nodes in the same rack (or similar physical grouping) often fail at the same time due to
power, cooling, or network issues.

When deciding how many replicas to configure in each data center, the two primary considerations are (1)
being able to satisfy reads locally, without incurring cross data-center latency, and (2) failure scenarios. The
two most common ways to configure multiple data center clusters are:

• Two replicas in each data center: This configuration tolerates the failure of a single node per replication
group and still allows local reads at a consistency level of ONE.

• Three replicas in each data center: This configuration tolerates either the failure of a one node per
replication group at a strong consistency level of LOCAL_QUORUM or multiple node failures per data
center using consistency level ONE.

Asymmetrical replication groupings are also possible. For example, you can have three replicas in one data
center to serve real-time application requests and use a single replica elsewhere for running analytics.

Choosing keyspace replication options

To set the replication strategy for a keyspace, see CREATE KEYSPACE.

When you use NetworkToplogyStrategy, during creation of the keyspace, you use the data center
names defined for the snitch used by the cluster. To place replicas in the correct location, Cassandra
requires a keyspace definition that uses the snitch-configured data center names. For example, if the
cluster uses the PropertyFileSnitch, create the keyspace using the user-defined data center and rack
names in the cassandra-topologies.properties file. If the cluster uses the EC2Snitch, create the
keyspace using EC2 data center and rack names.

Partitioners
A partitioner determines how data is distributed across the nodes in the cluster (including replicas).
Basically, a partitioner is a function for deriving a token representing a row from its partion key, typically by
hashing. Each row of data is then distributed across the cluster by the value of the token.

Both the Murmur3Partitioner and RandomPartitioner use tokens to help assign equal portions
of data to each node and evenly distribute data from all the tables throughout the ring or other grouping,
such as a keyspace. This is true even if the tables use different partition keys, such as usernames or
timestamps. Moreover, the read and write requests to the cluster are also evenly distributed and load
balancing is simplified because each part of the hash range receives an equal number of rows on average.
For more detailed information, see Consistent hashing.

Cassandra offers the following partitioners:

• Murmur3Partitioner (default): uniformly distributes data across the cluster based on MurmurHash
hash values.

• RandomPartitioner: uniformly distributes data across the cluster based on MD5 hash values.
• ByteOrderedPartitioner: keeps an ordered distribution of data lexically by key bytes

The Murmur3Partitioner is the default partitioning strategy for new Cassandra clusters and the right
choice for new clusters in almost all cases.

Set the partitioner in the cassandra.yaml file:

/documentation/cql/3.1/cql/cql_reference/create_keyspace_r.html

Understanding the architecture

19

• Murmur3Partitioner: org.apache.cassandra.dht.Murmur3Partitioner
• RandomPartitioner: org.apache.cassandra.dht.RandomPartitioner
• ByteOrderedPartitioner: org.apache.cassandra.dht.ByteOrderedPartitioner

Note: If using virtual nodes (vnodes), you do not need to calculate the tokens. If not using vnodes,
you must calculate the tokens to assign to the initial_token parameter in the cassandra.yaml file.
See Generating tokens and use the method for the type of partitioner you are using.

Murmur3Partitioner
The Murmur3Partitioner provides faster hashing and improved performance than the previous default
partitioner (RandomPartitioner).

You can only use Murmur3Partitioner for new clusters; you cannot change the partitioner in existing
clusters. The Murmur3Partitioner uses the MurmurHash function. This hashing function creates a 64-
bit hash value of the partition key. The possible range of hash values is from -263 to +263-1.

When using the Murmur3Partitioner, you can page through all rows using the token function in a CQL
query.

RandomPartitioner
The default partitioner prior to Cassandra 1.2.

The RandomPartitioner is included for backwards compatibility. You can use it in later versions of
Cassandra, even when using virtual nodes (vnodes). However, if you don't use vnodes, you must calculate
the tokens, as described in Generating tokens.

The RandomPartition distributes data evenly across the nodes using an MD5 hash value of the row
key. The possible range of hash values is from 0 to 2127 -1.

When using the RandomPartitioner, you can page through all rows using the token function in a CQL
query.

ByteOrderedPartitioner

The ByteOrderedPartitioner is included for backwards compatibility. Cassandra provides this
partitioner for ordered partitioning. This partitioner orders rows lexically by key bytes. You calculate tokens
by looking at the actual values of your partition key data and using a hexadecimal representation of the
leading character(s) in a key. For example, if you wanted to partition rows alphabetically, you could assign
an A token using its hexadecimal representation of 41.

Using the ordered partitioner allows ordered scans by primary key. This means you can scan rows as
though you were moving a cursor through a traditional index. For example, if your application has user
names as the partition key, you can scan rows for users whose names fall between Jake and Joe. This
type of query is not possible using randomly partitioned partition keys because the keys are stored in the
order of their MD5 hash (not sequentially).

Although having the capability to do range scans on rows sounds like a desirable feature of ordered
partitioners, there are ways to achieve the same functionality using table indexes.

Using an ordered partitioner is not recommended for the following reasons:

Difficult load balancing

More administrative overhead is required to load balance the cluster. An ordered partitioner requires
administrators to manually calculate partition ranges based on their estimates of the partition key distribution.
In practice, this requires actively moving node tokens around to accommodate the actual distribution of data
once it is loaded.

Sequential writes can cause hot spots

/documentation/cql/3.1/cql/cql_using/paging_c.html
/documentation/cql/3.1/cql/cql_using/paging_c.html
/documentation/cql/3.1/cql/ddl/ddl_primary_index_c.html

Understanding the architecture

20

If your application tends to write or update a sequential block of rows at a time, then the writes are not be
distributed across the cluster; they all go to one node. This is frequently a problem for applications dealing
with timestamped data.

Uneven load balancing for multiple tables

If your application has multiple tables, chances are that those tables have different row keys and different
distributions of data. An ordered partitioner that is balanced for one table may cause hot spots and uneven
distribution for another table in the same cluster.

Snitches
A snitch determines which data centers and racks nodes belong to.

Snitches inform Cassandra about the network topology so that requests are routed efficiently and allows
Cassandra to distribute replicas by grouping machines into data centers and racks. Specifically, the
replication strategy places the replicas based on the information provided by the new snitch. All nodes
must return to the same rack and data center. Cassandra does its best not to have more than one replica
on the same rack (which is not necessarily a physical location).

Note: If you change snitches, you may need to perform additional steps because the snitch affects
where replicas are placed. See Switching snitches.

Dynamic snitching
Monitors the performance of reads from the various replicas and chooses the best replica based on this
history.

By default, all snitches also use a dynamic snitch layer that monitors read latency and, when possible,
routes requests away from poorly-performing nodes. The dynamic snitch is enabled by default and is
recommended for use in most deployments. For information on how this works, see Dynamic snitching
in Cassandra: past, present, and future. Configure dynamic snitch thresholds for each node in the
cassandra.yaml configuration file.

For more information, see the properties listed under Failure detection and recovery.

SimpleSnitch
For single-data center deployments only.

The SimpleSnitch (the default) does not recognize data center or rack information. Use it for single-data
center deployments or single-zone in public clouds.

Using a SimpleSnitch, you define the keyspace to use SimpleStrategy and specify a replication factor.

RackInferringSnitch
Determines the location of nodes by rack and data center corresponding to the IP addresses.

The RackInferringSnitch determines the location of nodes by rack and data center, which are assumed to
correspond to the 3rd and 2nd octet of the node's IP address, respectively.

http://www.datastax.com/dev/blog/dynamic-snitching-in-cassandra-past-present-and-future
http://www.datastax.com/dev/blog/dynamic-snitching-in-cassandra-past-present-and-future
/documentation/cql/3.1/cql/cql_reference/cql_storage_options_c.html

Understanding the architecture

21

PropertyFileSnitch
Determines the location of nodes by rack and data center.

About this task

This snitch uses a user-defined description of the network details located in the cassandra-
topology.properties file. Use this snitch when your node IPs are not uniform or if you have complex
replication grouping requirements. When using this snitch, you can define your data center names to be
whatever you want. Make sure that the data center names you define correlate to the name of your data
centers in your keyspace definition. Every node in the cluster should be described in the cassandra-
topology.properties file, and this file should be exactly the same on every node in the cluster.

The location of the cassandra-topology.properties file depends on the type of installation:

• Packaged installs: /etc/cassandra/conf/cassandra-topology.properties
• Tarball installs: install_location/conf/cassandra-topology.properties

Procedure

If you had non-uniform IPs and two physical data centers with two racks in each, and a third logical data
center for replicating analytics data, the cassandra-topology.properties file might look like this:

Data Center One

175.56.12.105 =DC1:RAC1
175.50.13.200 =DC1:RAC1
175.54.35.197 =DC1:RAC1

120.53.24.101 =DC1:RAC2
120.55.16.200 =DC1:RAC2
120.57.102.103 =DC1:RAC2

Data Center Two

110.56.12.120 =DC2:RAC1
110.50.13.201 =DC2:RAC1
110.54.35.184 =DC2:RAC1

50.33.23.120 =DC2:RAC2
50.45.14.220 =DC2:RAC2
50.17.10.203 =DC2:RAC2

Analytics Replication Group

172.106.12.120 =DC3:RAC1
172.106.12.121 =DC3:RAC1
172.106.12.122 =DC3:RAC1

default for unknown nodes default =DC3:RAC1

GossipingPropertyFileSnitch
Automatically updates all nodes using gossip when adding new nodes.

The GossipingPropertyFileSnitch defines a local node's data center and rack; it uses gossip for
propagating this information to other nodes.

The cassandra-rackdc.properties file defines the default data center and rack used by this snitch:

dc=DC1
rack=RAC1

The location of the conf directory depends on the type of installation:

/documentation/cql/3.1/cql/cql_reference/cql_storage_options_c.html

Understanding the architecture

22

• Packaged installs: /etc/cassandra/conf/cassandra-rackdc.properties
• Tarball installs: install_location/conf/cassandra-rackdc.properties

To migrate from the PropertyFileSnitch to the GossipingPropertyFileSnitch, update one node at a time
to allow gossip time to propagate. The PropertyFileSnitch is used as a fallback when cassandra-
topologies.properties is present.

EC2Snitch
Use with Amazon EC2 in a single region.

Use the EC2Snitch for simple cluster deployments on Amazon EC2 where all nodes in the cluster are
within a single region.

The region name is treated as the data center name and availability zones are treated as racks within a
data center. For example, if a node is in the us-east-1 region, us-east is the data center name and 1 is
the rack location. (Racks are important for distributing replicas, but not for data center naming.) Because
private IPs are used, this snitch does not work across multiple regions.

If you are using only a single data center, you do not need to specify any properties.

If you need multiple data centers, set the dc_suffix options in the cassandra-rackdc.properties file.
Any other lines are ignored. The location of this file depends on the type of installation:

• Packaged installs: /etc/cassandra/conf/cassandra-rackdc.properties
• Tarball installs: install_location/conf/cassandra-rackdc.properties

For example, for each node within the us-east region, specify the data center in its cassandra-
rackdc.properties file:

• node0

dc_suffix=_1_cassandra

• node1

dc_suffix=_1_cassandra

• node2

dc_suffix=_1_cassandra

• node3

dc_suffix=_1_cassandra

• node4

dc_suffix=_1_analytics

• node5

dc_suffix=_1_search

This results in three data centers for the region:

us-east_1_cassandra
us-east_1_analytics
us-east_1_search

Note: The data center naming convention in this example is based on the workload. You can use
other conventions, such as DC1, DC2 or 100, 200.

Keyspace strategy options

When defining your keyspace strategy options, use the EC2 region name, such as ``us-east``, as your data
center name.

/documentation/cql/3.1/cql/cql_reference/cql_storage_options_c.html

Understanding the architecture

23

EC2MultiRegionSnitch
Use with Amazon EC2 in multiple regions.

Use the EC2MultiRegionSnitch for deployments on Amazon EC2 where the cluster spans multiple regions.

The region name is treated as the data center name and availability zones are treated as racks within a
data center. For example, if a node is in the us-east-1 region, us-east is the data center name and 1 is the
rack location. (Racks are important for distributing replicas, but not for data center naming.)

The dc_suffix options in the cassandra-rackdc.properties file defines the data centers used by this
snitch. Any other lines are ignored. The location of this file depends on the type of installation:

• Packaged installs: /etc/cassandra/conf/cassandra-rackdc.properties
• Tarball installs: install_location/conf/cassandra-rackdc.properties

For example, for two regions with the data centers named for their workloads and two cassandra data
centers:

For each node in the us-east region, specify its data center in cassandra-rackdc.properties file:

• node0

dc_suffix=_1_cassandra

• node1

dc_suffix=_1_cassandra

• node2

dc_suffix=_2_cassandra

• node3

dc_suffix=_2_cassandra

• node4

dc_suffix=_1_analytics

• node5

dc_suffix=_1_search

This results in four us-east data centers:

us-east_1_cassandra
us-east_2_cassandra
us-east_1_analytics
us-east_1_search

For each node in the us-west region, specify its data center in cassandra-rackdc.properties file:

• node0

dc_suffix=_1_cassandra

• node1

dc_suffix=_1_cassandra

• node2

dc_suffix=_2_cassandra

• node3

dc_suffix=_2_cassandra

• node4

dc_suffix=_1_analytics

• node5

dc_suffix=_1_search

Understanding the architecture

24

This results in four us-west data centers:

us-west_1_cassandra
us-west_2_cassandra
us-west_1_analytics
us-west_1_search

Note: The data center naming convention in this example is based on the workload. You can use
other conventions, such as DC1, DC2 or 100, 200.

Other configuration settings

This snitch uses public IP as broadcast_address to allow cross-region connectivity. This means you must
configure each node for cross-region communication:

1. Set the listen_address to the private IP address of the node, and the broadcast_address is set to the
public IP address of the node.

This allows Cassandra nodes in one EC2 region to bind to nodes in another region, thus enabling
multiple data center support. (For intra-region traffic, Cassandra switches to the private IP after
establishing a connection.)

2. Set the addresses of the seed nodes in the cassandra.yaml file to that of the public IP (private IP are
not routable between networks). For example:

seeds: 50.34.16.33, 60.247.70.52

To find the public IP address, from each of the seed nodes in EC2:

$ curl http://instance-data/latest/meta-data/public-ipv4
3. Be sure that the storage_port or ssl_storage_port is open on the public IP firewall.

Keyspace strategy options

When defining your keyspace strategy options, use the EC2 region name, such as ``us-east``, as your data
center name.

GoogleCloudSnitch

Use the GoogleCloudSnitch for Cassandra deployments on Google Cloud Platform across one or more
regions. The region is treated as a data center and the availability zones are treated as racks within the
data center. All communication occurs over private IP addresses within the same logical network.

CloudstackSnitch

Use the CloudstackSnitch for Apache Cloudstack environments. Because zone naming is free-form in
Apache Cloudstack, this snitch uses the widely-used <country> <location> <az> notation.

Client requests
Client read or write requests can be sent to any node in the cluster because all nodes in Cassandra are
peers.

When a client connects to a node and issues a read or write request, that node serves as the coordinator
for that particular client operation.

The job of the coordinator is to act as a proxy between the client application and the nodes (or replicas)
that own the data being requested. The coordinator determines which nodes in the ring should get the
request based on the cluster configured partitioner and replica placement strategy.

/documentation/cql/3.1/cql/cql_reference/cql_storage_options_c.html
https://cloud.google.com/
http://cloudstack.apache.org/

Understanding the architecture

25

Planning a cluster deployment
When planning a Cassandra cluster deployment, you should have a good idea of the initial volume of data
you plan to store and a good estimate of your typical application workload.

The following topics provide information for planning your cluster:

Selecting hardware for enterprise implementations
Choosing appropriate hardware depends on selecting the right balance of the following resources:
memory, CPU, disks, number of nodes, and network.

Memory

The more memory a Cassandra node has, the better read performance. More RAM allows for larger cache
sizes and reduces disk I/O for reads. More RAM also allows memory tables (memtables) to hold more
recently written data. Larger memtables lead to a fewer number of SSTables being flushed to disk and
fewer files to scan during a read. The ideal amount of RAM depends on the anticipated size of your hot
data.

• For dedicated hardware, the optimal price-performance sweet spot is 16GB to 64GB; the minimum is
8GB.

• For a virtual environments, the optimal range may be 8GB to 16GB; the minimum is 4GB.
• For testing light workloads, Cassandra can run on a virtual machine as small as 256MB.
• For setting Java heap space, see Tuning Java resources.

CPU

Insert-heavy workloads are CPU-bound in Cassandra before becoming memory-bound. (All writes go to
the commit log, but Cassandra is so efficient in writing that the CPU is the limiting factor.) Cassandra is
highly concurrent and uses as many CPU cores as available:

• For dedicated hardware, 8-core CPU processors are the current price-performance sweet spot.
• For virtual environments, consider using a provider that allows CPU bursting, such as Rackspace Cloud

Servers.

Disk

Disk space depends on usage, so it's important to understand the mechanism. Cassandra writes data
to disk when appending data to the commit log for durability and when flushing memtable to SSTable
data files for persistent storage. The commit log has a different access pattern (read/writes ratio) than the
pattern for accessing data from SSTables. This is more important for spinning disks than for SSDs (solid
state drives). See the recommendations below.

SSTables are periodically compacted. Compaction improves performance by merging and rewriting
data and discarding old data. However, depending on the type of compaction strategy and size of
the compactions, during compaction disk utilization and data directory volume temporarily increases.
For large compactions, leave an adequate amount of free disk space available on a node: 50%
(worst case) for SizeTieredCompactionStrategy and DateTieredCompactionStrategy, and 10% for
LeveledCompactionStrategy. For more information about compaction, see:

• Compaction
• The Apache Cassandra storage engine
• Leveled Compaction in Apache Cassandra
• When to Use Leveled Compaction

For information on calculating disk size, see Calculating usable disk capacity.

Recommendations:

/documentation/cql/3.1/cql/cql_reference/tabProp.html
http://2012.nosql-matters.org/cgn/wp-content/uploads/2012/06/Sylvain_Lebresne-Cassandra_Storage_Engine.pdf
http://www.datastax.com/dev/blog/leveled-compaction-in-apache-cassandra
http://www.datastax.com/dev/blog/when-to-use-leveled-compaction

Understanding the architecture

26

Capacity per node

Most workloads work best with a capacity under 500GB to 1TB per node depending on I/O. Maximum
recommended capacity for Cassandra 1.2 and later is 3 to 5TB per node. For Cassandra 1.1, it is 500 to
800GB per node.

Capacity and I/O

When choosing disks, consider both capacity (how much data you plan to store) and I/O (the write/read
throughput rate). Some workloads are best served by using less expensive SATA disks and scaling disk
capacity and I/O by adding more nodes (with more RAM).

Solid-state drives

SSDs are recommended for Cassandra. The NAND Flash chips that power SSDs provide extremely
low-latency response times for random reads while supplying ample sequential write performance for
compaction operations. A large variety of SSDs are available on the market from server vendors and third-
party drive manufacturers. DataStax customers that need help in determining the most cost-effective option
for a given deployment and workload, should contact their Solutions Engineer or Architect. Unlike spinning
disks, it's all right to store both commit logs and SSTables are on the same mount point.

Number of disks - SATA

Ideally Cassandra needs at least two disks, one for the commit log and the other for the data directories.
At a minimum the commit log should be on its own partition.

Commit log disk - SATA

The disk not need to be large, but it should be fast enough to receive all of your writes as appends (sequential
I/O).

Data disks

Use one or more disks and make sure they are large enough for the data volume and fast enough to both
satisfy reads that are not cached in memory and to keep up with compaction.

RAID on data disks

It is generally not necessary to use RAID for the following reasons:

• Data is replicated across the cluster based on the replication factor you've chosen.
• Starting in version 1.2, Cassandra includes a JBOD (Just a bunch of disks) feature to take care of disk

management. Because Cassandra properly reacts to a disk failure either by stopping the affected node
or by blacklisting the failed drive, you can deploy Cassandra nodes with large disk arrays without the
overhead of RAID 10. You can configure Cassandra to stop the affected node or blacklist the drive
according to your availability/consistency requirements.

RAID on the commit log disk

Generally RAID is not needed for the commit log disk. Replication adequately prevents data loss. If you
need the extra redundancy, use RAID 1.

Extended file systems

DataStax recommends deploying Cassandra on either XFS or ext4. On ext2 or ext3, the maximum file size
is 2TB even using a 64-bit kernel. On ext4 it is 16TB.

Because Cassandra can use almost half your disk space for a single file, use XFS when using large disks,
particularly if using a 32-bit kernel. XFS file size limits are 16TB max on a 32-bit kernel, and essentially
unlimited on 64-bit.

Number of nodes

Prior to version 1.2, the recommended size of disk space per node was 300 to 500GB. Improvement to
Cassandra 1.2, such as JBOD support, virtual nodes (vnodes), off-heap Bloom filters, and parallel leveled
compaction (SSD nodes only), allow you to use few machines with multiple terabytes of disk space.

Understanding the architecture

27

Network

Since Cassandra is a distributed data store, it puts load on the network to handle read/write requests and
replication of data across nodes. Be sure that your network can handle traffic between nodes without
bottlenecks. You should bind your interfaces to separate Network Interface Cards (NIC). You can use
public or private depending on your requirements.

• Recommended bandwidth is 1000 Mbit/s (gigabit) or greater.
• Thrift/native protocols use the rpc_address.
• Cassandra's internal storage protocol uses the listen_address.

Cassandra efficiently routes requests to replicas that are geographically closest to the coordinator node
and chooses a replica in the same rack if possible; it always chooses replicas located in the same data
center over replicas in a remote data center.

Firewall

If using a firewall, make sure that nodes within a cluster can reach each other. See Configuring firewall port
access.

Generally, when you have firewalls between machines, it is difficult to run JMX across a network and
maintain security. This is because JMX connects on port 7199, handshakes, and then uses any port within
the 1024+ range. Instead use SSH to execute commands remotely connect to JMX locally or use the
DataStax OpsCenter.

Planning an Amazon EC2 cluster

Before planning an Amazon EC2 cluster, please see the User guide in the Amazon Elastic Compute Cloud
Documentation.

DataStax AMI deployments

The DataStax AMI is intended only for a single region and availability zone. For an EC2 cluster that spans
multiple regions and availability zones, see EC2 clusters spanning multiple regions and availability zones.

Use AMIs from trusted sources

Use only AMIs from a trusted source. Random AMI's pose a security risk and may perform slower than
expected due to the way the EC2 install is configured. The following are examples of trusted AMIs:

• Ubuntu Amazon EC2 AMI Locator
• Debian AmazonEC2Image
• CentOS-6 images on Amazon's EC2 Cloud

EC2 clusters spanning multiple regions and availability zones

When creating an EC2 cluster that spans multiple regions and availability zones, use OpsCenter to set up
your cluster. You can use any of the supported platforms. It is best practice to use the same platform on
all nodes. If your cluster was instantiated using the DataStax AMI, use Ubuntu for the additional nodes.
Configure the cluster as a multiple data center cluster using the EC2MultiRegionSnitch. The following
topics describe OpsCenter provisioning:

• Provisioning a new cluster
• Adding an existing cluster
• Adding nodes to a cluster

Production Cassandra clusters on EC2

For production Cassandra clusters on EC2, use these guidelines for choosing the instance types:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
http://cloud-images.ubuntu.com/locator/ec2/
https://wiki.debian.org/Cloud/AmazonEC2Image
http://wiki.centos.org/Cloud/AWS
http://planetcassandra.org/cassandra/
/documentation/opscenter/5.0/opsc/online_help/opscCreatingCluster_t.html
/documentation/opscenter/5.0/opsc/online_help/opscAddingCluster_t.html
/documentation/opscenter/5.0/opsc/online_help/opscAddingNode_t.html

Understanding the architecture

28

• Development and light production: m3.large
• Moderate production: m3.xlarge
• SSD production with light data: c3.2xlarge
• Largest heavy production: m3.2xlarge (PV) or i2.2xlarge (HVM)

EBS volumes are not recommended

EBS volumes are not recommended for Cassandra data storage volumes for the following reasons:

• EBS volumes contend directly for network throughput with standard packets. This means that EBS
throughput is likely to fail if you saturate a network link.

• EBS volumes have unreliable performance. I/O performance can be exceptionally slow, causing the
system to back load reads and writes until the entire cluster becomes unresponsive.

• Adding capacity by increasing the number of EBS volumes per host does not scale. You can easily
surpass the ability of the system to keep effective buffer caches and concurrently serve requests for all
of the data it is responsible for managing.

For more information and graphs related to ephemeral versus EBS performance, see the blog article
Systematic Look at EC2 I/O.

Disk Performance Optimization

To ensure high disk performance to mounted drives, it is recommended that you pre-warm your drives
by writing once to every drive location before production use. Depending on EC2 conditions, you can get
moderate to enormous increases in throughput. See Optimizing Disk Performance in the Amazon Elastic
Compute Cloud Documentation.

Storage recommendations for Cassandra 1.2 and later

Cassandra 1.2 and later supports JBOD (just a bunch of disks). JBOD excels at tolerating partial failures in
a disk array. Configure using the disk_failure_policy in the cassandra.yaml file. Addition information is
available in the Handling Disk Failures In Cassandra 1.2 blog.

Note: Cassandra JBOD support allows you to use standard disks. However, RAID0 may provide
better throughput because it splits every block to be on another device. This means that writes are
written in parallel fashion instead of written serially on disk.

Storage recommendations for Cassandra 1.1 and earlier

RAID 0 the ephemeral disks. Then put both the data directory and the commit log on that volume.
This has proved to be better in practice than putting the commit log on the root volume, which is also a
shared resource. For more data redundancy, consider deploying your Cassandra cluster across multiple
availability zones or using EBS volumes to store your Cassandra backup files.

Calculating usable disk capacity
Determining how much data your Cassandra nodes can hold.

About this task

To calculate how much data your Cassandra nodes can hold, calculate the usable disk capacity per node
and then multiply that by the number of nodes in your cluster. Remember that in a production cluster, you
will typically have your commit log and data directories on different disks.

Procedure

1. Start with the raw capacity of the physical disks:

raw_capacity = disk_size * number_of_data_disks

http://blog.scalyr.com/2012/10/16/a-systematic-look-at-ec2-io/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#disk-performance
http://www.datastax.com/dev/blog/handling-disk-failures-in-cassandra-1-2

Understanding the architecture

29

2. Calculate the formatted disk space as follows:

formatted_disk_space = (raw_capacity * 0.9)

During normal operations, Cassandra routinely requires disk capacity for compaction and repair
operations. For optimal performance and cluster health, DataStax recommends not filling your disks
to capacity, but running at 50% to 80% capacity depending on the compaction strategy and size of the
compactions.

3. Calculate the usable disk space accounting for file system formatting overhead (roughly 10 percent):

usable_disk_space = formatted_disk_space * (0.5 to 0.8)

Calculating user data size
Accounting for storage overhead in determining user data size.

About this task

As with all data storage systems, the size of your raw data will be larger once it is loaded into Cassandra
due to storage overhead. On average, raw data is about two times larger on disk after it is loaded into the
database, but could be much smaller or larger depending on the characteristics of your data and tables.
The following calculations account for data persisted to disk, not for data stored in memory.

Procedure

• Determine column overhead:

regular_total_column_size = column_name_size + column_value_size + 15

counter - expiring_total_column_size = column_name_size + column_value_size
 + 23

Every column in Cassandra incurs 15 bytes of overhead. Since each row in a table can have different
column names as well as differing numbers of columns, metadata is stored for each column. For
counter columns and expiring columns, you should add an additional 8 bytes (23 bytes total).

• Account for row overhead.

Every row in Cassandra incurs 23 bytes of overhead.
• Estimate primary key index size:

primary_key_index = number_of_rows * (32 + average_key_size)

Every table also maintains a partition index. This estimation is in bytes.
• Determine replication overhead:

replication_overhead = total_data_size * (replication_factor - 1)

The replication factor plays a role in how much disk capacity is used. For a replication factor of 1, there
is no overhead for replicas (as only one copy of data is stored in the cluster). If replication factor is
greater than 1, then your total data storage requirement will include replication overhead.

Anti-patterns in Cassandra
Implementation or design patterns that are ineffective and/or counterproductive in Cassandra production
installations. Correct patterns are suggested in most cases.

Network attached storage

Storing SSTables on a network attached storage (NAS) device is not recommended. Using a NAS device
often results in network related bottlenecks resulting from high levels of I/O wait time on both reads and
writes. The causes of these bottlenecks include:

• Router latency.
• The Network Interface Card (NIC) in the node.

/documentation/cql/3.1/cql/cql_reference/tabProp.html

Understanding the architecture

30

• The NIC in the NAS device.

If you are required to use NAS for your environment, please contact a technical resource from DataStax for
assistance.

Shared network file systems

Shared network file systems (NFS) have the same limitations as NAS. The temptation with NFS
implementations is to place all SSTables in a node into one NFS. Doing this deprecates one of
Cassandra's strongest features: No Single Point of Failure (SPOF). When all SSTables from all nodes are
stored onto a single NFS, the NFS becomes a SPOF. To best use Cassandra, avoid using NFS.

Excessive heap space size

DataStax recommends using the default heap space size for most use cases. Exceeding this size can
impair the Java virtual machine's (JVM) ability to perform fluid garbage collections (GC). The following
table shows a comparison of heap space performances reported by a Cassandra user:

Heap CPU utilization Queries per second Latency

40 GB 50% 750 1 second

8 GB 5% 8500 (not maxed out) 10 ms

For information on heap sizing, see Tuning Java resources.

Cassandra's rack feature

Defining one rack for the entire cluster is the simplest and most common implementation. Multiple racks
should be avoided for the following reasons:

• Most users tend to ignore or forget rack requirements that racks should be organized in an alternating
order. This order allows the data to get distributed safely and appropriately.

• Many users are not using the rack information effectively. For example, setting up with as many racks
as nodes (or similar non-beneficial scenarios).

• Expanding a cluster when using racks can be tedious. The procedure typically involves several node
moves and must ensure that racks are distributing data correctly and evenly. When clusters need
immediate expansion, racks should be the last concern.

To use racks correctly:

• Use the same number of nodes in each rack.
• Use one rack and place the nodes in different racks in an alternating pattern. This allows you to still get

the benefits of Cassandra's rack feature, and allows for quick and fully functional expansions. Once the
cluster is stable, you can swap nodes and make the appropriate moves to ensure that nodes are placed
in the ring in an alternating fashion with respect to the racks.

SELECT ... IN or index lookups

SELECT ... IN and index lookups (formerly secondary indexes) should be avoided except for specific
scenarios. See When not to use IN in SELECT and When not to use an index in Indexing in CQL for
Cassandra 2.0.

Using the Byte Ordered Partitioner

The Byte Ordered Partitioner (BOP) is not recommended.

Use virtual nodes (vnodes) and use either the Murmur3Partitioner (default) or the RandomPartitioner.
Vnodes allow each node to own a large number of small ranges distributed throughout the cluster. Using
vnodes saves you the effort of generating tokens and assigning tokens to your nodes. If not using vnodes,

/documentation/cql/3.1/cql/cql_reference/select_r.html
/documentation/cql/3.1/cql/ddl/ddl_primary_index_c.html

Understanding the architecture

31

these partitioners are recommended because all writes occur on the hash of the key and are therefore
spread out throughout the ring amongst tokens range. These partitioners ensure that your cluster evenly
distributes data by placing the key at the correct token using the key's hash value. Even if data becomes
stale and needs to be deleted, this ensures that data removal also takes place while evenly distributing
data around the cluster.

Reading before writing
Reads take time for every request, as they typically have multiple disk hits for uncached reads. In work
flows requiring reads before writes, this small amount of latency can affect overall throughput. All write I/
O in Cassandra is sequential so there is very little performance difference regardless of data size or key
distribution.

Load balancers

Cassandra was designed to avoid the need for load balancers. Putting load balancers between Cassandra
and Cassandra clients is harmful to performance, cost, availability, debugging, testing, and scaling. All
high-level clients, such as Astyanax and pycassa, implement load balancing directly.

Insufficient testing

Be sure to test at scale and production loads. This the best way to ensure your system will function
properly when your application goes live. The information you gather from testing is the best indicator of
what throughput per node is needed for future expansion calculations.

To properly test, set up a small cluster with production loads. There will be a maximum throughput
associated with each node count before the cluster can no longer increase performance. Take the
maximum throughput at this cluster size and apply it linearly to a cluster size of a different size. Next
extrapolate (graph) your results to predict the correct cluster sizes for required throughputs for your
production cluster. This allows you to predict the correct cluster sizes for required throughputs in the future.
The Netflix case study shows an excellent example for testing.

Lack of familiarity with Linux

Linux has a great collection of tools. Become familiar with the Linux built-in tools. It will help you greatly
and ease operation and management costs in normal, routine functions. The essential list of tools and
techniques to learn are:

• Parallel SSH and Cluster SSH: The pssh and cssh tools allow SSH access to multiple nodes. This is
useful for inspections and cluster wide changes.

• Passwordless SSH: SSH authentication is carried out by using public and private keys. This allows SSH
connections to easily hop from node to node without password access. In cases where more security is
required, you can implement a password Jump Box and/or VPN.

• Useful common command-line tools include:

• top: Provides an ongoing look at CPU processor activity in real time.
• System performance tools: Tools such as iostat, mpstat, iftop, sar, lsof, netstat, htop, vmstat, and

similar can collect and report a variety of metrics about the operation of the system.
• vmstat: Reports information about processes, memory, paging, block I/O, traps, and CPU activity.
• iftop: Shows a list of network connections. Connections are ordered by bandwidth usage, with the

pair of hosts responsible for the most traffic at the top of list. This tool makes it easier to identify the
hosts causing network congestion.

Running without the recommended settings

Be sure to use the recommended settings in the Cassandra documentation.

Also be sure to consult the Planning a Cassandra cluster deployment documentation, which discusses
hardware and other recommendations before making your final hardware purchases.

http://www.datastax.com/1-million-writes

Understanding the architecture

32

More anti-patterns
For more about anti-patterns, visit Matt Dennis` slideshare.

http://www.slideshare.net/mattdennis

Installing DataStax Community

33

Installing DataStax Community

Installing DataStax Community on RHEL-based systems
Install using Yum repositories on RHEL, CentOS, and Oracle Linux.

Note: To install on SUSE, use the Cassandra binary tarball distribution.

For a complete list of supported platforms, see DataStax Community – Supported Platforms.

Before you begin

• Yum Package Management application installed.
• Root or sudo access to the install machine.
• Latest version of Oracle Java SE Runtime Environment (JRE) 7. See Installing the JRE on RHEL-based

systems.
• Python 2.6+ (needed if installing OpsCenter).
• Java Native Access (JNA) is required for production installations (latest version recommended). See

Installing the JNA on RHEL-based systems.

About this task

The packaged releases create a cassandra user. When starting Cassandra as a service, the service runs
as this user.

Procedure

In a terminal window:

1. Check which version of Java is installed by running the following command:

$ java -version

Use the latest version of Oracle Java 7 on all nodes.

2. Add the DataStax Community repository to the /etc/yum.repos.d/datastax.repo:

[datastax]
name = DataStax Repo for Apache Cassandra
baseurl = http://rpm.datastax.com/community
enabled = 1
gpgcheck = 0

3. Install the packages:

$ sudo yum install dsc20-2.0.x-1 cassandra2.0.x-1

For example, to install DataStax Community 2.0.11:

$ sudo yum install dsc20-2.0.11-1 cassandra20-2.0.11-1

Check Download DataStax Community Edition on Planet Cassandra for the latest version.

The DataStax Community distribution of Cassandra is ready for configuration.

What to do next

• Initializing a multiple node cluster (single data center)

http://planetcassandra.org/Download/DataStaxCommunityEdition
http://planetcassandra.org/cassandra/

Installing DataStax Community

34

• Initializing a multiple node cluster (multiple data centers)
• Recommended production settings
• Installing OpsCenter
• Key components for configuring Cassandra
• Starting Cassandra as a service
• Package installation directories

Installing DataStax Community on Debian-based systems
Install using APT repositories on Debian and Ubuntu.

For a complete list of supported platforms, see DataStax Community – Supported Platforms.

Before you begin

• Advanced Package Tool is installed.
• Root or sudo access to the install machine.
• Python 2.6+ (needed if installing OpsCenter).
• Latest version of Oracle Java SE Runtime Environment (JRE) 7. See Installing the JRE on Debian-

based systems.
• Java Native Access (JNA) is required for production installations (latest version recommended).

Installing the JNA on Debian-based systems.

Note: If you are using Ubuntu 10.04 LTS, you must update to JNA 3.4, as described in Installing
the JNA from the JAR file.

About this task

The packaged releases create a cassandra user. When starting Cassandra as a service, the service runs
as this user.

Procedure

In a terminal window:

1. Check which version of Java is installed by running the following command:

$ java -version

Use the latest version of Oracle Java 7 on all nodes.

2. Add the DataStax Community repository to the /etc/apt/sources.list.d/
cassandra.sources.list

$ echo "deb http://debian.datastax.com/community stable main" | sudo tee -
a /etc/apt/sources.list.d/cassandra.sources.list

3. Debian systems only:

a) In /etc/apt/sources.list, find the line that describes your source repository for Debian and
add contrib non-free to the end of the line. For example:

deb http://some.debian.mirror/debian/ $distro main contrib non-free

This allows installation of the Oracle JVM instead of the OpenJDK JVM.
b) Save and close the file when you are done adding/editing your sources.

4. Add the DataStax repository key to your aptitude trusted keys.

$ curl -L http://debian.datastax.com/debian/repo_key | sudo apt-key add -

5. Install the package. For example:

/documentation/opscenter/4.0/opsc/install/opscInstallOpsc_g.html
http://planetcassandra.org/Download/DataStaxCommunityEdition

Installing DataStax Community

35

$ sudo apt-get update
$ sudo apt-get install dsc20=2.0.11-1 cassandra=2.0.11

Check Download DataStax Community Edition on Planet Cassandra for the latest version.

This installs the DataStax Community distribution of Cassandra. .

6. Because the Debian packages start the Cassandra service automatically, you must stop the server and
clear the data:

Doing this removes the default cluster_name (Test Cluster) from the system table. All nodes must use
the same cluster name.

$ sudo service cassandra stop
$ sudo rm -rf /var/lib/cassandra/data/system/*

The DataStax Community distribution of Cassandra is ready for configuration.

What to do next

• Initializing a multiple node cluster (single data center)
• Initializing a multiple node cluster (multiple data centers)
• Recommended production settings
• Installing OpsCenter
• Key components for configuring Cassandra
• Starting Cassandra as a service
• Package installation directories

Installing DataStax Community on any Linux-based platform
Install on all Linux-based platforms using a binary tarball.

About this task
Use this install for Mac OS X and platforms without package support, or if you do not have or want a root
installation.

For a complete list of supported platforms, see DataStax Community – Supported Platforms.

Before you begin

• Latest version of Oracle Java SE Runtime Environment (JRE) 7. See Installing the JRE.
• Java Native Access (JNA) is required for production installations (latest version recommended). See

Installing the JNA.
• Python 2.6+ (needed if installing OpsCenter).
• If you are using Ubuntu 10.04 LTS, you must update to JNA 3.4, as described in Installing the JNA from

the JAR file.
• If you are using an older RHEL-based Linux distribution, such as CentOS-5, you may see the following

error: GLIBCXX_3.4.9 not found. You must replace the Snappy compression/decompression
library (snappy-java-1.0.5.jar) with the snappy-java-1.0.4.1.jar.

About this task

The binary tarball runs as a stand-alone process.

Procedure

In a terminal window:

http://planetcassandra.org/cassandra/
/documentation/opscenter/4.0/opsc/install/opscInstallOpsc_g.html
http://planetcassandra.org/Download/DataStaxCommunityEdition
https://snappy-java.googlecode.com/files/snappy-java-1.0.4.1.jar

Installing DataStax Community

36

1. Check which version of Java is installed by running the following command:

$ java -version

Use the latest version of Oracle Java 7 on all nodes.

2. Download the DataStax Community:

$ curl -L http://downloads.datastax.com/community/dsc-2.0.tar.gz | tar xz

Check Download DataStax Community Edition on Planet Cassandra for the latest version.

You can also download from Planet Cassandra.

3. Go to the install directory:

$ cd dsc-cassandra-2.0.x

The DataStax Community distribution of Cassandra is ready for configuration.

What to do next

• Initializing a multiple node cluster (single data center)
• Initializing a multiple node cluster (multiple data centers)
• Recommended production settings
• Installing OpsCenter
• Key components for configuring Cassandra
• Tarball installation directories
• Starting Cassandra as a stand-alone process

Installing DataStax Community on Windows systems

About this task

To install on Windows systems, see the Getting started guide.

Installing on cloud providers

Installing a Cassandra cluster on Amazon EC2
A step-by-step guide for installing the DataStax Community AMI (Amazon Machine Image).

About this task

The DataStax AMI allows you to set up a simple DataStax Community cluster using the Amazon Web
Services EC2 Management Console. Installing via the AMI allows you to quickly deploy a Cassandra
cluster within a single availability zone.

The AMI does the following:

• Installs the latest version of Cassandra with an Ubuntu 12.04 LTS (Precise Pangolin), image (Ubuntu
Cloud 20140227 release), Kernel 3.8+.

• Installs Oracle Java 7.
• Install metrics tools such as dstat, ethtool, make, gcc, and s3cmd.
• Uses RAID0 ephemeral disks for data storage and commit logs.
• Choice of PV (Para-virtualization) or HVM (Hardware-assisted Virtual Machine) instance types. See

Amazon documentation.

http://planetcassandra.org/cassandra/
http://planetcassandra.org/
/documentation/opscenter/4.0/opsc/install/opscInstallOpsc_g.html
/documentation/getting_started/doc/getting_started/gettingStartedWindows_t.html
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/virtualization_types.html

Installing DataStax Community

37

• Launches EBS-backed instances for faster start-up, not database storage.
• Uses the private interface for intra-cluster communication.
• Sets the seed nodes cluster-wide.
• Installs OpsCenter (by default).

Note: When creating an EC2 cluster that spans multiple regions and availability zones, use
OpsCenter to set up your cluster. See EC2 clusters spanning multiple regions and availability
zones.

Because Amazon changes the EC2 console intermittently, these instructions have been generalized. For
details on each step, see the User guide in the Amazon Elastic Compute Cloud Documentation.

To install a Cassandra cluster from the DataStax AMI, complete the following tasks:

Creating an EC2 security group

About this task

An EC2 Security Group acts as a firewall that allows you to choose which protocols and ports are open in
your cluster. You must specify a security group in the same region as your instances.

You can specify the protocols and ports either by a range of IP addresses or by security group. To protect
your cluster, you should define a security group. Be aware that specifying a Source IP of 0.0.0.0/0 allows
every IP address access by the specified protocol and port range.

Procedure

If you need more help, click an informational icon or a link to the Amazon EC2 User Guide.

1. Sign in to the AWS console.

2. From the Amazon EC2 console navigation bar, select the same region as where you will launch the
DataStax Community AMI.

Step 1 in Launch instances provides a list of the available regions.

3. Open the Security Groups page.

4. Create a security group with a name and description of your choice, then save it. It is recommended
that you include the region name in the description.

Note: Creating and saving the securing group allows you to create rules based on the group.
After the security group is saved it is available in the Source field drop-list.

5. Create rules for the security group using the following table:

Table 1: Ports

Port
number

Type ProtocolSource Description

Public ports

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_Network_and_Security.html
http://aws.amazon.com/console/

Installing DataStax Community

38

Port
number

Type ProtocolSource Description

22 SSH TCP 0.0.0.0/0 SSH port

8888 Custom
TCP
Rule

TCP 0.0.0.0/0 OpsCenter website. The opscenterd daemon listens on this
port for HTTP requests coming directly from the browser.

Cassandra inter-node ports

1024 -
65355

Custom
TCP
Rule

TCP Your security
group

Cassandra 1.2 or earlier only. Because JMX connects on
port 7199, handshakes, and then uses any port within the
1024+ range, use SSH to execute commands remotely to
connect to JMX locally or use the DataStax OpsCenter.

7000 Custom
TCP
Rule

TCP Your security
group

Cassandra inter-node cluster communication.

7001 Custom
TCP
Rule

TCP Your security
group

Cassandra SSL inter-node cluster communication.

7199 Custom
TCP
Rule

TCP Your security
group

Cassandra JMX monitoring port.

Note: Starting with Java 7u4, you can specify
the port used by JMX rather than a randomly
assigned port. The standard RMI (Remote Method
Invocation) registry port for JMX is set by the
com.sun.management.jmxremote.port
property. Use the
com.sun.management.jmxremote.rmi.port
property to specify the port used by JMX.

Cassandra client ports

9042 Custom
TCP
Rule

TCP 0.0.0.0/0 Cassandra client port.

9160 Custom
TCP
Rule

TCP 0.0.0.0/0 Cassandra client port (Thrift).

OpsCenter inter-node ports

61620 Custom
TCP
Rule

TCP Your security
group

OpsCenter monitoring port. The opscenterd daemon listens
on this port for TCP traffic coming from the agent.

61621 Custom
TCP
Rule

TCP Your security
group

OpsCenter agent port. The agents listen on this port for SSL
traffic initiated by OpsCenter.

The completed port rules should look similar to this:

Installing DataStax Community

39

Warning: The security configuration shown in this example opens up all externally accessible
ports to incoming traffic from any IP address (0.0.0.0/0). The risk of data loss is high. If you
desire a more secure configuration, see the Amazon EC2 help on security groups.

Creating a key pair

About this task

Amazon EC2 uses public–key cryptography to encrypt and decrypt login information. Public–key
cryptography uses a public key to encrypt data and the recipient uses the private key to decrypt the data.
The public and private keys are known as a key pair.

Procedure

You must create a key pair for each region you use.

1. From the Amazon EC2 console navigation bar, select the same region as where you will launch the
DataStax Community AMI.

Step 1 in Launch instances provides a list of the available regions.

2. Create the key pair and save it to your home directory.

3. Set the permissions of your private key file so that only you can read it.

$ chmod 400 my-key-pair.pem

Launching the DataStax Community AMI

About this task

After creating the security group, you can launch your AMI instances.

Installing DataStax Community

40

Procedure

If you need more help, click an informational icon or a link to the Amazon EC2 User Guide.

1. Launch the AMI using the links in the following table:

Amazon EC2 offers a number of geographic regions for launching the AMI. Factors for choosing a
region include: reduce latency, cost, or regulatory requirements.

Region AMI

HVM instances (Hardware-assisted Virtual Machine - see Amazon documentation.)

us-east-1 ami-ada2b6c4

us-west-1 ami-3cf7c979

us-west-2 ami-1cff962c

eu-west-1 ami-7f33cd08

ap-southeast-1 ami-b47828e6

ap-southeast-2 ami-55d54d6f

ap-northeast-1 ami-714a3770

sa-east-1 ami-1dda7800

PV instances (Para-virtualization)

us-east-1 ami-f9a2b690

us-west-1 ami-32f7c977

us-west-2 ami-16ff9626

eu-west-1 ami-8932ccfe

ap-southeast-1 ami-8c7828de

ap-southeast-2 ami-57d54d6d

ap-northeast-1 ami-6b4a376a

sa-east-1 ami-15da7808

2. In Step 2: Choose an Instance Type, choose the appropriate type.

The recommended instances are:

• Development and light production: m3.large
• Moderate production: m3.xlarge
• SSD production with light data: c3.2xlarge
• Largest heavy production: m3.2xlarge (PV) or i2.2xlarge (HVM)
• Micro, small, and medium types are not supported.

When the instance is selected, its specifications are displayed:

Because Amazon updates instance types periodically, see the following docs to help you determine
your hardware and storage requirements:

• Planning a cluster deployment

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/virtualization_types.html
https://console.aws.amazon.com/ec2/home?region=us-east-1#launchAmi=ami-ada2b6c4
https://console.aws.amazon.com/ec2/home?region=us-west-1#launchAmi=ami-3cf7c979
https://console.aws.amazon.com/ec2/home?region=us-west-2#launchAmi=ami-1cff962c
https://console.aws.amazon.com/ec2/home?region=eu-west-1#launchAmi=ami-7f33cd08
https://console.aws.amazon.com/ec2/home?region=ap-southeast-1#launchAmi=ami-b47828e6
https://console.aws.amazon.com/ec2/home?region=ap-southeast-2#launchAmi=ami-55d54d6f
https://console.aws.amazon.com/ec2/home?region=ap-northeast-1#launchAmi=ami-714a3770
https://console.aws.amazon.com/ec2/home?region=sa-east-1#launchAmi=ami-1dda7800
https://console.aws.amazon.com/ec2/home?region=us-east-1#launchAmi=ami-f9a2b690
https://console.aws.amazon.com/ec2/home?region=us-west-1#launchAmi=ami-32f7c977
https://console.aws.amazon.com/ec2/home?region=us-west-2#launchAmi=ami-16ff9626
https://console.aws.amazon.com/ec2/home?region=eu-west-1#launchAmi=ami-8932ccfe
https://console.aws.amazon.com/ec2/home?region=ap-southeast-1#launchAmi=ami-8c7828de
https://console.aws.amazon.com/ec2/home?region=ap-southeast-2#launchAmi=ami-57d54d6d
https://console.aws.amazon.com/ec2/home?region=ap-northeast-1#launchAmi=ami-6b4a376a
https://console.aws.amazon.com/ec2/home?region=sa-east-1#launchAmi=ami-15da7808

Installing DataStax Community

41

• User guide in the Amazon Elastic Compute Cloud Documentation
• What is the story with AWS storage
• Get in the Ring with Cassandra and EC2

3. Click Next: Configure Instance Details and configure the instances to suit your requirements:

• Number of instances
• Network - Select Launch into EC2-Classic.
• Advanced Details - Open and add the following options (as text) to the User Data section.

Option Description

--clustername
name

Required. The name of the cluster.

--totalnodes
#_nodes

Required. The total number of nodes in the cluster.

--version
community

Required. The version of the cluster. Use community to install the latest
version of DataStax Community.

--opscenter [no] Optional. By default, DataStax OpsCenter is installed on the first instance.
Specify no to disable.

--reflector url Optional. Allows you to use your own reflector. Default: http://
reflector2.datastax.com/reflector2.php

For example: --clustername myDSCcluster --totalnodes 6 --version community

4. Click Next: Add Storage, and add volumes as needed.

The number of instance store devices available to the machine depends on the instance type. EBS
volumes are not recommended for database storage.

5. Click Next: Tag Instance and give a name to your DSE instance, such as workload-dsc.

Tags enable you to categorize your AWS resources in different ways, such as purpose, owner, or
environment.

6. Click Next: Configure Security Group and configure as follows:

a) Choose Select an existing security group.
b) Select the Security Group you created earlier.
c) Click Review and Launch.

7. On the Step 7: Review Instance Launch page, make any needed changes.

8. Click Launch and then in the Select an existing key pair or create a new key pair dialog, do one of
the following:

• Select an existing key pair from the Select a key pair drop list.
• If you need to create a new key pair, click Choose an existing key pair drop list and select Create

a new key pair. Then create the new key pair as described in Create key pair.

9. Click Launch Instances.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
http://www.datastax.com/dev/blog/what-is-the-story-with-aws-storage
http://www.datastax.com/dev/blog/ec2-series-doc

Installing DataStax Community

42

The AMI image configures your cluster and starts Cassandra services. The Launch Status page is
displayed.

10.Click View Instances.

Connecting to your DataStax Community EC2 instance

About this task
Once the cluster is launched, you can connect to it from a terminal or SSH client, such as PuTTY. Connect
as user ubuntu rather than as root.

Procedure

1. If necessary, from the EC2 Dashboard, click Running Instances.

You can connect to any node in the cluster. However, one node (Node0) runs OpsCenter and is the
Cassandra seed node.

2. To find which instance is Node0:

a) Select an instance.
b) Select the Description tab.
c) Scroll down the description information until you see AMI launch index.

d) Repeat until you find Node0.

3. To get the public DNS name of a node, select the node you want to connect to, and then click Connect.

4. In Connect To Your Instance, select A standalone SSH client.

5. Copy the Example command line and change the user from root to ubuntu, then paste it into your
SSH client.

The AMI image configures your cluster and starts the Cassandra services.

Installing DataStax Community

43

6. After you have logged into a node and the AMI has completed installing and setting up the nodes, the
status is displayed:

The URL for the OpsCenter is displayed when you connect to the node containing it; otherwise it is not
displayed.

7. If you installed OpsCenter, allow 60 to 90 seconds after the cluster has finished
initializing for OpsCenter to start. You can launch OpsCenter using the URL:
http://public_dns_of_first_instance:8888/

The Dashboard should show that the agents are connected.

8. If the agents have not automatically connected:

a) Click the Fix link located near the top left of the Dashboard.

b) When prompted for credentials for the agent nodes, use the username ubuntu and copy and paste

the entire contents from your private key (.pem).

The Dashboard shows the agents are connected.

Expanding a Cassandra AMI cluster

About this task

The best way to expand your EC2 implementations is to use OpsCenter:

• Provisioning a new cluster
• Adding an existing cluster
• Adding nodes to a cluster

/documentation/opscenter/5.0/opsc/online_help/opscCreatingCluster_t.html
/documentation/opscenter/5.0/opsc/online_help/opscAddingCluster_t.html
/documentation/opscenter/5.0/opsc/online_help/opscAddingNode_t.html

Installing DataStax Community

44

Installing and deploying a Cassandra cluster using GoGrid
Installing and deploying a developer (3-node) or production (5-node) Cassandra cluster using GoGrid’s 1-
Button Deploy.

About this task

Additional introductory documentation is available from GoGrid at:

• GoGrid Cassandra Wiki
• Getting Started

The 1-Button Deploy of Cassandra does the following:

• Installs the latest version of Cassandra on X-Large SSD Cloud Servers running Debian 7.2.
• Installs OpsCenter.
• Installs Oracle JDK 7.
• Installs Python Driver.
• Enables the Firewall Service - All services are blocked except SSH (22) and ping for public traffic.
• Deploys Cassandra using virtual nodes (vnodes).

Procedure

1. Register with GoGrid.

2. Fill out the registration form and complete the account verification.

3. Access the management console with the login credentials you received in your email.

Your cluster automatically starts deploying. A green status indicator shows that a server is up and
running.

Hover over any item to view its details or right-click to display a context menu.

4. Login to one of the servers and validate that the servers are configured and communicating:

Note: You can login to any member of the cluster either with SSH, a third-party client (like
PuTTY), or through the GoGrid Console service.

a) To find your server credentials, right-click the server and select Passwords.

https://wiki.gogrid.com/index.php/Big_Data:Cassandra
https://wiki.gogrid.com/index.php/Getting_Started_Guide
http://go.gogrid.com/cassandratrial
https://my.gogrid.com/

Installing DataStax Community

45

b) From your secure connection client, login to the server with the proper credentials. For example from
SSH:

$ ssh root@ip_address
c) Validate that the cluster is running:

$ nodestool status

Each node should be listed and it's status and state should be UN (Up Normal):

Datacenter: datacenter1
=======================
Status=Up/Down |/ State=Normal/Leaving/Joining/Moving
-- Address Load Tokens Owns (effective) Host ID
 Rack
UN 10.110.94.2 71.46 KB 256 65.9% 3ed072d6-49cb-4713-
bd55-ea4de25576a9 rack1
UN 10.110.94.5 40.91 KB 256 66.7%
 d5d982bc-6e30-40a0-8fe7-e46d6622c1d5 rack1
UN 10.110.94.4 73.33 KB 256 67.4% f6c3bf08-
d9e5-43c8-85fa-5420db785052 rack1

What to do next

The following provides information about using and configuring Cassandra, OpsCenter, GoGrid, and the
Cassandra Query Language (CQL):

• About Apache Cassandra
• OpsCenter documentation
• GoGrid Documentation
• CQL for Cassandra 2.0

Installing the Oracle JRE and the JNA
Instructions for various platforms.

Installing Oracle JRE on RHEL-based Systems

About this task

You must configure your operating system to use the Oracle JRE, not the OpenJDK. The latest 64-bit
version of Java 7 is recommended. The minimum supported version is 1.7.0_25.

Note: After installing the JRE, you may need to set JAVA_HOME to your profile:

For shell or bash: export JAVA_HOME=path_to_java_home

For csh (C shell): setenv JAVA_HOME=path_to_java_home

Procedure

1. Check which version of the JRE your system is using:

$ java -version

If Oracle Java is used, the results should look like:

java version "1.7.0_25"
Java(TM) SE Runtime Environment (build 1.7.0_25-b15)
Java HotSpot(TM) 64-Bit Server VM (build 23.25-b01, mixed mode)

/documentation/latest-opsc/
https://wiki.gogrid.com/index.php/Main_Page
/documentation/cql/3.1/cql/cql_intro_c.html

Installing DataStax Community

46

2. If necessary, go to Oracle Java SE Downloads, accept the license agreement, and download the
installer for your distribution.

Note: If installing the Oracle JRE in a cloud environment, accept the license agreement,
download the installer to your local client, and then use scp (secure copy) to transfer the file to
your cloud machines.

3. From the directory where you downloaded the package, run the install:

$ sudo rpm -ivh jre-7uversion-linux-x64.rpm

The RPM installs the JRE into the /usr/java/ directory.

4. Use the alternatives command to add a symbolic link to the Oracle JRE installation so that your
system uses the Oracle JRE instead of the OpenJDK JRE:

$ sudo alternatives --install /usr/bin/java java /usr/java/jre1.7.0_version/
bin/java 200000

If you have any problems, set the PATH and JAVA_HOME variables:

export PATH="$PATH:/usr/java/latest/bin"
set JAVA_HOME=/usr/java/latest

5. Make sure your system is now using the correct JRE. For example:

$ java -version

java version "1.7.0_25"
Java(TM) SE Runtime Environment (build 1.7.0_25-b15)
Java HotSpot(TM) 64-Bit Server VM (build 23.25-b01, mixed mode)

6. If the OpenJDK JRE is still being used, use the alternatives command to switch it. For example:

$ sudo alternatives --config java

There are 2 programs which provide java.

 Selection Command
--
 1 /usr/lib/jvm/jre-1.7.0-openjdk.x86_64/bin/java
*+ 2 /usr/java/jre1.7.0_25/bin/java

Enter to keep the current selection [+], or type selection number:

Installing Oracle JRE on Debian or Ubuntu Systems

About this task

You must configure your operating system to use the Oracle JRE, not the OpenJDK. The latest 64-bit
version of Java 7 is recommended. The minimum supported version is 1.7.0_25.

Note: After installing the JRE, you may need to set JAVA_HOME to your profile:

For shell or bash: export JAVA_HOME=path_to_java_home

For csh (C shell): setenv JAVA_HOME=path_to_java_home

About this task
The Oracle Java Runtime Environment (JRE) has been removed from the official software repositories of
Ubuntu and only provides a binary (.bin) version. You can get the JRE from the Java SE Downloads.

Procedure

1. Check which version of the JRE your system is using:

$ java -version

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Installing DataStax Community

47

If Oracle Java is used, the results should look like:

java version "1.7.0_25"
Java(TM) SE Runtime Environment (build 1.7.0_25-b15)
Java HotSpot(TM) 64-Bit Server VM (build 23.25-b01, mixed mode)

2. If necessary, go to Oracle Java SE Downloads, accept the license agreement, and download the
installer for your distribution.

Note: If installing the Oracle JRE in a cloud environment, accept the license agreement,
download the installer to your local client, and then use scp (secure copy) to transfer the file to
your cloud machines.

3. Make a directory for the JRE:

$ sudo mkdir -p /usr/lib/jvm

4. Unpack the tarball and install the JRE:

$ sudo tar zxvf jre-7u25-linux-x64.tar.gz -C /usr/lib/jvm

The JRE files are installed into a directory called /usr/lib/jvm/jre-7u_version.

5. Tell the system that there's a new Java version available:

$ sudo update-alternatives --install "/usr/bin/java" "java" "/usr/lib/jvm/
jre1.7.0_version/bin/java" 1

If updating from a previous version that was removed manually, execute the above command twice,
because you'll get an error message the first time.

6. Set the new JRE as the default:

$ sudo update-alternatives --set java /usr/lib/jvm/jre1.7.0_version/bin/java

7. Make sure your system is now using the correct JRE. For example:

$ java -version

java version "1.7.0_25"
Java(TM) SE Runtime Environment (build 1.7.0_25-b15)
Java HotSpot(TM) 64-Bit Server VM (build 23.25-b01, mixed mode)

Installing the JNA on RHEL or CentOS Systems

About this task
Installing JNA can improve Cassandra memory usage. When installed and configured, Linux does not
swap out the JVM, and thus avoids related performance issues. The latest version is recommended.

Before you begin

• Cassandra requires JNA 3.2.7 or later. Some Yum repositories may provide earlier versions.
• EPEL (Extra Packages for Enterprise Linux). See Installing EPEL.

Procedure

1. Install with the following command:

$ sudo yum install jna

2. If you can't install using Yum or it provides a version of the JNA earlier than 3.2.7, install as described in
Installing the JNA from the JAR file.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://datastax.com/documentation/datastax_enterprise/4.5/datastax_enterprise/install/installEPEL.html

Installing DataStax Community

48

Installing the JNA on Debian or Ubuntu Systems

About this task
Installing JNA can improve Cassandra memory usage. When installed and configured, Linux does not
swap out the JVM, and thus avoids related performance issues. The latest version is recommended.

Procedure

Install the JNA with the following command:

$ sudo apt-get install libjna-java

For Ubuntu 10.04 LTS, update to JNA 3.4 as follows:

1. Download the jna.jar from https://github.com/twall/jna.
2. Remove older versions of the JNA from the /usr/share/java/ directory.
3. Place the new jna.jar file in /usr/share/java/ directory.
4. Create a symbolic link to the file:

ln -s /usr/share/java/jna.jar install_location/lib

Installing the JNA from the JAR file

About this task
Installing JNA can improve Cassandra memory usage. When installed and configured, Linux does not
swap out the JVM, and thus avoids related performance issues. The latest version is recommended.

Procedure

1. Download the jna.jar or jna-platform.jar from https://github.com/twall/jna.

2. Add the JAR file to install_location/lib (or place it in the CLASSPATH).

3. Add the following lines in the /etc/security/limits.conf file for the user/group that runs
Cassandra:

$USER soft memlock unlimited
$USER hard memlock unlimited

Recommended production settings
Recommendations for production environments; adjust them accordingly for your implementation.

Disable zone_reclaim_mode on NUMA systems
The Linux kernel can be inconsistent in enabling/disabling zone_reclaim_mode. This can result in odd
performance problems.

To ensure that zone_reclaim_mode is disabled:

echo 0 > /proc/sys/vm/zone_reclaim_mode

For more information, see Peculiar Linux kernel performance problem on NUMA systems.

User resource limits

You can view the current limits using the ulimit -a command. Although limits can also be temporarily
set using this command, DataStax recommends making the changes permanent:

Packaged installs: Ensure that the following settings are included in the /etc/security/limits.d/
cassandra.conf file:

https://github.com/twall/jna
https://github.com/twall/jna

Installing DataStax Community

49

cassandra - memlock unlimited
cassandra - nofile 100000
cassandra - nproc 32768
cassandra - as unlimited

Tarball installs: Ensure that the following settings are included in the /etc/security/limits.conf file:

* - memlock unlimited
* - nofile 100000
* - nproc 32768
* - as unlimited

If you run Cassandra as root, some Linux distributions such as Ubuntu, require setting the limits for root
explicitly instead of using *:

root - memlock unlimited
root - nofile 100000
root - nproc 32768
root - as unlimited

For CentOS, RHEL, OEL systems, also set the nproc limits in /etc/security/limits.d/90-
nproc.conf :

* - nproc 32768

For all installations, add the following line to /etc/sysctl.conf :

vm.max_map_count = 131072

To make the changes take effect, reboot the server or run the following command:

$ sudo sysctl -p

To confirm the limits are applied to the Cassandra process, run the following command where pid is the
process ID of the currently running Cassandra process:

$ cat /proc/<pid>/limits

For more information, see Insufficient user resource limits errors.

Disable swap

You must disable swap entirely. Failure to do so can severely lower performance. Because Cassandra
has multiple replicas and transparent failover, it is preferable for a replica to be killed immediately when
memory is low rather than go into swap. This allows traffic to be immediately redirected to a functioning
replica instead of continuing to hit the replica that has high latency due to swapping. If your system has a
lot of DRAM, swapping still lowers performance significantly because the OS swaps out executable code
so that more DRAM is available for caching disks.

If you insist on using swap, you can set vm.swappiness=1. This allows the kernel swap out the absolute
least used parts.

$ sudo swapoff --all

To make this change permanent, remove all swap file entries from /etc/fstab.

For more information, see Nodes seem to freeze after some period of time.

Synchronize clocks

The clocks on all nodes should be synchronized. You can use NTP (Network Time Protocol) or other
methods.

This is required because columns are only overwritten if the timestamp in the new version of the column is
more recent than the existing column.

Installing DataStax Community

50

Optimum blockdev --setra settings for RAID

Typically, a readahead of 128 is recommended, especially on Amazon EC2 RAID0 devices.

Check to ensure setra is not set to 65536:

sudo blockdev --report /dev/<device>

To set setra:

sudo blockdev --setra 128 /dev/<device>

Java Virtual Machine

The latest 64-bit version of Java 7 is recommended, not the OpenJDK.

Java Native Access

Java Native Access (JNA) is required for production installations.

Initializing a cluster

51

Initializing a cluster

Initializing a multiple node cluster (single data center)
You can initialize a Cassandra cluster with a single data center.

About this task

If you're new to Cassandra, and haven't set up a cluster, see the Getting Started guide or 10 Minute
Cassandra Walkthrough.

Before you begin
Each node must be correctly configured before starting the cluster. You must determine or perform the
following before starting the cluster:

• A good understanding of how Cassandra works. Be sure to read at least Understanding the
architecture, Data replication, and Cassandra's rack feature.

• Install Cassandra on each node.
• Choose a name for the cluster.
• Get the IP address of each node.
• Determine which nodes will be seed nodes. Do not make all nodes seeds. (Cassandra nodes use the

seed node list for finding each other and learning the topology of the ring.)
• Determine the snitch and replication strategy. The GossipingPropertyFileSnitch and

NetworkTopologyStrategy are recommended for production environments.
• If using multiple data centers, determine a naming convention for each data center and rack, for

example: DC1, DC2 or 100, 200 and RAC1, RAC2 or R101, R102. Choose the name carefully;
renaming a data center is not possible.

• Other possible configuration settings are described in The cassandra.yaml configuration file and
property files such as cassandra-rackdc.properties.

About this task

This example describes installing a 6 node cluster spanning 2 racks in a single data center. Each node is
configured to use the GossipingPropertyFileSnitch and 256 virtual nodes (vnodes).

In Cassandra, the term data center is a grouping of nodes. Data center is synonymous with replication
group, that is, a grouping of nodes configured together for replication purposes.

Procedure

1. Suppose you install Cassandra on these nodes:

node0 110.82.155.0 (seed1)
node1 110.82.155.1
node2 110.82.155.2
node3 110.82.156.3 (seed2)
node4 110.82.156.4
node5 110.82.156.5

Note: It is a best practice to have more than one seed node per data center.

2. If you have a firewall running in your cluster, you must open certain ports for communication between
the nodes. See Configuring firewall port access.

3. If Cassandra is running, you must stop the server and clear the data:

/documentation/getting_started/doc/getting_started/gettingStartedCassandraIntro.html
http://planetcassandra.org/Try-Cassandra/
http://planetcassandra.org/Try-Cassandra/

Initializing a cluster

52

Doing this removes the default cluster_name (Test Cluster) from the system table. All nodes must use
the same cluster name.

Package installations:

a) Stop Cassandra:

$ sudo service cassandra stop
b) Clear the data:

$ sudo rm -rf /var/lib/cassandra/data/system/*

Tarball installations:

a) Stop Cassandra:

$ ps auwx | grep cassandra
$ sudo kill pid

b) Clear the data:

$ sudo rm -rf /var/lib/cassandra/data/system/*

4. Set the properties in the cassandra.yaml file for each node:

• Package installations: /etc/cassandra/conf/cassandra.yaml
• Tarball installations: install_location/conf/cassandra.yaml

Note: After making any changes in the cassandra.yaml file, you must restart the node for the
changes to take effect.

Properties to set:

• num_tokens: recommended value: 256
• -seeds: internal IP address of each seed node

Seed nodes do not bootstrap, which is the process of a new node joining an existing cluster. For
new clusters, the bootstrap process on seed nodes is skipped.

• listen_address:

If not set, Cassandra asks the system for the local address, the one associated with its hostname.
In some cases Cassandra doesn't produce the correct address and you must specify the
listen_address.

• endpoint_snitch: name of snitch (See endpoint_snitch.) If you are changing snitches, see Switching
snitches.

• auto_bootstrap: false (Add this setting only when initializing a fresh cluster with no data.)

Note: If the nodes in the cluster are identical in terms of disk layout, shared libraries, and so on,
you can use the same copy of the cassandra.yaml file on all of them.

Example:

cluster_name: 'MyCassandraCluster'
num_tokens: 256
seed_provider:
 - class_name: org.apache.cassandra.locator.SimpleSeedProvider
 parameters:
 - seeds: "110.82.155.0,110.82.155.3"
listen_address:
rpc_address: 0.0.0.0
endpoint_snitch: GossipingPropertyFileSnitch

5. In the cassandra-rackdc.properties file, assign the data center and rack names you determined
in the Prerequisites. For example:

indicate the rack and dc for this node
dc=DC1

Initializing a cluster

53

rack=RAC1

6. After you have installed and configured Cassandra on all nodes, start the seed nodes one at a time,
and then start the rest of the nodes.

Note: If the node has restarted because of automatic restart, you must first stop the node and
clear the data directories, as described above.

Package installations:

$ sudo service cassandra start

Tarball installations:

$ cd install_location
$ bin/cassandra

7. To check that the ring is up and running, run:

Package installations:

$ nodetool status

Tarball installations:

$ cd install_location
$ bin/nodetool status

Each node should be listed and it's status and state should be UN (Up Normal).

Initializing a multiple node cluster (multiple data centers)
You can initialize a Cassandra cluster with multiple data centers.

About this task

If you're new to Cassandra, and haven't set up a cluster, see the Getting Started guide or 10 Minute
Cassandra Walkthrough.

This example describes installing a six node cluster spanning two data centers. Each node is configured to
use the GossipingPropertyFileSnitch (multiple rack aware) and 256 virtual nodes (vnodes).

In Cassandra, the term data center is a grouping of nodes. Data center is synonymous with replication
group, that is, a grouping of nodes configured together for replication purposes.

Before you begin
Each node must be correctly configured before starting the cluster. You must determine or perform the
following before starting the cluster:

• A good understanding of how Cassandra works. Be sure to read at least Understanding the
architecture, Data replication, and Cassandra's rack feature.

• Install Cassandra on each node.

/documentation/getting_started/doc/getting_started/gettingStartedCassandraIntro.html
http://planetcassandra.org/Try-Cassandra/
http://planetcassandra.org/Try-Cassandra/

Initializing a cluster

54

• Choose a name for the cluster.
• Get the IP address of each node.
• Determine which nodes will be seed nodes. Do not make all nodes seeds. (Cassandra nodes use the

seed node list for finding each other and learning the topology of the ring.)
• Determine the snitch and replication strategy. The GossipingPropertyFileSnitch and

NetworkTopologyStrategy are recommended for production environments.
• If using multiple data centers, determine a naming convention for each data center and rack, for

example: DC1, DC2 or 100, 200 and RAC1, RAC2 or R101, R102. Choose the name carefully;
renaming a data center is not possible.

• Other possible configuration settings are described in The cassandra.yaml configuration file and
property files such as cassandra-rackdc.properties.

Procedure

1. Suppose you install Cassandra on these nodes:

node0 10.168.66.41 (seed1)
node1 10.176.43.66
node2 10.168.247.41
node3 10.176.170.59 (seed2)
node4 10.169.61.170
node5 10.169.30.138

Note: It is a best practice to have more than one seed node per data center.

2. If you have a firewall running in your cluster, you must open certain ports for communication between
the nodes. See Configuring firewall port access.

3. If Cassandra is running, you must stop the server and clear the data:

Doing this removes the default cluster_name (Test Cluster) from the system table. All nodes must use
the same cluster name.

Package installations:

a) Stop Cassandra:

$ sudo service cassandra stop
b) Clear the data:

$ sudo rm -rf /var/lib/cassandra/data/system/*

Tarball installations:

a) Stop Cassandra:

$ ps auwx | grep cassandra
$ sudo kill pid

b) Clear the data:

$ sudo rm -rf /var/lib/cassandra/data/system/*

4. Set the properties in the cassandra.yaml file for each node:

• Package installations: /etc/cassandra/conf/cassandra.yaml
• Tarball installations: install_location/conf/cassandra.yaml

Note: After making any changes in the cassandra.yaml file, you must restart the node for the
changes to take effect.

Properties to set:

• num_tokens: recommended value: 256
• -seeds: internal IP address of each seed node

Initializing a cluster

55

Seed nodes do not bootstrap, which is the process of a new node joining an existing cluster. For
new clusters, the bootstrap process on seed nodes is skipped.

• listen_address:

If not set, Cassandra asks the system for the local address, the one associated with its hostname.
In some cases Cassandra doesn't produce the correct address and you must specify the
listen_address.

• endpoint_snitch: name of snitch (See endpoint_snitch.) If you are changing snitches, see Switching
snitches.

• auto_bootstrap: false (Add this setting only when initializing a fresh cluster with no data.)

Note: If the nodes in the cluster are identical in terms of disk layout, shared libraries, and so on,
you can use the same copy of the cassandra.yaml file on all of them.

Example:

cluster_name: 'MyCassandraCluster'
num_tokens: 256
seed_provider:
 - class_name: org.apache.cassandra.locator.SimpleSeedProvider
 parameters:
 - seeds: "10.168.66.41,10.176.170.59"
listen_address:
endpoint_snitch: GossipingPropertyFileSnitch

Note: Include at least one node from each data center.

5. In the cassandra-rackdc.properties file, assign the data center and rack names you determined
in the Prerequisites. For example:

Nodes 0 to 2

indicate the rack and dc for this node
dc=DC1
rack=RAC1

Nodes 3 to 5

indicate the rack and dc for this node
dc=DC2
rack=RAC1

6. After you have installed and configured Cassandra on all nodes, start the seed nodes one at a time,
and then start the rest of the nodes.

Note: If the node has restarted because of automatic restart, you must first stop the node and
clear the data directories, as described above.

Package installations:

$ sudo service cassandra start

Tarball installations:

$ cd install_location
$ bin/cassandra

7. To check that the ring is up and running, run:

Package installations:

$ nodetool status

Tarball installations:

$ cd install_location

Initializing a cluster

56

$ bin/nodetool status

Each node should be listed and it's status and state should be UN (Up Normal).

Security

57

Security

Securing Cassandra

Cassandra provides these security features to the open source community.

• Client-to-node encryption

Cassandra includes an optional, secure form of communication from a client machine to a database
cluster. Client to server SSL ensures data in flight is not compromised and is securely transferred back/
forth from client machines.

• Authentication based on internally controlled login accounts/passwords

Administrators can create users who can be authenticated to Cassandra database clusters using the
CREATE USER command. Internally, Cassandra manages user accounts and access to the database
cluster using passwords. User accounts may be altered and dropped using the Cassandra Query
Language (CQL).

• Object permission management

Once authenticated into a database cluster using either internal authentication, the next security issue
to be tackled is permission management. What can the user do inside the database? Authorization
capabilities for Cassandra use the familiar GRANT/REVOKE security paradigm to manage object
permissions.

SSL encryption

Client-to-node encryption
Client-to-node encryption protects data in flight from client machines to a database cluster using SSL
(Secure Sockets Layer). It establishes a secure channel between the client and the coordinator node.

Before you begin
All nodes must have all the relevant SSL certificates on all nodes. See Preparing server certificates.

About this task

To enable client-to-node SSL, you must set the client_encryption_options in the cassandra.yaml file.

Procedure

On each node under client_encryption_options:
• Enable encryption.
• Set the appropriate paths to your .keystore and .truststore files.
• Provide the required passwords. The passwords must match the passwords used when generating the

keystore and truststore.
• To enable client certificate authentication, set require_client_auth to true. (Available starting with

Cassandra 1.2.3.)

Example

client_encryption_options:
enabled: true
keystore: conf/.keystore ## The path to your .keystore file

Security

58

keystore_password: <keystore password> ## The password you used when
 generating the keystore.
truststore: conf/.truststore
truststore_password: <truststore password>
require_client_auth: <true or false>

Node-to-node encryption
Node-to-node encryption protects data transferred between nodes, including gossip communications, in a
cluster using SSL (Secure Sockets Layer).

Before you begin
All nodes must have all the relevant SSL certificates on all nodes. See Preparing server certificates.

About this task

To enable node-to-node SSL, you must set the server_encryption_options in the cassandra.yaml file.

Procedure

On each node under sever_encryption_options:
• Enable internode_encryption.

The available options are:

• all
• none
• dc: Cassandra encrypts the traffic between the data centers.
• rack: Cassandra encrypts the traffic between the racks.

• Set the appropriate paths to your .keystore and .truststore files.
• Provide the required passwords. The passwords must match the passwords used when generating the

keystore and truststore.
• To enable client certificate authentication, set require_client_auth to true. (Available starting with

Cassandra 1.2.3.)

Example

server_encryption_options:
 internode_encryption: <internode_option>
 keystore: resources/dse/conf/.keystore
 keystore_password: <keystore password>
 truststore: resources/dse/conf/.truststore
 truststore_password: <truststore password>
 require_client_auth: <true or false>

Using cqlsh with SSL encryption
Using a cqlshrc file means you don't have to override the SSL_CERTFILE environmental variables every
time.

About this task

To run cqlsh with SSL encryption, you must:

1. Create a .cassandra/cqlshrc file in your home or client program directory. Sample files are
available in the following directories:

• Package installations: /etc/cassandra
• Tarball installations: install_location/conf

Security

59

2. Start cqlsh with the --ssl option.

$ cqlsh --ssh ## Package installations
$ install_location/bin/cqlsh -ssh ## Tarball installations

Example

[authentication]
username = fred
password = !!bang!!$

[connection]
hostname = 127.0.0.1
port = 9042

[ssl]
certfile = ~/keys/cassandra.cert
validate = true ## Optional, true by default
userkey = ~/key.pem ## Provide when require_client_auth=true
usercert = ~/cert.pem ## Provide when require_client_auth=true

[certfiles] ## Optional section, overrides the default certfile in the [ssl]
 section
192.168.1.3 = ~/keys/cassandra01.cert
192.168.1.4 = ~/keys/cassandra02.cert

Note:

When validate is enabled, the host in the certificate is compared to the host of the machine that
it is connected to. The SSL certificate must be provided either in the configuration file or as an
environment variable. The environment variables (SSL_CERTFILE and SSL_VALIDATE) override
any options set in this file.

Related topics

The cassandra.yaml configuration file

Preparing server certificates
Generate SSL certificates for client-to-node encryption or node-to-node encryption.

About this task

If you generate the certificates for one type of encryption, you do not need to generate them again for the
other: the same certificates are used for both.

All nodes must have all the relevant SSL certificates on all nodes. A keystore contains private keys. The
truststore contains SSL certificates for each node and doesn't require signing by a trusted and recognized
public certification authority.

Procedure

1. Generate the private and public key pair for the nodes of the cluster.

A prompt for the new keystore and key password appears.

2. Leave key password the same as the keystore password.

3. Repeat steps 1 and 2 on each node using a different alias for each one.

keytool -genkey -keyalg RSA -alias <cassandra_node0> -keystore .keystore

4. Export the public part of the certificate to a separate file and copy these certificates to all other nodes.

keytool -export -alias cassandra -file cassandranode0.cer -
keystore .keystore

/documentation/cql/3.1/cql/cql_reference/cqlsh.html

Security

60

5. Add the certificate of each node to the truststore of each node, so nodes can verify the identity of other
nodes.

keytool -import -v -trustcacerts -alias <cassandra_node0> -file
 <cassandra_node0>.cer -keystore .truststore
keytool -import -v -trustcacerts -alias <cassandra_node1> -file
 <cassandra_node1>.cer -keystore .truststore
. . .

6. Distribute the .keystore and .truststore files to all Cassandra nodes.

7. Make sure .keystore is readable only to the Cassandra daemon and not by any user of the system.

Adding new trusted users
Add new users when client certificate authentication is enabled.

Before you begin
The client certificate authentication must be enabled (require_client_auth=true).

Procedure

1. Generate the certificate as described in Client-to-node encryption.

2. Import the user's certificate into every node's truststore using keytool:

keytool -import -v -trustcacerts -alias <username> -file <certificate file>
 -keystore .truststore

Internal authentication

Internal authentication

Like object permission management using internal authorization, internal authentication is based on
Cassandra-controlled login accounts and passwords. Internal authentication works for the following clients
when you provide a user name and password to start up the client:

• Astyanax
• cassandra-cli
• cqlsh
• DataStax drivers - produced and certified by DataStax to work with Cassandra.
• Hector
• pycassa

Internal authentication stores usernames and bcrypt-hashed passwords in the system_auth.credentials
table.

PasswordAuthenticator is an IAuthenticator implementation that you can use to configure Cassandra for
internal authentication out-of-the-box.

Configuring authentication

About this task

To configure Cassandra to use internal authentication, first make a change to the cassandra.yaml file and
increase the replication factor of the system_auth keyspace, as described in this procedure. Next, start up
Cassandra using the default user name and password (cassandra/cassandra), and start cqlsh using the
same credentials. Finally, use these CQL statements to set up user accounts to authorize users to access
the database objects:

• ALTER USER

http://www.datastax.com/download#dl-datastax-drivers
/documentation/cql/3.1/cql/cql_reference/alter_user_r.html

Security

61

• CREATE USER
• DROP USER
• LIST USERS

Note: To configure authorization, see Configuring internal authorization.

Procedure

1. Change the authenticator option in the cassandra.yaml to PasswordAuthenticator.

By default, the authenticator option is set to AllowAllAuthenticator.

authenticator: PasswordAuthenticator

2. Increase the replication factor for the system_auth keyspace to N (number of nodes).

If you use the default, 1, and the node with the lone replica goes down, you will not be able to log into
the cluster because the system_auth keyspace was not replicated.

3. Restart the Cassandra client.

The default superuser name and password that you use to start the client is stored in Cassandra.

<client startup string> -u cassandra -p cassandra

4. Start cqlsh using the superuser name and password.

./cqlsh -u cassandra -p cassandra

5. Create another superuser, not named cassandra. This step is optional but highly recommended.

6. Log in as that new superuser.

7. Change the cassandra user password to something long and incomprehensible, and then forget about
it. It won't be used again.

8. Take away the cassandra user's superuser status.

9. Use the CQL statements listed previously to set up user accounts and then grant permissions to access
the database objects.

Logging in using cqlsh

About this task

Typically, after configuring authentication, you log into cqlsh using the -u and -p options to the cqlsh
command. To avoid having enter credentials every time you launch cqlsh, you can create a cqlshrc file
in the .cassandra directory, which is in your home directory. When present, this file passes default login
information to cqlsh.

Procedure

1. Open a text editor and create a file that specifies a user name and password.

[authentication]
username = fred
password = !!bang!!$

2. Save the file in your home/.cassandra directory and name it cqlshrc.

3. Set permissions on the file.

To protect database login information, ensure that the file is secure from unauthorized access.

Note: Sample cqlshrc files are available in:

• Packaged installations

/usr/share/doc/dse-libcassandra
• Binary installations

install_location/conf

/documentation/cql/3.1/cql/cql_reference/create_user_r.html
/documentation/cql/3.1/cql/cql_reference/drop_user_r.html
/documentation/cql/3.1/cql/cql_reference/list_users_r.html
/documentation/cql/3.1/cql/cql_using/update_ks_rf_t.html

Security

62

Internal authorization

Object permissions

You use familiar relational database GRANT/REVOKE paradigm to grant or revoke permissions to access
Cassandra data. A superuser grants initial permissions, and subsequently a user may or may not be
given the permission to grant/revoke permissions. Object permission management is based on internal
authorization.

Read access to these system tables is implicitly given to every authenticated user because the tables are
used by most Cassandra tools:

• system.schema_keyspace
• system.schema_columns
• system.schema_columnfamilies
• system.local
• system.peers

Configuring internal authorization

About this task

CassandraAuthorizer is one of many possible IAuthorizer implementations, and the one that stores
permissions in the system_auth.permissions table to support all authorization-related CQL statements.
Configuration consists mainly of changing the authorizer option in the cassandra.yaml to use the
CassandraAuthorizer.

Note: To configure authentication, see Configuring authentication.

Procedure

1. In the cassandra.yaml file, comment out the default AllowAllAuthorizer and add the
CassandraAuthorizer.

authorizer: CassandraAuthorizer

You can use any authenticator except AllowAll.

2. Configure the replication factor for the system_auth keyspace to increase the replication factor to a
number greater than 1.

3. Adjust the validity period for permissions caching by setting the permissions_validity_in_ms option in
the cassandra.yaml file.

Alternatively, disable permission caching by setting this option to 0.

Results
CQL supports these authorization statements:

• GRANT
• LIST PERMISSIONS
• REVOKE

/documentation/cql/3.1/cql/cql_using/update_ks_rf_t.html
/documentation/cql/3.1/cql/cql_reference/grant_r.html
/documentation/cql/3.1/cql/cql_reference/list_permissions_r.html
/documentation/cql/3.1/cql/cql_reference/revoke_r.html

Security

63

Configuring firewall port access
Which ports to open when nodes are protected by a firewall.

If you have a firewall running on the nodes in your Cassandra cluster, you must open up the following ports
to allow communication between the nodes, including certain Cassandra ports. If this isn’t done, when
you start Cassandra on a node, the node acts as a standalone database server rather than joining the
database cluster.

Table 2: Public ports

Port
number

Description

22 SSH port

8888 OpsCenter website. The opscenterd daemon listens
on this port for HTTP requests coming directly from
the browser.

Table 3: Cassandra inter-node ports

Port
number

Description

7000 Cassandra inter-node cluster communication.

7001 Cassandra SSL inter-node cluster communication.

7199 Cassandra JMX monitoring port.

Table 4: Cassandra client ports

Port
number

Description

9042 Cassandra client port.

9160 Cassandra client port (Thrift).

Table 5: Cassandra OpsCenter ports

Port
number

Description

61620 OpsCenter monitoring port. The opscenterd daemon
listens on this port for TCP traffic coming from the
agent.

61621 OpsCenter agent port. The agents listen on this port
for SSL traffic initiated by OpsCenter.

Database internals

64

Database internals

Managing data

Cassandra uses a storage structure similar to a Log-Structured Merge Tree, unlike a typical relational
database that uses a B-Tree. Cassandra avoids reading before writing. Read-before-write, especially in
a large distributed system, can produce stalls in read performance and other problems. For example, two
clients read at the same time, one overwrites the row to make update A, and then the other overwrites the
row to make update B, removing update A. Reading before writing also corrupts caches and increases
IO requirements. To avoid a read-before-write condition, the storage engine groups inserts/updates to be
made, and sequentially writes only the updated parts of a row in append mode. Cassandra never re-writes
or re-reads existing data, and never overwrites the rows in place.

A log-structured engine that avoids overwrites and uses sequential IO to update data is essential for writing
to hard disks (HDD) and solid-state disks (SSD). On HDD, writing randomly involves a higher number of
seek operations than sequential writing. The seek penalty incurred can be substantial. Using sequential
IO, and thereby avoiding write amplification and disk failure, Cassandra accommodates inexpensive,
consumer SSDs extremely well.

Separate table directories

Cassandra provides fine-grained control of table storage on disk, writing tables to disk using separate table
directories within each keyspace directory. Data files are stored using this directory and file naming format:

/var/lib/cassandra/data/ks1/cf1/ks1-cf1-hc-1-Data.db

The new file name format includes the keyspace name to distinguish which keyspace and table the file
contains when streaming or bulk loading data. Cassandra creates a subdirectory for each table, which
allows you to symlink a table to a chosen physical drive or data volume. This provides the capability to
move very active tables to faster media, such as SSD’s for better performance, and also divvy up tables
across all attached storage devices for better I/O balance at the storage layer.

Cassandra storage basics

To manage and access data in Cassandra, it is important to understand how Casssandra stores data. The
hinted handoff feature and Cassandra conformance and non-conformance to the ACID (atomic, consistent,
isolated, durable) database properties are key concepts in this discussion. In Cassandra, consistency
refers to how up-to-date and synchronized a row of data is on all of its replicas.

Client utilities and application programming interfaces (APIs) for developing applications for data storage
and retrieval are available.

The write path to compaction

Cassandra processes data at several stages on the write path, starting with the immediate logging of a
write and ending in compaction:

• Logging data in the commit log
• Writing data to the memtable
• Flushing data from the memtable
• Storing data on disk in SSTables
• Compaction

http://en.wikipedia.org/wiki/Write_amplification

Database internals

65

Logging writes and memtable storage

When a write occurs, Cassandra stores the data in a structure in memory, the memtable, and also
appends writes to the commit log on disk, providing configurable durability. The commit log receives every
write made to a Cassandra node, and these durable writes survive permanently even after power failure.
The memtable is a write-back cache of data partitions that Cassandra looks up by key. The memtable
stores writes until reaching a limit, and then is flushed.

Flushing data from the memtable

When memtable contents exceed a configurable threshold, the memtable data, which includes
indexes, is put in a queue to be flushed to disk. You can configure the length of the queue by changing
memtable_flush_queue_size in the cassandra.yaml. If the data to be flushed exceeds the queue
size, Cassandra blocks writes until the next flush succeeds. You can manually flush a table using the
nodetool flush command. Typically, before restarting nodes, flushing the memtable is recommended
to reduce commit log replay time. To flush the data, Cassandra sorts memtables by token and then writes
the data to disk sequentially.

Storing data on disk in SSTables

Data in the commit log is purged after its corresponding data in the memtable is flushed to an SSTable.

Memtables and SSTables are maintained per table. SSTables are immutable, not written to again after the
memtable is flushed. Consequently, a partition is typically stored across multiple SSTable files.

For each SSTable, Cassandra creates these structures:

• Partition index

A list of partition keys and the start position of rows in the data file (on disk)
• Partition summary (in memory)

A sample of the partition index.
• Bloom filter

Compaction

Periodic compaction is essential to a healthy Cassandra database because Cassandra does not insert/
update in place. As inserts/updates occur, instead of overwriting the rows, Cassandra writes a new
timestamped version of the inserted or updated data in another SSTable. Cassandra manages the
accumulation of SSTables on disk using compaction.

Cassandra also does not delete in place because the SSTable is immutable. Instead, Cassandra marks
data to be deleted using a tombstone. Tombstones exist for a configured time period defined by the
gc_grace_seconds value set on the table. During compaction, there is a temporary spike in disk space
usage and disk I/O because the old and new SSTables co-exist. This diagram depicts the compaction
process:

/documentation/cql/3.1/cql/cql_reference/create_keyspace_r.html?scroll=reference_ds_ask_vyj_xj__durableWrites
/documentation/cassandra/2.0/share/glossary/gloss_bloom_filter.html
/documentation/cql/3.1/cql/cql_reference/cql_storage_options_c.html

Database internals

66

Compaction merges the data in each SSTable data by partition key, selecting the latest data for storage
based on its timestamp. Cassandra can merge the data performantly, without random IO, because rows
are sorted by partition key within each SSTable. After evicting tombstones and removing deleted data,
columns, and rows, the compaction process consolidates SSTables into a single file. The old SSTable
files are deleted as soon as any pending reads finish using the files. Disk space occupied by old SSTables
becomes available for reuse.

Data input to SSTables is sorted to prevent random I/O during SSTable consolidation. After compaction,
Cassandra uses the new consolidated SSTable instead of multiple old SSTables, fulfilling read requests
more efficiently than before compaction. The old SSTable files are deleted as soon as any pending reads
finish using the files. Disk space occupied by old SSTables becomes available for reuse.

Although no random I/O occurs, compaction can still be a fairly heavyweight operation. During compaction,
there is a temporary spike in disk space usage and disk I/O because the old and new SSTables co-exist.
To minimize deteriorating read speed, compaction runs in the background.

To lessen the impact of compaction on application requests, Cassandra performs these operations:

• Throttles compaction I/O to compaction_throughput_mb_per_sec (default 16MB/s).
• Requests that the operating system pull newly compacted partitions into the page cache when the key

cache indicates that the compacted partition is hot for recent reads.

You can configure these types of compaction to run periodically: SizeTieredCompactionStrategy,
DateTieredCompactionStrategy (Cassandra 2.0.11), and LeveledCompactionStrategy.

SizeTieredCompactionStrategy is designed for write-intensive workloads, DateTieredCompactionStrategy
for time-series and expiring data, and LeveledCompactionStrategy for read-intensive workloads. You can
manually start compaction using the nodetool compact command.

For more information about compaction strategies, see When to Use Leveled Compaction and Leveled
Compaction in Apache Cassandra.

/documentation/cql/3.1/cql/cql_reference/tabProp.html?scroll=tabProp__moreCompaction
/documentation/cql/3.1/cql/cql_reference/tabProp.html?scroll=tabProp__moreCompaction
http://www.datastax.com/dev/blog/when-to-use-leveled-compaction
http://www.datastax.com/dev/blog/leveled-compaction-in-apache-cassandra
http://www.datastax.com/dev/blog/leveled-compaction-in-apache-cassandra

Database internals

67

How Cassandra stores indexes

Internally, a Cassandra index is a data partition.In the example of a music service, the playlists table
includes an artist column and uses a compound primary key: id is the partition key and song_order is the
clustering column.

CREATE TABLE playlists (
 id uuid,
 song_order int,
 . . .
 artist text,
PRIMARY KEY (id, song_order));

As shown in the music service example, to filter the data based on the artist, create an index on artist.
Cassandra uses the index to pull out the records in question. An attempt to filter the data before creating
the index will fail because the operation would be very inefficient. A sequential scan across the entire
playlists dataset would be required. After creating the artist index, Cassandra can filter the data in the
playlists table by artist, such as Fu Manchu.

The partition is the unit of replication in Cassandra. In the music service example, partitions are distributed
by hashing the playlist id and using the ring to locate the nodes that store the distributed data. Cassandra
would generally store playlist information on different nodes, and to find all the songs by Fu Manchu,
Cassandra would have to visit different nodes. To avoid these problems, each node indexes its own data.

This technique, however, does not guarantee trouble-free indexing, so know when and when not to use an
index.

About index updates

As with relational databases, keeping indexes up to date is not free, so unnecessary indexes should be
avoided. When a column is updated, the index is updated as well. If the old column value was still in the
memtable, which typically occurs when updating a small set of rows repeatedly, Cassandra removes the
corresponding obsolete index entry; otherwise, the old entry remains to be purged by compaction. If a read
sees a stale index entry before compaction purges it, the reader thread invalidates it.

The write path of an update

Inserting a duplicate primary key is treated as an upsert. Eventually, the updates are streamed to disk
using sequential I/O and stored in a new SSTable. During an update, Cassandra time-stamps and
writes columns to disk using the write path. During the update, if multiple versions of the column exist
in the memtable, Cassandra flushes only the newer version of the column to disk, as described in the
Compaction section.

About deletes

The way Cassandra deletes data differs from the way a relational database deletes data. A relational
database might spend time scanning through data looking for expired data and throwing it away or an
administrator might have to partition expired data by month, for example, to clear it out faster. Data in a
Cassandra column can have an optional expiration date called TTL (time to live). Use CQL to set the TTL
in seconds for data. Cassandra marks TTL data with a tombstone after the requested amount of time has
expired. Tombstones exist for a period of time defined by gc_grace_seconds. After data is marked with a
tombstone, the data is automatically removed during the normal compaction process.

Facts about deleted data to keep in mind are:

• Cassandra does not immediately remove data marked for deletion from disk. The deletion occurs during
compaction.

/documentation/cql/3.1/cql/ddl/ddl_music_service_c.html
/documentation/cql/3.1/cql/ddl/ddl_when_use_index_c.html
/documentation/cql/3.1/cql/ddl/ddl_when_use_index_c.html
/documentation/cql/3.1/cql/cql_using/use_expire_c.html
/documentation/cassandra/2.0/share/glossary/gloss_tombstone.html
/documentation/cassandra/2.0/cassandra/dml/dml_write_path_c.html#concept_ds_wt3_32w_zj__dml-compaction

Database internals

68

• If you use the sized-tiered or date-tiered compaction strategy, you can drop data immediately by
manually starting the compaction process. Before doing so, understand the documented disadvantages
of the process.

• A deleted column can reappear if you do not run node repair routinely.

Why deleted data can reappear

Marking data with a tombstone signals Cassandra to retry sending a delete request to a replica that was
down at the time of delete. If the replica comes back up within the grace period of time, it eventually
receives the delete request. However, if a node is down longer than the grace period, then the node
can possibly miss the delete altogether because the tombstone disappears after gc_grace_seconds.
Cassandra always attempts to replay/repair missed updates when the node comes back up again. When
bringing a node back into the cluster after a failure, run node repair to repair inconsistencies across all of
the replicas.

About hinted handoff writes

Hinted handoff is a Cassandra feature that optimizes the cluster consistency process and anti-entropy
when a replica-owning node is not available, due to network issues or other problems, to accept a replica
from a successful write operation. Hinted handoff is not a process that guarantees successful write
operations, except when a client application uses a consistency level of ANY. You enable or disable hinted
handoff in the cassandra.yaml file.

How hinted handoff works

During a write operation, when hinted handoff is enabled and consistency can be met, the coordinator
stores a hint about dead replicas in the local system.hints table under either of these conditions:

• A replica node for the row is known to be down ahead of time.
• A replica node does not respond to the write request.

When the cluster cannot meet the consistency level specified by the client, Cassandra does not store a
hint.

A hint indicates that a write needs to be replayed to one or more unavailable nodes. The hint consists of:

• The location of the replica that is down
• Version metadata
• The actual data being written

By default, hints are saved for three hours after a replica fails because if the replica is down
longer than that, it is likely permanently dead. You can configure this interval of time using the
max_hint_window_in_ms property in the cassandra.yaml file. If the node recovers after the save time has
elapsed, run a repair to re-replicate the data written during the down time.

After a node discovers from gossip that a node for which it holds hints has recovered, the node sends the
data row corresponding to each hint to the target. Additionally, the node checks every ten minutes for any
hints for writes that timed out during an outage too brief for the failure detector to notice through gossip.

For example, in a cluster of two nodes, A and B, having a replication factor (RF) of 1, each row is stored on
one node. Suppose node A is down while we write row K to it with consistency level of one. The write fails
because reads always reflect the most recent write when:

W + R > replication factor

where W is the number of nodes to block for writes and R is the number of nodes to block for reads.
Cassandra does not write a hint to B and call the write good because Cassandra cannot read the data at
any consistency level until A comes back up and B forwards the data to A.

/documentation/cql/3.1/cql/cql_reference/tabProp.html?scroll=tabProp__moreCompaction
/documentation/cql/3.0/cql/cql_reference/tabProp.html?scroll=tabProp__moreCompaction
/documentation/cassandra/2.0/cassandra/tools/toolsCompact.html
/documentation/cassandra/2.0/cassandra/operations/ops_repair_nodes_c.html

Database internals

69

In a cluster of three nodes, A (the coordinator), B, and C, each row is stored on two nodes in a keyspace
having a replication factor of 2. Suppose node C goes down. The client writes row K to node A. The
coordinator, replicates row K to node B, and writes the hint for downed node C to node A.

Cassandra, configured with a consistency level of ONE, calls the write good because Cassandra can read
the data on node B. When node C comes back up, node A reacts to the hint by forwarding the data to node
C. For more information about how hinted handoff works, see "Modern hinted handoff" by Jonathan Ellis.

Extreme write availability

For applications that want Cassandra to accept writes even when all the normal replicas are down, when
not even consistency level ONE can be satisfied, Cassandra provides consistency level ANY. ANY
guarantees that the write is durable and will be readable after an appropriate replica target becomes
available and receives the hint replay.

Performance

By design, hinted handoff inherently forces Cassandra to continue performing the same number of writes
even when the cluster is operating at reduced capacity. Pushing your cluster to maximum capacity with no
allowance for failures is a bad idea.

Hinted handoff is designed to minimize the extra load on the cluster.

All hints for a given replica are stored under a single partition key, so replaying hints is a simple sequential
read with minimal performance impact.

If a replica node is overloaded or unavailable, and the failure detector has not yet marked it down, then
expect most or all writes to that node to fail after the timeout triggered by write_request_timeout_in_ms,
which defaults to 10 seconds. During that time, Cassandra writes the hint when the timeout is reached.

If this happens on many nodes at once this could become substantial memory pressure on the coordinator.
So the coordinator tracks how many hints it is currently writing, and if this number gets too high it will
temporarily refuse writes (withOverloadedException) whose replicas include the misbehaving nodes.

http://www.datastax.com/dev/blog/modern-hinted-handoff

Database internals

70

Removal of hints

When removing a node from the cluster by decommissioning the node or by using the nodetool
removenode command, Cassandra automatically removes hints targeting the node that no longer exists.
Cassandra also removes hints for dropped tables.

Scheduling repair weekly

At first glance, it may appear that hinted handoff lets you safely get away without needing repair. This is
only true if you never have hardware failure. Hardware failure has the following ramifications:

• Loss of the historical data necessary to tell the rest of the cluster exactly what data is missing.
• Loss of hints-not-yet-replayed from requests that the failed node coordinated.

About reads

Cassandra must combine results from the active memtable and potentially mutliple SSTables to satisfy
a read. First, Cassandra checks the Bloom filter. Each SSTable has a Bloom filter associated with it that
checks the probability of having any data for the requested partition in the SSTable before doing any disk I/
O.

If the Bloom filter does not rule out the SSTable, Cassandra checks the partition key cache and takes one
of these courses of action:

• If an index entry is found in the cache:

• Cassandra goes to the compression offset map to find the compressed block having the data.
• Fetches the compressed data on disk and returns the result set.

• If an index entry is not found in the cache:

• Cassandra searches the partition summary to determine the approximate location on disk of the
index entry.

• Next, to fetch the index entry, Cassandra hits the disk for the first time, performing a single seek and
a sequential read of columns (a range read) in the SSTable if the columns are contiguous.

• Cassandra goes to the compression offset map to find the compressed block having the data.
• Fetches the compressed data on disk and returns the result set.

Database internals

71

How off-heap components affect reads

To increase the data handling capacity per node, Cassandra keeps these components off-heap:

• Bloom filter
• Compression offsets map
• Partition summary

Of the components in memory, only the partition key cache is a fixed size. Other components grow as the
data set grows.

Bloom filter

The Bloom filter grows to approximately 1-2 GB per billion partitions. In the extreme case, you can have
one partition per row, so you can easily have billions of these entries on a single machine. The Bloom filter
is tunable if you want to trade memory for performance.

Partition summary

By default, the partition summary is a sample of the partition index. You configure sample frequency
by changing the index_interval property in the table definition, also if you want to trade memory for
performance.

Compression offsets

The compression offset map grows to 1-3 GB per terabyte compressed. The more you compress data, the
greater number of compressed blocks you have and the larger the compression offset table. Compression
is enabled by default even though going through the compression offset map consumes CPU resources.
Having compression enabled makes the page cache more effective, and typically, almost always pays off.

/documentation/cql/3.1/cql/cql_reference/alter_table_r.html

Database internals

72

Reading from a partition

Within a partition, all rows are not equally expensive to query. The very beginning of the partition—the
first rows, clustered by your key definition—is slightly less expensive to query because there is no need to
consult the partition-level index.

How write patterns affect reads

The type of compaction strategy Cassandra performs on your data is configurable and can significantly
affect read performance. Using the SizeTieredCompactionStrategy or DateTieredCompactionStrategy
tends to cause data fragmentation when rows are frequently updated. The LeveledCompactionStrategy
(LCS) was designed to prevent fragmentation under this condition. For more information about LCS, see
the article, Leveled Compaction in Apache Cassandra.

How the row cache affects reads

Typical of any database, reads are fastest when the most in-demand data (or hot working set) fits into
memory. Although all modern storage systems rely on some form of caching to allow for fast access to
hot data, not all of them degrade gracefully when the cache capacity is exceeded and disk I/O is required.
Cassandra's read performance benefits from built-in caching, shown in the following diagram.

The red lines in the SSTables in this diagram are fragments of a row that Cassandra needs to combine to
give the user the requested results. Cassandra caches the merged value, not the raw row fragments. That
saves some CPU and disk I/O.

The row cache is not write-through. If a write comes in for the row, the cache for it is invalidated and is not
be cached again until it is read again.

About transactions and concurrency control

Cassandra does not use RDBMS ACID transactions with rollback or locking mechanisms, but instead
offers atomic, isolated, and durable transactions with eventual/tunable consistency that lets the user decide
how strong or eventual they want each transaction’s consistency to be.

• Atomic

Everything in a transaction succeeds or the entire transaction is rolled back.
• Consistent

A transaction cannot leave the database in an inconsistent state.
• Isolated

Transactions cannot interfere with each other.
• Durable

Completed transactions persist in the event of crashes or server failure.

As a non-relational database, Cassandra does not support joins or foreign keys, and consequently does
not offer consistency in the ACID sense. For example, when moving money from account A to B the total
in the accounts does not change. Cassandra supports atomicity and isolation at the row-level, but trades
transactional isolation and atomicity for high availability and fast write performance. Cassandra writes are
durable.

/documentation/cql/3.1/cql/ddl/ddl_compound_keys_c.html
/documentation/cql/3.1/cql/cql_reference/tabProp.html?scroll=tabProp__moreCompaction
http://www.datastax.com/dev/blog/leveled-compaction-in-apache-cassandra

Database internals

73

Lightweight transactions

While durable transactions with eventual/tunable consistency is quite satisfactory for many use cases,
situations do arise where more is needed. Lightweight transactions, also known as compare and set, that
use linearizable consistency can probably fulfill those needs.

For example, two users attempting to create a unique user account in the same cluster could overwrite
each other’s work with neither user knowing about it. To avoid this situation, Cassandra introduces
lightweight transactions (or ‘compare and set’).

Using and extending the Paxos consensus protocol (which allows a distributed system to agree on
proposed data additions/modifications with a quorum-based algorithm, and without the need for any one
‘master’ database or two-phase commit), Cassandra now offers a way to ensure a transaction isolation
level similar to the serializable level offered by RDBMS’s. Extensions to CQL enable an easy way to carry
out such operations.

A new IF clause has been introduced for both the INSERT and UPDATE commands that lets the user
invoke lightweight transactions. For example, if a user wants to ensure an insert they are about to make
into a new accounts table is unique for a new customer, they would use the IF NOT EXISTS clause:

INSERT INTO customer_account (customerID, customer_email)
VALUES (‘LauraS’, ‘lauras@gmail.com’)
IF NOT EXISTS;

DML modifications via UPDATE can also make use of the new IF clause by comparing one or more
columns to various values:

UPDATE customer_account
SET customer_email=’laurass@gmail.com’
IF customer_email=’lauras@gmail.com’;

Behind the scenes, Cassandra is making four round trips between a node proposing a lightweight
transaction and any needed replicas in the cluster to ensure proper execution so performance is affected.
Consequently, reserve lightweight transactions for those situations where they are absolutely necessary;
Cassandra’s normal eventual consistency can be used for everything else.

A SERIAL consistency level allows reading the current (and possibly uncommitted) state of data without
proposing a new addition or update. If a SERIAL read finds an uncommitted transaction in progress,
Cassandra commits the transaction as part of the read.

Atomicity

In Cassandra, a write is atomic at the partition-level, meaning inserting or updating columns in a row is
treated as one write operation. Cassandra does not support transactions in the sense of bundling multiple
row updates into one all-or-nothing operation. Nor does it roll back when a write succeeds on one replica,
but fails on other replicas. It is possible in Cassandra to have a write operation report a failure to the client,
but still actually persist the write to a replica.

For example, if using a write consistency level of QUORUM with a replication factor of 3, Cassandra will
replicate the write to all nodes in the cluster and wait for acknowledgement from two nodes. If the write fails
on one of the nodes but succeeds on the other, Cassandra reports a failure to replicate the write on that
node. However, the replicated write that succeeds on the other node is not automatically rolled back.

Cassandra uses timestamps to determine the most recent update to a column. The timestamp is provided
by the client application. The latest timestamp always wins when requesting data, so if multiple client
sessions update the same columns in a row concurrently, the most recent update is the one that readers
see.

Consistency

Cassandra 2.0 offers two types of consistency:

• Tunable consistency

Database internals

74

Availability and consistency can be tuned, and can be strong in the CAP sense--data is made
consistent across all the nodes in a distributed database cluster.

• Linearizable consistency

In ACID terms, linearizable consistency is a serial (immediate) isolation level for lightweight (compare-
and-set, CAS) transactions.

In Cassandra, there are no locking or transactional dependencies when concurrently updating multiple
rows or tables. Tuning availability and consistency always gives you partition tolerance. A user can pick
and choose on a per operation basis how many nodes must receive a DML command or respond to a
SELECT query.

Linearizable consistency is used in rare cases when a strong version of tunable consistency in a
distributed, masterless Cassandra with quorum reads and writes is not enough. Such cases might be
encountered when performing uninterrupted sequential operations or when producing the same results
when running an operation concurrently or not. For example, an application that registers new accounts
needs to ensure that only one user can claim a given account. The challenge is handling a race condition
analogous to two threads attempting to make an insertion into a non-concurrent Map. Checking for the
existence of the account before performing the insert in thread A does not guarantee that thread X will
not insert the account between the check time and A's insert. Linearizable consistency meets these
challenges.

Cassandra 2.0 uses the Paxos consensus protocol, which resembles 2-phase commit, to support
linearizable consistency. All operations are quorum-based and updates will incur a performance hit,
effectively a degradation to one-third of normal. For in-depth information about this new consistency level,
see the article, Lightweight transactions in Cassandra.

To support linearizable consistency, a consistency level of SERIAL has been added to Cassandra.
Additions to CQL have been made to support lightweight transactions.

Isolation

In early versions of Cassandra, it was possible to see partial updates in a row when one user was updating
the row while another user was reading that same row. For example, if one user was writing a row with two
thousand columns, another user could potentially read that same row and see some of the columns, but
not all of them if the write was still in progress.

Full row-level isolation is in place, which means that writes to a row are isolated to the client performing the
write and are not visible to any other user until they are complete.

Durability

Writes in Cassandra are durable. All writes to a replica node are recorded both in memory and in a commit
log on disk before they are acknowledged as a success. If a crash or server failure occurs before the
memtables are flushed to disk, the commit log is replayed on restart to recover any lost writes. In addition
to the local durability (data immediately written to disk), the replication of data on other nodes strengthens
durability.

You can manage the local durability to suit your needs for consistency using the commitlog_sync option in
the cassandra.yaml file. Set the option to either periodic or batch.

About data consistency

Consistency refers to how up-to-date and synchronized a row of Cassandra data is on all of its replicas.
Cassandra extends the concept of eventual consistency by offering tunable consistency. For any given
read or write operation, the client application decides how consistent the requested data must be.

A tutorial in the CQL documentation compares consistency levels using cqlsh tracing.

http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
http://www.datastax.com/dev/blog/lightweight-transactions-in-cassandra-2-0
/documentation/cql/3.1/cql/cql_using/use_ltweight_transaction_t.html
http://en.wikipedia.org/wiki/Eventual_consistency
/documentation/cql/3.1/cql/cql_using/useTracing.html

Database internals

75

Even at low consistency levels, Cassandra writes to all replicas of the partition key, even replicas in other
data centers. The consistency level determines only the number of replicas that need to acknowledge
the write success to the client application. Typically, a client specifies a consistency level that is less than
the replication factor specified by the keyspace. This practice ensures that the coordinating server node
reports the write successful even if some replicas are down or otherwise not responsive to the write.

The read consistency level specifies how many replicas must respond to a read request before returning
data to the client application. Cassandra checks the specified number of replicas for data to satisfy the
read request.

About built-in consistency repair features

You can use these built-in repair utilities to ensure that data remains consistent across replicas.

• Read repair
• Hinted handoff
• Anti-entropy node repair

Configuring data consistency

Consistency refers to how up-to-date and synchronized a row of Cassandra data is on all of its replicas.
Cassandra extends the concept of eventual consistency by offering tunable consistency. For any given
read or write operation, the client application decides how consistent the requested data must be.

Tunable consistency for client requests

Consistency levels in Cassandra can be configured to manage availability versus data accuracy. A tutorial
in the CQL documentation compares consistency levels using cqlsh tracing. You can configure consistency
on a cluster, data center, or individual I/O operation basis. Consistency among participating nodes can be
set globally and also controlled on a per-operation basis (for example insert or update) using Cassandra’s
drivers and client libraries.

About write consistency

The consistency level determines the number of replicas on which the write must succeed before returning
an acknowledgment to the client application.

Table 6: Write Consistency Levels

Level Description Usage

ALL A write must be written to the
commit log and memtable on all
replica nodes in the cluster for
that partition.

Provides the highest consistency
and the lowest availability of any
other level.

EACH_QUORUM Strong consistency. A write must
be written to the commit log and
memtable on a quorum of replica
nodes in all data centers.

Used in multiple data center
clusters to strictly maintain
consistency at the same level in
each data center. For example,
choose this level if you want a
read to fail when a data center is
down and the QUORUM cannot be
reached on that data center.

QUORUM A write must be written to the
commit log and memtable on a
quorum of replica nodes.

Provides strong consistency if
you can tolerate some level of
failure.

http://en.wikipedia.org/wiki/Eventual_consistency
/documentation/cql/3.1/cql/cql_using/useTracing.html

Database internals

76

Level Description Usage

LOCAL_QUORUM Strong consistency. A write
must be written to the commit
log and memtable on a quorum
of replica nodes in the same
data center as the coordinator
node. Avoids latency of inter-data
center communication.

Used in multiple data center
clusters with a rack-aware
replica placement strategy (
NetworkTopologyStrategy)
and a properly configured
snitch. Fails when using
SimpleStrategy. Use to
maintain consistency locally
(within the single data center).

ONE A write must be written to the
commit log and memtable of at
least one replica node.

Satisfies the needs of most
users because consistency
requirements are not stringent.

TWO A write must be written to the
commit log and memtable of at
least two replica nodes.

Similar to ONE.

THREE A write must be written to the
commit log and memtable of at
least three replica nodes.

Similar to TWO.

LOCAL_ONE A write must be sent to, and
successfully acknowledged by, at
least one replica node in the local
data center.

In a multiple data center clusters,
a consistency level of ONE
is often desirable, but cross-
DC traffic is not. LOCAL_ONE
accomplishes this. For security
and quality reasons, you can use
this consistency level in an offline
datacenter to prevent automatic
connection to online nodes in
other data centers if an offline
node goes down.

ANY A write must be written to at least
one node. If all replica nodes for
the given partition key are down,
the write can still succeed after a
hinted handoff has been written.
If all replica nodes are down at
write time, an ANY write is not
readable until the replica nodes
for that partition have recovered.

Provides low latency and a
guarantee that a write never fails.
Delivers the lowest consistency
and highest availability.

SERIAL Achieves linearizable consistency
for lightweight transactions by
preventing unconditional updates.

You cannot configure this level
as a normal consistency level,
configured at the driver level
using the consistency level field.
You configure this level using the
serial consistency field as part of
the native protocol operation. See
failure scenarios.

LOCAL_SERIAL Same as SERIAL but confined to
the data center. A write must be
written conditionally to the commit
log and memtable on a quorum

Same as SERIAL. Used for
disaster recovery. See failure
scenarios.

/documentation/developer/java-driver/2.1/java-driver/reference/queryBuilderOverview.html?scroll=queryBuilderOverview__setting-query-options-querybuilder-api

Database internals

77

Level Description Usage

of replica nodes in the same data
center.

Even at low consistency levels, the write is still sent to all replicas for the written key, even replicas in other
data centers. The consistency level just determines how many replicas are required to respond that they
received the write.

SERIAL and LOCAL_SERIAL write failure scenarios

If one of three nodes is down, the Paxos commit fails under the following conditions:

• CQL query-configured consistency level of ALL
• Driver-configured serial consistency level of SERIAL
• Replication factor of 3

A WriteTimeout with a WriteType of CAS occurs and further reads do not see the write. If the node goes
down in the middle of the operation instead of before the operation started, the write is committed, the
value is written to the live nodes, and a WriteTimeout with a WriteType of SIMPLE occurs.

Under the same conditions, if two of the nodes are down at the beginning of the operation, the Paxos
commit fails and nothing is committed. If the two nodes go down after the Paxos proposal is accepted,
the write is committed to the remaining live nodes and written there, but a WriteTimeout with WriteType
SIMPLE is returned.

About read consistency

The consistency level specifies how many replicas must respond to a read request before returning data to
the client application.

Cassandra checks the specified number of replicas for data to satisfy the read request.

Table 7: Read Consistency Levels

Level Description Usage

ALL Returns the record after all
replicas have responded. The
read operation will fail if a replica
does not respond.

Provides the highest consistency
of all levels and the lowest
availability of all levels.

EACH_QUORUM Returns the record once a
quorum of replicas in each
data center of the cluster has
responded.

Same as LOCAL_QUORUM

QUORUM Returns the record after a quorum
of replicas has responded from
any data center.

Ensures strong consistency if you
can tolerate some level of failure.

LOCAL_QUORUM Returns the record after a quorum
of replicas in the current data
center as the coordinator node
has reported. Avoids latency of
inter-data center communication.

Used in multiple data center
clusters with a rack-aware
replica placement strategy (
NetworkTopologyStrategy)
and a properly configured
snitch. Fails when using
SimpleStrategy.

ONE Returns a response from the
closest replica, as determined

Provides the highest availability
of all the levels if you can tolerate

Database internals

78

Level Description Usage

by the snitch. By default, a read
repair runs in the background
to make the other replicas
consistent.

a comparatively high probability
of stale data being read. The
replicas contacted for reads may
not always have the most recent
write.

TWO Returns the most recent data
from two of the closest replicas.

Similar to ONE.

THREE Returns the most recent data
from three of the closest replicas.

Similar to TWO.

LOCAL_ONE Returns a response from the
closest replica in the local data
center.

Same usage as described in the
table about write consistency
levels.

SERIAL Allows reading the current (and
possibly uncommitted) state of
data without proposing a new
addition or update. If a SERIAL
read finds an uncommitted
transaction in progress, it will
commit the transaction as part of
the read. Similar to QUORUM.

To read the latest value of a
column after a user has invoked
a lightweight transaction to write
to the column, use SERIAL.
Cassandra then checks the
inflight lightweight transaction for
updates and, if found, returns the
latest data.

LOCAL_SERIAL Same as SERIAL, but confined
to the data center. Similar to
LOCAL_QUORUM.

Used to achieve linearizable
consistency for lightweight
transactions.

About the QUORUM level

The QUORUM level writes to the number of nodes that make up a quorum. A quorum is calculated, and
then rounded down to a whole number, as follows:

(sum_of_replication_factors / 2) + 1

The sum of all the replication_factor settings for each data center is the sum_of_replication_factors.

For example, in a single data center cluster using a replication factor of 3, a quorum is 2 nodes#the cluster
can tolerate 1 replica nodes down. Using a replication factor of 6, a quorum is 4#the cluster can tolerate
2 replica nodes down. In a two data center cluster where each data center has a replication factor of 3, a
quorum is 4 nodes#the cluster can tolerate 2 replica nodes down. In a five data center cluster where each
data center has a replication factor of 3, a quorum is 8 nodes.

If consistency is top priority, you can ensure that a read always reflects the most recent write by using the
following formula:

(nodes_written + nodes_read) > replication_factor

For example, if your application is using the QUORUM consistency level for both write and read operations
and you are using a replication factor of 3, then this ensures that 2 nodes are always written and 2 nodes
are always read. The combination of nodes written and read (4) being greater than the replication factor (3)
ensures strong read consistency.

Configuring client consistency levels

You can use a new cqlsh command, CONSISTENCY, to set the consistency level for the keyspace. The
WITH CONSISTENCY clause has been removed from CQL commands. You set the consistency level
programmatically (at the driver level). For example, call QueryBuilder.insertInto with a setConsistencyLevel
argument. The consistency level defaults to ONE for all write and read operations.

/documentation/cql/3.1/cql/cql_reference/consistency_r.html

Database internals

79

About built-in consistency repair features

You can use these built-in repair utilities to ensure that data remains consistent across replicas.

• Read repair
• Hinted handoff
• Anti-entropy node repair

Read requests

There are three types of read requests that a coordinator can send to a replica:

• A direct read request
• A digest request
• A background read repair request

The coordinator node contacts one replica node with a direct read request. Then the coordinator sends
a digest request to a number of replicas determined by the consistency level specified by the client. The
digest request checks the data in the replica node to make sure it is up to date. Then the coordinator
sends a digest request to all remaining replicas. If any replica nodes have out of date data, a background
read repair request is sent. Read repair requests ensure that the requested row is made consistent on all
replicas.

For a digest request the coordinator first contacts the replicas specified by the consistency level. The
coordinator sends these requests to the replicas that are currently responding the fastest. The nodes
contacted respond with a digest of the requested data; if multiple nodes are contacted, the rows from each
replica are compared in memory to see if they are consistent. If they are not, then the replica that has the
most recent data (based on the timestamp) is used by the coordinator to forward the result back to the
client.

To ensure that all replicas have the most recent version of frequently-read data, the coordinator also
contacts and compares the data from all the remaining replicas that own the row in the background. If the
replicas are inconsistent, the coordinator issues writes to the out-of-date replicas to update the row to the
most recent values. This process is known as read repair. Read repair can be configured per table for
non-QUORUM consistency levels (using read_repair_chance), and is enabled by default.

For illustrated examples of read requests, see the examples of read consistency levels.

Rapid read protection using speculative_retry

Rapid read protection allows Cassandra to still deliver read requests when the originally selected
replica nodes are either down or taking too long to respond. If the table has been configured with the
speculative_retry property, the coordinator node for the read request will retry the request with
another replica node if the original replica node exceeds a configurable timeout value to complete the read
request.

Client

R2

R3

1

2

3

4

5

6

7

8

9

10

11

12

R1

Recovering from replica node failure with rapid read protect ion

replica node failed

coodinator node
resends after

t imeout

Chosen node

Coordinator node

/documentation/cql/3.1/cql/cql_reference/tabProp.html
/documentation/cql/3.1/cql/cql_reference/tabProp.html?scroll=tabProp__morespeculativeRetry

Database internals

80

Examples of read consistency levels

The following diagrams show examples of read requests using these consistency levels:

• QUORUM in a single data center
• ONE in a single data center
• QUORUM in two data centers
• LOCAL_QUORUM in two data centers
• ONE in two data centers
• LOCAL_ONE in two data centers

Rapid read protection diagram shows how the speculative retry table property affects consistency.

A single data center cluster with a consistency level of QUORUM

In a single data center cluster with a replication factor of 3, and a read consistency level of QUORUM, 2
of the 3 replicas for the given row must respond to fulfill the read request. If the contacted replicas have
different versions of the row, the replica with the most recent version will return the requested data. In the
background, the third replica is checked for consistency with the first two, and if needed, a read repair is
initiated for the out-of-date replicas.

Client

R2

R3

1

2

3

4

5

6

7

8

9

10

11

12

R1

Single data center cluster with 3 replica
nodes and consistency set to QUORUM

Read response

Read repair

Chosen node

Coordinator node

A single data center cluster with a consistency level of ONE

In a single data center cluster with a replication factor of 3, and a read consistency level of ONE, the
closest replica for the given row is contacted to fulfill the read request. In the background a read repair is
potentially initiated, based on the read_repair_chance setting of the table, for the other replicas.

Client

R2

R3

1

2

3

4

5

6

7

8

9

10

11

12

R1

Single data center cluster with 3 replica nodes and consistency set to ONE

Read response

Read repair

Chosen node

Coordinator node

Database internals

81

A two data center cluster with a consistency level of QUORUM

In a two data center cluster with a replication factor of 3, and a read consistency of QUORUM, 4 replicas for
the given row must resond to fulfill the read request. The 4 replicas can be from any data center. In the
background, the remaining replicas are checked for consistency with the first four, and if needed, a read
repair is initiated for the out-of-date replicas.

Client

R2

R3

1

2

3

4

5

6

7

8

9

10

11

12

R1

Mult iple data center cluster with 3 replica
nodes and consistency set to QUORUM

1

2

3

4

5

6

7

8

9

10

11

12

R1

Data Center Alpha

Data Center Beta
R2

R3

Read response

Read repair

Chosen node

Coordinator node

A two data center cluster with a consistency level of LOCAL_QUORUM

In a multiple data center cluster with a replication factor of 3, and a read consistency of LOCAL_QUORUM,
2 replicas in the same data center as the coordinator node for the given row must respond to fulfill the
read request. In the background, the remaining replicas are checked for consistency with the first 2, and if
needed, a read repair is initiated for the out-of-date replicas.

Database internals

82

Client

R2

R3

1

2

3

4

5

6

7

8

9

10

11

12

R1

Mult iple data center cluster with 3 replica
nodes and consistency set to LOCAL_QUORUM

1

2

3

4

5

6

7

8

9

10

11

12

R1

Data Center Alpha

Data Center Beta
R2

R3

Read response

Read repair

Chosen node

Coordinator node

A two data center cluster with a consistency level of ONE

In a multiple data center cluster with a replication factor of 3, and a read consistency of ONE, the
closest replica for the given row, regardless of data center, is contacted to fulfill the read request. In the
background a read repair is potentially initiated, based on the read_repair_chance setting of the table,
for the other replicas.

Client

R2

R3

1

2

3

4

5

6

7

8

9

10

11

12

R1

Mult iple data center cluster with 3 replica nodes and consistency set to ONE

1

2

3

4

5

6

7

8

9

10

11

12

R1

Data Center Alpha

Data Center Beta
R3

R2

Read response

Read repair

Chosen node

Coordinator node

Database internals

83

A two data center cluster with a consistency level of LOCAL_ONE

In a multiple data center cluster with a replication factor of 3, and a read consistency of LOCAL_ONE, the
closest replica for the given row in the same data center as the coordinator node is contacted to fulfill the
read request. In the background a read repair is potentially initiated, based on the read_repair_chance
setting of the table, for the other replicas.

Client

R2

R3

1

2

3

4

5

6

7

8

9

10

11

12

R1

Mult iple data center cluster with 3 replica nodes and consistency set to LOCAL_ONE

1

2

3

4

5

6

7

8

9

10

11

12

R1

Data Center Alpha

Data Center Beta
R3

R2

Read response

Read repair

Chosen node

Coordinator node

Write requests

The coordinator sends a write request to all replicas that own the row being written. As long as all replica
nodes are up and available, they will get the write regardless of the consistency level specified by the
client. The write consistency level determines how many replica nodes must respond with a success
acknowledgment in order for the write to be considered successful. Success means that the data was
written to the commit log and the memtable as described in About writes.

For example, in a single data center 10 node cluster with a replication factor of 3, an incoming write will
go to all 3 nodes that own the requested row. If the write consistency level specified by the client is ONE,
the first node to complete the write responds back to the coordinator, which then proxies the success
message back to the client. A consistency level of ONE means that it is possible that 2 of the 3 replicas
could miss the write if they happened to be down at the time the request was made. If a replica misses
a write, Cassandra will make the row consistent later using one of its built-in repair mechanisms: hinted
handoff, read repair, or anti-entropy node repair.

That node forwards the write to all replicas of that row. It responds back to the client once it receives a
write acknowledgment from the number of nodes specified by the consistency level.

Database internals

84

Client

R2

R3

1

2

3

4

5

6

7

8

9

10

11

12

R1

Single data center cluster with 3 replica nodes and consistency set to ONE

Write response

Chosen node

Coordinator node

Multiple data center write requests

In multiple data center deployments, Cassandra optimizes write performance by choosing one coordinator
node. The coordinator node contacted by the client application forwards the write request to each replica
node in each all the data centers.

If using a consistency level of LOCAL_ONE or LOCAL_QUORUM, only the nodes in the same data center
as the coordinator node must respond to the client request in order for the request to succeed. This way,
geographical latency does not impact client request response times.

Client

R2

R3

1

2

3

4

5

6

7

8

9

10

11

12

R1

Mult iple data center cluster with 3 replica
nodes and consistency set to QUORUM

1

2

3

4

5

6

7

8

9

10

11

12

R1

Data Center Alpha

Data Center Beta
R2

R3

Write response

Nodes that m ake up a quorum

Coordinator node

Configuration

85

Configuration

The cassandra.yaml configuration file
The cassandra.yaml file is the main configuration file for Cassandra.

Important: After changing properties in the cassandra.yaml file, you must restart the node for
the changes to take effect. It is located in the following directories:

• Cassandra Package installations: /etc/cassandra/conf
• Cassandra Tarball installations: install_location/conf
• DataStax Enterprise Package installations: /etc/dse/cassandra
• DataStax Enterprise Tarball installations: install_location/resources/cassandra/conf

The configuration properties are grouped into the following sections:

• Quick start

The minimal properties needed for configuring a cluster.
• Commonly used

Properties most frequently used when configuring Cassandra.
• Performance tuning

Tuning performance and system resource utilization, including commit log, compaction, memory, disk I/
O, CPU, reads, and writes.

• Advanced

Properties for advanced users or properties that are less commonly used.
• Security

Server and client security settings.

Note: Values with note indicate default values that are defined internally, missing, commented out,
or implementation depends on other properties in the cassandra.yaml file. Additionally, some
commented out values may not match the actual default value; these values are recommended
when changing from the default.

Quick start properties

The minimal properties needed for configuring a cluster.

Related information: Initializing a multiple node cluster (single data center) and Initializing a multiple node
cluster (multiple data centers).

cluster_name

(Default: Test Cluster) The name of the cluster. This setting prevents nodes in one logical cluster from joining
another. All nodes in a cluster must have the same value.

listen_address

(Default: localhost) The IP address or hostname that Cassandra binds to for listening to other Cassandra
nodes. If you do not know if or have your networking properly configured, it's best to use your private IP
addresses. If you want your nodes to be able to communicate, you must change this setting:

• Generally set to empty. If the node is properly configured (host name, name resolution, and so on),
Cassandra uses InetAddress.getLocalHost() to get the local address from the system.

• For a single node cluster, you can use the default setting (localhost).
• If Cassandra can't find the correct address, you must specify the IP address or host name.

Configuration

86

• Never specify 0.0.0.0; it is always wrong.

Default directories

If you have changed any of the default directories during installation, make sure you have root access and
set these properties:

commitlog_directory

(Default: Packaged installs: /var/lib/cassandra/commitlog, Tarball installs: install_location/
data/commitlog) The directory where the commit log is stored. For optimal write performance, it is
recommended the commit log be on a separate disk partition (ideally, a separate physical device) from the
data file directories. Using an HDD is acceptable because the commit log is append only.

data_file_directories

(Default:Packaged installs: /var/lib/cassandra/data, Tarball installs: install_location/data/
data) The directory location where table data (SSTables) is stored. As a production best practice, use RAID
0 and SSDs.

saved_caches_directory

(Default: Packaged installs: /var/lib/cassandra/saved_caches, Tarball installs:
install_location/data/saved_caches) The directory location where table key and row caches are
stored.

Commonly used properties

Properties most frequently used when configuring Cassandra.

Before starting a node for the first time, you should carefully evaluate your requirements.

Common initialization properties

Note: Be sure to set the properties in the Quick start section as well.

commit_failure_policy

(Default: stop) Policy for commit disk failures:

• stop: Shut down gossip and Thrift, leaving the node effectively dead, but can be inspected using JMX.
• stop_commit: Shut down the commit log, letting writes collect but continuing to service reads (as in

pre-2.0.5 Cassandra).
• ignore: Ignore fatal errors and let the batches fail.

disk_failure_policy

(Default: stop) Sets how Cassandra responds to disk failure.

• stop: Shuts down gossip and Thrift, leaving the node effectively dead, but it can still be inspected using
JMX.

• stop_paranoid: Shut down gossip and Thrift even for single-SSTable errors.
• best_effort: Cassandra does its best in the event of disk errors. If it cannot write to a disk, the disk is

blacklisted for writes and the node continues writing elsewhere. If Cassandra cannot read from the disk,
those SSTables are marked unreadable, and the node continues serving data from readable SSTables.
This means you will see obsolete data at consistency level of ONE.

• ignore: Use for upgrading. Cassandra acts as in versions prior to 1.2. Ignores fatal errors and lets the
requests fail; all file system errors are logged but otherwise ignored. It is recommended using stop or
best_effort.

Related information: Handling Disk Failures In Cassandra 1.2 blog

endpoint_snitch

(Default: org.apache.cassandra.locator.SimpleSnitch) Sets which snitch Cassandra uses for
locating nodes and routing requests. It must be set to a class that implements IEndpointSnitch. For
descriptions of the available snitches, see Snitches.

http://www.datastax.com/dev/blog/handling-disk-failures-in-cassandra-1-2

Configuration

87

Note: The GossipingPropertyFileSnitch is recommended for production. It defines a node's data
center and rack and uses gossip for propagating this information to other nodes.

rpc_address

(Default: localhost) The listen address for client connections. Valid values are:

• 0.0.0.0: Listens on all configured interfaces.
• IP address
• hostname
• unset: Resolves the address using the hostname configuration of the node. If left unset, the hostname

must resolve to the IP address of this node using /etc/hostname, /etc/hosts, or DNS.

Related information: Network

seed_provider

The addresses of hosts deemed contact points. Cassandra nodes use the -seeds list to find each other and
learn the topology of the ring.

• class_name (Default: org.apache.cassandra.locator.SimpleSeedProvider) The class within
Cassandra that handles the seed logic. It can be customized, but this is typically not required.

• -seeds (Default: 127.0.0.1) A comma-delimited list of IP addresses. When running multiple nodes, you
must change the list from the default value. In multiple data-center clusters, the list should include at
least one node from each data center (replication group). See Initializing a multiple node cluster (single
data center) and Initializing a multiple node cluster (multiple data centers).

Related information: Initializing a multiple node cluster (single data center) and Initializing a multiple node
cluster (multiple data centers).

Common compaction settings

compaction_throughput_mb_per_sec

(Default: 16) Throttles compaction to the specified total throughput across the entire system. The faster you
insert data, the faster you need to compact in order to keep the SSTable count down. The recommended
Value is 16 to 32 times the rate of write throughput (in MB/second). Setting the value to 0 disables
compaction throttling.

Related information: Configuring compaction

Common memtable settings

memtable_total_space_in_mb

(Default: 1/4 of the heap)note Specifies the total memory used for all memtables on a node. This replaces
the per-table storage settings memtable_operations_in_millions and memtable_throughput_in_mb.

Related information: Tuning the Java heap

Common disk settings

concurrent_reads

(Default: 32) For workloads with more data than can fit in memory, the bottleneck is reads fetching data
from disk. Setting to (16 × number_of_drives) allows operations to queue low enough in the stack so that
the OS and drives can reorder them.

concurrent_writes

(Default: 32) Writes in Cassandra are rarely I/O bound, so the ideal number of concurrent writes depends
on the number of CPU cores in your system. The recommended value is 8 × number_of_cpu_cores.

Common automatic backup settings

incremental_backups

(Default: false) Backs up data updated since the last snapshot was taken. When enabled, Cassandra creates
a hard link to each SSTable flushed or streamed locally in a backups/ subdirectory of the keyspace data.
Removing these links is the operator's responsibility.

Configuration

88

Related information: Enabling incremental backups

snapshot_before_compaction

(Default: false) Enable or disable taking a snapshot before each compaction. This option is useful to back
up data when there is a data format change. Be careful using this option because Cassandra does not clean
up older snapshots automatically.

Related information: Configuring compaction

Common fault detection setting

phi_convict_threshold

(Default: 8)note Adjusts the sensitivity of the failure detector on an exponential scale. Lower values increase
the likelihood that an unresponsive node will be marked as down, while higher values decrease the likelihood
that transient failures will cause a node failure. In unstable network environments (such as EC2 at times),
raising the value to 10 or 12 helps prevent false failures. Values higher than 12 and lower than 5 are not
recommended.

Related information: Failure detection and recovery

Performance tuning properties

Tuning performance and system resource utilization, including commit log, compaction, memory, disk I/O,
CPU, reads, and writes.

Commit log settings

commitlog_sync

(Default: periodic) The method that Cassandra uses to acknowledge writes in milliseconds:

• periodic: Used with commitlog_sync_period_in_ms (Default: 10000 - 10 seconds) to control how often
the commit log is synchronized to disk. Periodic syncs are acknowledged immediately.

• batch: Used with commitlog_sync_batch_window_in_ms (Default: disabled)note to control how long
Cassandra waits for other writes before performing a sync. When using this method, writes are not
acknowledged until fsynced to disk.

Related information: Durability

commitlog_periodic_queue_size

(Default: 1024 × number_of_cpu_cores) pending entries on the commitlog queue). When writing very large
blobs, reduce this number. For example, 16 × number_of_cpu_cores works reasonably well for 1MB blobs.
This setting should be at least as large as the concurrent_writes setting.

commitlog_segment_size_in_mb

(Default: 32) Sets the size of the individual commitlog file segments. A commitlog segment may be archived,
deleted, or recycled after all its data has been flushed to SSTables. This amount of data can potentially
include commitlog segments from every table in the system. The default size is usually suitable for most
commitlog archiving, but if you want a finer granularity, 8 or 16 MB is reasonable. See Commit log archive
configuration.

commitlog_total_space_in_mb

(Default: 32 for 32-bit JVMs, 1024 for 64-bit JVMs)note Total space used for commitlogs. If the used space
goes above this value, Cassandra rounds up to the next nearest segment multiple and flushes memtables to
disk for the oldest commitlog segments, removing those log segments. This reduces the amount of data to
replay on start-up, and prevents infrequently-updated tables from indefinitely keeping commitlog segments.
A small total commitlog space tends to cause more flush activity on less-active tables.

Related information: Configuring memtable throughput

Compaction settings

Related information: Configuring compaction

Configuration

89

compaction_preheat_key_cache

(Default: true) When set to true, cached row keys are tracked during compaction, and re-cached to their
new positions in the compacted SSTable. If you have extremely large key caches for tables, set the value
to false; see Global row and key caches properties.

concurrent_compactors

(Default: 1 per CPU core)note Sets the number of concurrent compaction processes allowed to run
simultaneously on a node, not including validation compactions for anti-entropy repair. Simultaneous
compactions help preserve read performance in a mixed read-write workload by mitigating the tendency of
small SSTables to accumulate during a single long-running compaction. If compactions run too slowly or
too fast, change compaction_throughput_mb_per_sec first.

in_memory_compaction_limit_in_mb

(Default: 64) Size limit for rows being compacted in memory. Larger rows spill to disk and use a slower
two-pass compaction process. When this occurs, a message is logged specifying the row key. The
recommended value is 5 to 10 percent of the available Java heap size.

multithreaded_compaction

(Default: false) When set to true, each compaction operation uses one thread per core and one thread per
SSTable being merged. This is typically useful only on nodes with SSD hardware. With HDD hardware, the
goal is to limit the disk I/O for compaction (see compaction_throughput_mb_per_sec).

Note: It is strongly recommended to not enable multithreaded_compaction. In most cases it has
severe performance impact. See CASSANDRA-6142.

preheat_kernel_page_cache

(Default: false) Enable or disable kernel page cache preheating from contents of the key cache after
compaction. When enabled it preheats only first page (4KB) of each row to optimize for sequential access.
It can be harmful for fat rows, see CASSANDRA-4937 for more details.

Memtable settings

file_cache_size_in_mb

(Default: smaller of 1/4 heap or 512) Total memory to use for SSTable-reading buffers.

memtable_flush_queue_size

(Default: 4) The number of full memtables to allow pending flush (memtables waiting for a write thread). At
a minimum, set to the maximum number of indexes created on a single table.

Related information: Flushing data from the memtable

memtable_flush_writers

(Default: 1 per data directory)note Sets the number of memtable flush writer threads. These threads are
blocked by disk I/O, and each one holds a memtable in memory while blocked. If you have a large Java
heap size and many data directories, you can increase the value for better flush performance.

Related information: Flushing data from the memtable

Cache and index settings

column_index_size_in_kb

(Default: 64) Add column indexes to a row when the data reaches this size. This value defines how much
row data must be de-serialized to read the column. Increase this setting if your column values are large or if
you have a very large number of columns. If consistently reading only a few columns from each row or doing
many partial-row reads, keep it small. All index data is read for each access, so take that into consideration
when setting the index size.

populate_io_cache_on_flush

(Default: false)note Adds newly flushed or compacted SSTables to the operating system page cache,
potentially evicting other cached data to make room. Enable when all data in the table is expected to fit in
memory. See also the global option, compaction_preheat_key_cache.

https://issues.apache.org/jira/browse/CASSANDRA-6142
https://issues.apache.org/jira/browse/CASSANDRA-4937

Configuration

90

Related information: CQLCompression Subproperties in CQL for Cassandra 2.x.

reduce_cache_capacity_to

(Default: 0.6) Sets the size percentage to which maximum cache capacity is reduced when Java heap usage
reaches the threshold defined by reduce_cache_sizes_at.

reduce_cache_sizes_at

(Default: 0.85) When Java heap usage (after a full concurrent mark sweep (CMS) garbage collection)
exceeds this percentage, Cassandra reduces the cache capacity to the fraction of the current size as
specified by reduce_cache_capacity_to. To disable, set the value to 1.0.

Disks settings

stream_throughput_outbound_megabits_per_sec

(Default: 200)note Throttles all outbound streaming file transfers on a node to the specified throughput.
Cassandra does mostly sequential I/O when streaming data during bootstrap or repair, which can lead to
saturating the network connection and degrading client (RPC) performance.

trickle_fsync

(Default: false) When doing sequential writing, enabling this option tells fsync to force the operating system
to flush the dirty buffers at a set interval trickle_fsync_interval_in_kb. Enable this parameter to avoid sudden
dirty buffer flushing from impacting read latencies. Recommended to use on SSDs, but not on HDDs.

trickle_fsync_interval_in_kb

(Default: 10240]). Sets the size of the fsync in kilobytes.

Advanced properties

Properties for advanced users or properties that are less commonly used.

Advanced initialization properties

auto_bootstrap

(Default: true) This setting has been removed from default configuration. It makes new (non-seed) nodes
automatically migrate the right data to themselves. When initializing a fresh cluster without data, add
auto_bootstrap: false.

Related information: Initializing a multiple node cluster (single data center) and Initializing a multiple node
cluster (multiple data centers).

batch_size_warn_threshold_in_kb

(Default: 5kb per batch) Log WARN on any batch size exceeding this value in kilobytes. Caution should be
taken on increasing the size of this threshold as it can lead to node instability.

broadcast_address

(Default: listen_address)note The IP address a node tells other nodes in the cluster to contact it by. It allows
public and private address to be different. For example, use the broadcast_address parameter in topologies
where not all nodes have access to other nodes by their private IP addresses.

If your Cassandra cluster is deployed across multiple Amazon EC2 regions and you use the
EC2MultiRegionSnitch, set the broadcast_address to public IP address of the node and the
listen_address to the private IP. See EC2MultiRegionSnitch.

initial_token

(Default: disabled) Used in the single-node-per-token architecture, where a node owns exactly one
contiguous range in the ring space. Setting this property overrides num_tokens.

If you not using vnodes or have num_tokens set it to 1 or unspecified (#num_tokens), you should always
specify this parameter when setting up a production cluster for the first time and when adding capacity. For
more information, see this parameter in the Cassandra 1.1 Node and Cluster Configuration documentation.

num_tokens

/documentation/cql/3.1/cql/cql_reference/compressSubprop.html#compressSubprop__table_compression
http://www.datastax.com/docs/1.1/configuration/node_configuration#initial-token

Configuration

91

(Default: 256)note Defines the number of tokens randomly assigned to this node on the ring when using
virtual nodes (vnodes). The more tokens, relative to other nodes, the larger the proportion of data that
the node stores. Generally all nodes should have the same number of tokens assuming equal hardware
capability. The recommended value is 256. If unspecified (#num_tokens), Cassandra uses 1 (equivalent
to #num_tokens : 1) for legacy compatibility and uses the initial_token setting.

If you do not wish to use vnodes, comment #num_tokens : 256 or set num_tokens : 1 and use
initial_token. If you already have an existing cluster with one token per node and wish to migrate to vnodes,
see Enabling virtual nodes on an existing production cluster.

Note: If using DataStax Enterprise, the default setting of this property depends on the type of node
and type of install.

partitioner

(Default: org.apache.cassandra.dht.Murmur3Partitioner) Distributes rows (by key) across
nodes in the cluster. Any IPartitioner may be used, including your own as long as it is in the class path.
Cassandra provides the following partitioners for backwards compatibility:

• RandomPartitioner

• ByteOrderedPartitioner

• OrderPreservingPartitioner (deprecated)

Related information: Partitioners

storage_port

(Default: 7000) The port for inter-node communication.

Advanced automatic backup setting

auto_snapshot

(Default: true) Enable or disable whether a snapshot is taken of the data before keyspace truncation or
dropping of tables. To prevent data loss, using the default setting is strongly advised. If you set to false,
you will lose data on truncation or drop.

Key caches and global row properties

When creating or modifying tables, you enable or disable the key cache (partition key cache) or row cache
for that table by setting the caching parameter. Other row and key cache tuning and configuration options
are set at the global (node) level. Cassandra uses these settings to automatically distribute memory for
each table on the node based on the overall workload and specific table usage. You can also configure the
save periods for these caches globally.

Related information: Configuring caches

key_cache_keys_to_save

(Default: disabled - all keys are saved)note Number of keys from the key cache to save.

key_cache_save_period

(Default: 14400 - 4 hours) Duration in seconds that keys are saved in cache. Caches are saved to
saved_caches_directory. Saved caches greatly improve cold-start speeds and has relatively little effect on
I/O.

key_cache_size_in_mb

(Default: empty) A global cache setting for tables. It is the maximum size of the key cache in memory. When
no value is set, the cache is set to the smaller of 5% of the available heap, or 100MB. To disable set to 0.

row_cache_keys_to_save

(Default: disabled - all keys are saved)note Number of keys from the row cache to save.

row_cache_size_in_mb

(Default: 0 - disabled) A global cache setting for tables.

row_cache_save_period

Configuration

92

(Default: 0 - disabled) Duration in seconds that rows are saved in cache. Caches are saved to
saved_caches_directory.

memory_allocator

(Default: NativeAllocator) The off-heap memory allocator. In addition to caches, this property affects storage
engine metadata. Supported values:

• NativeAllocator
• JEMallocAllocator - Experiments show that jemalloc saves some memory compared to the native

allocator because it is more fragmentation resistant. To use, install jemalloc as a library and modify
cassandra-env.sh (instructions in file).

Tombstone settings

When executing a scan, within or across a partition, tombstones must be kept in memory to allow returning
them to the coordinator. The coordinator uses them to ensure other replicas know about the deleted rows.
Workloads that generate numerous tombstones may cause performance problems and exhaust the server
heap. Adjust these thresholds only if you understand the impact and want to scan more tombstones.
Additionally, you can adjust these thresholds at runtime using the StorageServiceMBean.

Related information: Cassandra anti-patterns: Queues and queue-like datasets

tombstone_warn_threshold

(Default: 1000) The maximum number of tombstones a query can scan before warning.

tombstone_failure_threshold

(Default: 100000) The maximum number of tombstones a query can scan before aborting.

Network timeout settings

range_request_timeout_in_ms

(Default: 10000) The time in milliseconds that the coordinator waits for sequential or index scans to complete.

read_request_timeout_in_ms

(Default: 10000) The time in milliseconds that the coordinator waits for read operations to complete.

cas_contention_timeout_in_ms

(Default: 1000) The time in milliseconds that the coordinator continues to retry a CAS (compare and set)
operation that contends with other proposals for the same row.

truncate_request_timeout_in_ms

(Default: 60000) The time in milliseconds that the coordinator waits for truncates to complete. The long
default value allows for flushing of all tables, which ensures that anything in the commitlog is removed that
could cause truncated data to reappear. If auto_snapshot is disabled, you can reduce this time.

write_request_timeout_in_ms

(Default: 10000) The time in milliseconds that the coordinator waits for write operations to complete.

request_timeout_in_ms

(Default: 10000) The default time out in milliseconds for other, miscellaneous operations.

Related information: About hinted handoff writes

Inter-node settings

cross_node_timeout

(Default: false) Enable or disable operation timeout information exchange between nodes (to accurately
measure request timeouts). If disabled Cassandra assumes the request was forwarded to the replica
instantly by the coordinator.

Caution: Before enabling this property make sure NTP (network time protocol) is installed and the
times are synchronized between the nodes.

internode_send_buff_size_in_bytes

http://www.datastax.com/dev/blog/cassandra-anti-patterns-queues-and-queue-like-datasets

Configuration

93

(Default: N/A)note Sets the sending socket buffer size in bytes for inter-node calls.

internode_recv_buff_size_in_bytes

(Default: N/A)note Sets the receiving socket buffer size in bytes for inter-node calls.

internode_compression

(Default: all) Controls whether traffic between nodes is compressed. The valid values are:

• all: All traffic is compressed.
• dc: Traffic between data centers is compressed.
• none: No compression.

inter_dc_tcp_nodelay

(Default: false) Enable or disable tcp_nodelay for inter-data center communication. When disabled larger,
but fewer, network packets are sent. This reduces overhead from the TCP protocol itself. However, if cross
data-center responses are blocked, it will increase latency.

streaming_socket_timeout_in_ms

(Default: 0 - never timeout streams)note Enable or disable socket timeout for streaming operations. When
a timeout occurs during streaming, streaming is retried from the start of the current file. Avoid setting this
value too low, as it can result in a significant amount of data re-streaming.

Native transport (CQL Binary Protocol)

start_native_transport

(Default: true) Enable or disable the native transport server. Note that the address on which the native
transport is bound is the same as the rpc_address. However, the port is different from the rpc_port and
specified in native_transport_port.

native_transport_port

(Default: 9042) Port on which the CQL native transport listens for clients.

native_transport_max_threads

(Default: 128)note The maximum number of thread handling requests. The meaning is the same as
rpc_max_threads.

native_transport_max_frame_size_in_mb

(Default: 256MB) The maximum size of allowed frame. Frame (requests) larger than this are rejected as
invalid.

RPC (remote procedure call) settings

Settings for configuring and tuning client connections.

rpc_port

(Default: 9160) The port for the Thrift RPC service, which is used for client connections.

start_rpc

(Default: true) Starts the Thrift RPC server.

rpc_keepalive

(Default: true) Enable or disable keepalive on client connections.

rpc_max_threads

(Default: unlimited)note Regardless of your choice of RPC server (rpc_server_type), the number of maximum
requests in the RPC thread pool dictates how many concurrent requests are possible. However, if you are
using the parameter sync in the rpc_server_type, it also dictates the number of clients that can be connected.
For a large number of client connections, this could cause excessive memory usage for the thread stack.
Connection pooling on the client side is highly recommended. Setting a maximum thread pool size acts as a
safeguard against misbehaved clients. If the maximum is reached, Cassandra blocks additional connections
until a client disconnects.

rpc_min_threads

Configuration

94

(Default: 16)note Sets the minimum thread pool size for remote procedure calls.

rpc_recv_buff_size_in_bytes

(Default: N/A)note Sets the receiving socket buffer size for remote procedure calls.

rpc_send_buff_size_in_bytes

(Default: N/A)note Sets the sending socket buffer size in bytes for remote procedure calls.

rpc_server_type

(Default: sync) Cassandra provides three options for the RPC server. On Windows, sync is about 30%
slower than hsha. On Linux, sync and hsha performance is about the same, but hsha uses less memory.

• sync: (default) One connection per thread in the RPC pool. For a very large number of clients, memory
is the limiting factor. On a 64 bit JVM, 128KB is the minimum stack size per thread. Connection pooling
is strongly recommended.

• hsha: Half synchronous, half asynchronous. The RPC thread pool is used to manage requests, but the
threads are multiplexed across the different clients. All Thrift clients are handled asynchronously using
a small number of threads that does not vary with the number of clients (and thus scales well to many
clients). The RPC requests are synchronous (one thread per active request).

• Your own RPC server: You must provide a fully-qualified class name of an o.a.c.t.TServerFactory
that can create a server instance.

Advanced fault detection settings

Settings to handle poorly performing or failing nodes.

dynamic_snitch_badness_threshold

(Default: 0.1) Sets the performance threshold for dynamically routing requests away from a poorly
performing node. A value of 0.2 means Cassandra continues to prefer the static snitch values until the
node response time is 20% worse than the best performing node. Until the threshold is reached, incoming
client requests are statically routed to the closest replica (as determined by the snitch). Having requests
consistently routed to a given replica can help keep a working set of data hot when read repair is less than 1.

dynamic_snitch_reset_interval_in_ms

(Default: 600000) Time interval in milliseconds to reset all node scores, which allows a bad node to recover.

dynamic_snitch_update_interval_in_ms

(Default: 100) The time interval in milliseconds for calculating read latency.

hinted_handoff_enabled

(Default: true) Enable or disable hinted handoff. It can also contain a list of data centers to enable per data-
center. For example hinted_handoff_enabled: DC1,DC2. A hint indicates that the write needs to be replayed
to an unavailable node. Where Cassandra writes the hint depends on the version:

• Prior to 1.0: Writes to a live replica node.
• 1.0 and later: Writes to the coordinator node.

Related information: About hinted handoff writes

hinted_handoff_throttle_in_kb

(Default: 1024) Maximum throttle per delivery thread in kilobytes per second. This rate reduces proportionally
to the number of nodes in the cluster. For example, if there are two nodes in the cluster, each delivery thread
will use the maximum rate; if there are three, each node will throttle to half of the maximum, since the two
nodes are expected to deliver hints simultaneously.

max_hint_window_in_ms

(Default: 10800000 - 3 hours) Defines how long in milliseconds to generate and save hints for an
unresponsive node. After this interval, new hints are no longer generated until the node is back up and
responsive. If the node goes down again, a new interval begins. This setting can prevent a sudden demand
for resources when a node is brought back online and the rest of the cluster attempts to replay a large
volume of hinted writes.

Configuration

95

Related information: Failure detection and recovery

max_hints_delivery_threads

(Default: 2) Number of threads with which to deliver hints. For multiple data center deployments, consider
increasing this number because cross data-center handoff is generally slower.

batchlog_replay_throttle_in_kb

(Default: 1024) Maximum throttle in KBs per second, total. It is reduced proportionally to the number of
nodes in the cluster.

Request scheduler properties

Settings to handle incoming client requests according to a defined policy. If you need to use these
properties, your nodes are overloaded and dropping requests. It is recommended that you add more nodes
and not try to prioritize requests.

request_scheduler

(Default: org.apache.cassandra.scheduler.NoScheduler) Defines a scheduler to handle incoming
client requests according to a defined policy. This scheduler is useful for throttling client requests in single
clusters containing multiple keyspaces. This is specifically for requests from the client and does not affect
inter-node communication. Valid values are:

• org.apache.cassandra.scheduler.NoScheduler: No scheduling takes place and does not have
any options.

• org.apache.cassandra.scheduler.RoundRobinScheduler: See request_scheduler_options
properties.

• A Java class that implements the RequestScheduler interface.

request_scheduler_id

(Default: keyspace)note An identifier on which to perform request scheduling. Currently the only valid value
is keyspace.

request_scheduler_options

(Default: disabled) Contains a list of properties that define configuration options for request_scheduler:

• throttle_limit: (Default: 80) The number of active requests per client. Requests beyond this limit
are queued up until running requests complete. Recommended value is ((concurrent_reads +
concurrent_writes) × 2).

• default_weight: (Default: 5)note How many requests are handled during each turn of the RoundRobin.
• weights: (Default: Keyspace1: 1, Keyspace2: 5) How many requests are handled during each turn of the

RoundRobin, based on the request_scheduler_id. Takes a list of keyspaces: weights.

Thrift interface properties

Legacy API for older clients. CQL is a simpler and better API for Cassandra.

thrift_framed_transport_size_in_mb

(Default: 15) Frame size (maximum field length) for Thrift. The frame is the row or part of the row that the
application is inserting.

thrift_max_message_length_in_mb

(Default: 16) The maximum length of a Thrift message in megabytes, including all fields and internal Thrift
overhead (1 byte of overhead for each frame). Message length is usually used in conjunction with batches.
A frame length greater than or equal to 24 accommodates a batch with four inserts, each of which is 24
bytes. The required message length is greater than or equal to 24+24+24+24+4 (number of frames).

Security properties

Server and client security settings.

authenticator

/documentation/cql/3.1/cql/cql_intro_c.html

Configuration

96

(Default: AllowAllAuthenticator) The authentication backend. It implements IAuthenticator, which is
used to identify users. The available authenticators are:

• AllowAllAuthenticator: Disables authentication; no checks are performed.
• PasswordAuthenticator: Authenticates users with user names and hashed passwords stored in

the system_auth.credentials table. If you use this authenticator, increase the system_auth keyspace
replication factor.

Related information: Internal authentication

internode_authenticator

(Default: enabled)note Internode authentication backend, implementing
org.apache.cassandra.auth.AllowAllInternodeAuthenticator. Allows or disallows
connections from peer nodes.

authorizer

(Default: AllowAllAuthorizer) The authorization backend. It implements IAuthenticator, which limits
access and provides permissions. The available authorizers are:

• AllowAllAuthorizer: Disables authorization; allows any action to any user.
• CassandraAuthorizer: Stores permissions in system_auth.permissions table. If you use this

authenticator, increase the system_auth keyspace replication factor.

Related information: Object permissions

permissions_validity_in_ms

(Default: 2000) How long permissions in cache remain valid. Depending on the authorizer, fetching
permissions can be resource intensive. This setting is automatically disabled when AllowAllAuthorizer
is set.

Related information: Object permissions

server_encryption_options

Enable or disable inter-node encryption. You must also generate keys and provide the appropriate key and
trust store locations and passwords. No custom encryption options are currently enabled. The available
options are:

• internode_encryption: (Default: none) Enable or disable encryption of inter-node communication
using the TLS_RSA_WITH_AES_128_CBC_SHA cipher suite for authentication, key exchange, and
encryption of data transfers. The available inter-node options are:

• all: Encrypt all inter-node communications.
• none: No encryption.
• dc: Encrypt the traffic between the data centers (server only).
• rack: Encrypt the traffic between the racks(server only).

• keystore: (Default: conf/.keystore) The location of a Java keystore (JKS) suitable for use with Java
Secure Socket Extension (JSSE), which is the Java version of the Secure Sockets Layer (SSL), and
Transport Layer Security (TLS) protocols. The keystore contains the private key used to encrypt outgoing
messages.

• keystore_password: (Default: cassandra) Password for the keystore.
• truststore: (Default: conf/.truststore) Location of the truststore containing the trusted certificate for

authenticating remote servers.
• truststore_password: (Default: cassandra) Password for the truststore.

The passwords used in these options must match the passwords used when generating the keystore and
truststore. For instructions on generating these files, see Creating a Keystore to Use with JSSE.

The advanced settings are:

• protocol: (Default: TLS)
• algorithm: (Default: SunX509)

http://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html#CreateKeystore

Configuration

97

• store_type: (Default: JKS)
• cipher_suites: (Default:

TLS_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_256_CBC_SHA)
• require_client_auth: (Default: false) Enables or disables certificate authentication.

Related information: Node-to-node encryption

client_encryption_options

Enable or disable client-to-node encryption. You must also generate keys and provide the appropriate key
and trust store locations and passwords. No custom encryption options are currently enabled. The available
options are:

• enabled: (Default: false) To enable, set to true.
• keystore: (Default: conf/.keystore) The location of a Java keystore (JKS) suitable for use with Java

Secure Socket Extension (JSSE), which is the Java version of the Secure Sockets Layer (SSL), and
Transport Layer Security (TLS) protocols. The keystore contains the private key used to encrypt outgoing
messages.

• keystore_password: (Default: cassandra) Password for the keystore. This must match the password
used when generating the keystore and truststore.

• require_client_auth: (Default: false) Enables or disables certificate authentication. (Available starting with
Cassandra 1.2.3.)

• truststore: (Default: conf/.truststore) Set if require_client_auth is true.
• truststore_password: <truststore_password> Set if require_client_auth is true.

The advanced settings are:

• protocol: (Default: TLS)
• algorithm: (Default: SunX509)
• store_type: (Default: JKS)
• cipher_suites: (Default:

TLS_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_256_CBC_SHA)

Related information: Client-to-node encryption

ssl_storage_port

(Default: 7001) The SSL port for encrypted communication. Unused unless enabled in encryption_options.

Configuring gossip settings

About this task

When a node first starts up, it looks at its cassandra.yaml configuration file to determine the name of the
Cassandra cluster it belongs to; which nodes (called seeds) to contact to obtain information about the other
nodes in the cluster; and other parameters for determining port and range information.

Procedure

In the cassandra.yaml file, set the following parameters:

Property Description

cluster_name Name of the cluster that this node is joining. Must
be the same for every node in the cluster.

listen_address The IP address or hostname that Cassandra binds
to for listening to other Cassandra nodes.

(Optional) broadcast_address The IP address a node tells other nodes in the
cluster to contact it by. It allows public and private

Configuration

98

Property Description

address to be different. For example, use the
broadcast_address parameter in topologies
where not all nodes have access to other nodes
by their private IP addresses. The default is the
listen_address.

seed_provider A -seeds list is comma-delimited list of hosts (IP
addresses) that gossip uses to learn the topology
of the ring. Every node should have the same list
of seeds. In multiple data-center clusters, the seed
list should include a node from each data center.

storage_port The inter-node communication port (default is
7000). Must be the same for every node in the
cluster.

initial_token For legacy clusters. Used in the single-node-per-
token architecture, where a node owns exactly
one contiguous range in the ring space.

num_tokens For new clusters. Defines the number of tokens
randomly assigned to this node on the ring when
using virtual nodes (vnodes).

Configuring the heap dump directory
Analyzing the heap dump file can help troubleshoot memory problems.

About this task

Cassandra starts Java with the option -XX:-HeapDumpOnOutOfMemoryError. Using this option triggers
a heap dump in the event of an out-of-memory condition. The heap dump file consists of references to
objects that cause the heap to overflow. By default, Cassandra puts the file a subdirectory of the working,
root directory when running as a service. If Cassandra does not have write permission to the root directory,
the heap dump fails. If the root directory is too small to accommodate the heap dump, the server crashes.

For a heap dump to succeed and to prevent crashes, configure a heap dump directory that meets these
requirements:

• Accessible to Cassandra for writing
• Large enough to accommodate a heap dump

This file is located in:

• Packaged installs: /etc/dse/cassandra
• Tarball installs: install_location/resources/cassandra/conf

Base the size of the directory on the value of the Java -mx option.

Procedure

1. Open the cassandra-env.sh file for editing.

set jvm HeapDumpPath with CASSANDRA_HEAPDUMP_DIR

2. Scroll down to the comment about the heap dump path:

set jvm HeapDumpPath with CASSANDRA_HEAPDUMP_DIR

3. On the line after the comment, set the CASSANDRA_HEAPDUMP_DIR to the path you want to use:

Configuration

99

set jvm HeapDumpPath with CASSANDRA_HEAPDUMP_DIR
CASSANDRA_HEAPDUMP_DIR =<path>

4. Save the cassandra-env.sh file and restart.

Generating tokens
If not using virtual nodes (vnodes), you still need to calculate tokens for your cluster.

The following topics in the Cassandra 1.1 documentation provide conceptual information about tokens:

• Data Distribution in the Ring
• Replication Strategy

About calculating tokens for single or multiple data centers in Cassandra 1.2 and later

• Single data center deployments: calculate tokens by dividing the hash range by the number of nodes in
the cluster.

• Multiple data center deployments: calculate the tokens for each data center so that the hash range is
evenly divided for the nodes in each data center.

For more explanation, see be sure to read the conceptual information mentioned above.

The method used for calculating tokens depends on the type of partitioner:

Calculating tokens for the Murmur3Partitioner

Use this method for generating tokens when you are not using virtual nodes (vnodes) and using the
Murmur3Partitioner (default). This partitioner uses a maximum possible range of hash values from -2 63 to
+2 63 -1. To calculate tokens for this partitioner:

python -c 'print [str(((2**64 / number_of_tokens) * i) - 2**63) for i in
 range(number_of_tokens)]'

For example, to generate tokens for 6 nodes:

python -c 'print [str(((2**64 / 6) * i) - 2**63) for i in range(6)]'

The command displays the token for each node:

['-9223372036854775808', '-6148914691236517206', '-3074457345618258604',
 '-2', '3074457345618258600', '6148914691236517202']

Calculating tokens for the RandomPartitioner

To calculate tokens when using the RandomPartitioner in Cassandra 1.2 clusters, use the Cassandra 1.1
Token Generating Tool.

Configuring virtual nodes

Enabling virtual nodes on a new cluster

About this task

Generally when all nodes have equal hardware capability, they should have the same number of virtual
nodes (vnodes). If the hardware capabilities vary among the nodes in your cluster, assign a proportional
number of vnodes to the larger machines. For example, you could designate your older machines to use
128 vnodes and your new machines (that are twice as powerful) with 256 vnodes.

http://www.datastax.com/docs/1.1/cluster_architecture/partitioning#data-distribution-in-the-ring
http://www.datastax.com/docs/1.1/cluster_architecture/replication#replication-strategy
http://www.datastax.com/docs/1.1/initialize/token_generation

Configuration

100

Procedure

Set the number of tokens on each node in your cluster with the num_tokens parameter in the
cassandra.yaml file.

The recommended value is 256. Do not set the initial_token parameter.

Enabling virtual nodes on an existing production cluster

About this task

For production clusters, enabling virtual nodes (vnodes) has less impact on performance if you bring up
a another data center configured with vnodes already enabled and let Cassandra automatic mechanisms
distribute the existing data into the new nodes.

Procedure

1. Add a new data center to the cluster.

2. Once the new data center with vnodes enabled is up, switch your clients to use the new data center.

3. Run a full repair with nodetool repair.

This step ensures that after you move the client to the new data center that any previous writes are
added to the new data center and that nothing else, such as hints, is dropped when you remove the old
data center.

4. Update your schema to no longer reference the old data center.

5. Remove the old data center from the cluster.

See Decommissioning a data center.

Logging configuration

Logging configuration
To get more diagnostic information about the runtime behavior of a specific Cassandra node than what
is provided by Cassandra's JMX MBeans and the nodetool utility, you can increase the logging levels on
specific portions of the system using log4j.

Cassandra provides logging functionality using Simple Logging Facade for Java (SLF4J) with a log4j
backend. Additionally, the output.log captures the stdout of the Cassandra process, which is configurable
using the standard Linux logrotate facility. You can also change logging levels via JMX using the JConsole
tool.

The logging levels from most to least verbose are:

• TRACE
• DEBUG
• INFO
• WARN
• ERROR
• FATAL

Note: Be aware that increasing logging levels can generate a lot of logging output on even a
moderately trafficked cluster.

Configuration

101

Changing Logging Levels
Changing logging levels using the log4j-server.properties file.

About this task

The default logging level is determined by the following line in the log4j-server.properties file:

log4j.rootLogger=INFO,stdout,R

To exert more fine-grained control over your logging, you can specify the logging level for specific
categories. The categories usually (but not always) correspond to the package and class name of the
code doing the logging. For example, the following setting logs DEBUG messages from all classes in the
org.apache.cassandra.db package:

log4j.logger.org.apache.cassandra.db=DEBUG

In this example, DEBUG messages are logged specifically from the StorageProxy class in the
org.apache.cassandra.service package:

log4j.logger.org.apache.cassandra.service.StorageProxy=DEBUG

To determine which category a particular message in the log belongs to, you change the following line:

log4j.appender.R.layout.ConversionPattern=%5p [%t] %d{ISO8601} %F (line %L) %m
%n

Procedure

1. Add %c at the beginning of the conversion pattern:

log4j.appender.R.layout.ConversionPattern=%c %5p [%t] %d{ISO8601} %F (line
 %L) %m%n

Each log message is now prefixed with the category.

2. After Cassandra runs for a while, use the following command to determine which categories are logging
the most messages:

cat system.log.* | egrep 'TRACE|DEBUG|INFO|WARN|ERROR|FATAL' | awk '{ print
 $1 }' | sort | uniq -c | sort -n

3. If you find that a particular class logs too many messages, use the following format to set a less
verbose logging level for that class by adding a line for that class:

loggerog4j.logger.package.class=WARN

For example a busy Solr node can log numerous INFO messages from the SolrCore,
LogUpdateProcessorFactory, and SolrIndexSearcher classes. To suppress these messages, add the
following lines:

log4j.logger.org.apache.solr.core.SolrCore = WARN
log4j.logger.org.apache.solr.update.processor.LogUpdateProcessorFactory=WARN
log4j.logger.org.apache.solr.search.SolrIndexSearcher=WARN

4. After determining which category a particular message belongs to you may want to revert the messages
back to the default format. Do this by removing %c from the ConversionPattern.

Changing the rotation and size of the Cassandra output.log
Controlling the rotation and size of the output.log.

About this task
Cassandra's output.log logging configuration is controlled by the log4j-server.properties file in
the following directories:

• Packaged installs: /etc/dse/cassandra
• Tarball installs: install_location/resources/cassandra/conf

Configuration

102

The output.log stores the stdout of the Cassandra process; it is not controllable from log4j. However,
you can rotate it using the standard Linux logrotate facility.

The copytruncate directive is critical because it allows the log to be rotated without any support from
Cassandra for closing and reopening the file. For more information, refer to the logrotate man page.

To configure logrotate to work with Cassandra, create a file called /etc/logrotate.d/cassandra with
the following contents:

/var/log/cassandra/output.log {
 size 10M
 rotate 9
 missingok
 copytruncate
 compress
}

Changing the rotation and size of the Cassandra system.log
Controlling the rotation and size of the system.log.

About this task
Cassandra's system.log logging configuration is controlled by the log4j-server.properties file in the
following directories:

• Packaged installs: /etc/cassandra
• Tarball installs: install_location/conf

About this task

The maximum log file size and number of backup copies are controlled by the following lines:

log4j.appender.R.maxFileSize=20MB
log4j.appender.R.maxBackupIndex=50

The default configuration rolls the log file once the size exceeds 20MB and maintains up to 50 backups.
When the maxFileSize is reached, the current log file is renamed to system.log.1 and a new
system.log is started. Any previous backups are renumbered from system.log.n to system.log.n
+1, which means the higher the number, the older the file. When the maximum number of backups is
reached, the oldest file is deleted.

• By default, logging output is placed the /var/log/cassandra/system.log. You can change the
location of the output by editing the log4j.appender.R.File path. Be sure that the directory exists
and is writable by the process running Cassandra.

• If an issue occurred but has already been rotated out of the current system.log, check to see
if it is captured in an older backup. If you want to keep more history, increase the maxFileSize,
maxBackupIndex, or both. Make sure you have enough space to store the additional logs.

Commit log archive configuration
Cassandra provides commitlog archiving and point-in-time recovery.

About this task

You configure this feature in the commitlog_archiving.properties configuration file, which is
located in the following directories:

• Cassandra Package installations: /etc/cassandra/conf
• Cassandra Tarball installations: install_location/conf
• DataStax Enterprise Package installations: /etc/dse/cassandra
• DataStax Enterprise Tarball installations: install_location/resources/cassandra/conf

http://linuxcommand.org/man_pages/logrotate8.html

Configuration

103

The commands archive_command and restore_command expect only a single command with
arguments. The parameters must be entered verbatim. STDOUT and STDIN or multiple commands cannot
be executed. To workaround, you can script multiple commands and add a pointer to this file. To disable a
command, leave it blank.

Procedure

• Archive a commitlog segment:

Command archive_command=

%path Fully qualified path of the segment to
archive.

Parameters

%name Name of the commit log.

Example archive_command=/bin/ln %path /
backup/%name

• Restore an archived commitlog:

Command restore_command=

%from Fully qualified path of the an archived
commitlog segment from the
restore_directories.

Parameters

%t Name of live commit log directory.

Example restore_command=cp -f %from %to

• Set the restore directory location:

Command restore_directories=

Format restore_directories=restore_directory_location

• Restore mutations created up to and including the specified timestamp:

Command restore_point_in_time=

Format <timestamp> (YYYY:MM:DD HH:MM:SS)

Example restore_point_in_time=2013:12:11
17:00:00

Restore stops when the first client-supplied timestamp is greater than the restore point timestamp.
Because the order in which Cassandra receives mutations does not strictly follow the timestamp order,
this can leave some mutations unrecovered.

Hadoop support

Cassandra 2.0.11 improves support for integrating Hadoop with Cassandra:

• MapReduce
• Apache Pig
• Apache Hive

You can use Cassandra 2.0.11 and later with Hadoop 2.x or 1.x with some restrictions.

• Isolate Cassandra and Hadoop nodes in separate data centers.
• Before starting the data centers of Cassandra/Hadoop nodes, disable virtual nodes (vnodes).

Configuration

104

To disable virtual nodes:

1. In the cassandra.yaml file, set num_tokens to 1.
2. Uncomment the initial_token property and set it to 1 or to the value of a generated token for a multi-

node cluster.
3. Start the cluster for the first time.

Do not disable or enable vnodes on an existing cluster.

Setup and configuration, described in the Apache docs, involves overlaying a Hadoop cluster on
Cassandra nodes, configuring a separate server for the Hadoop NameNode/JobTracker, and installing
a Hadoop TaskTracker and Data Node on each Cassandra node. The nodes in the Cassandra data
center can draw from data in the HDFS Data Node as well as from Cassandra. The Job Tracker/Resource
Manager (JT/RM) receives MapReduce input from the client application. The JT/RM sends a MapReduce
job request to the Task Trackers/Node Managers (TT/NM) and optional clients, MapReduce, Hive, and Pig.
The data is written to Cassandra and results sent back to the client.

The Apache docs also cover how to get configuration and integration support.

Input and Output Formats

Hadoop jobs can receive data from CQL tables and indexes and you can load data into Cassandra from a
Hadoop job. Cassandra 2.0.11 supports the following formats for these tasks:

• CQL partition input format: ColumnFamilyInputFormat class.
• BulkOutputFormat class introduced in Cassandra 1.1

Cassandra 2.0.11 and later supports the CqlOutputFormat, which is the CQL-compatible version of the
BulkOutputFormat class. The CQLOutputFormat acts as a Hadoop-specific OutputFormat. Reduce tasks
can store keys (and corresponding bound variable values) as CQL rows (and respective columns) in a
given CQL table.

Cassandra 2.0.11 supports using the CQLOutputFormat with Apache Pig.

http://wiki.apache.org/cassandra/HadoopSupport
http://www.datastax.com/docs/1.1/cluster_architecture/hadoop_integration

Configuration

105

Running the wordcount example

Wordcount example JARs are located in the examples directory of the Cassandra source
code installation. There are CQL and legacy examples in the hadoop_cql3_word_count and
hadoop_word_count subdirectories, respectively. Follow instructions in the readme files.

Isolating Hadoop and Cassandra workloads

When you create a keyspace using CQL, Cassandra creates a virtual data center for a cluster, even a one-
node cluster, automatically. You assign nodes that run the same type of workload to the same data center.
The separate, virtual data centers for different types of nodes segregate workloads running Hadoop from
those running Cassandra. Segregating workloads ensures that only one type of workload is active per data
center. Separating nodes running a sequential data load, from nodes running any other type of workload,
such as Cassandra real-time OLTP queries is a best practice.

Operations

106

Operations

Monitoring Cassandra

Monitoring a Cassandra cluster

Understanding the performance characteristics of your Cassandra cluster is critical to diagnosing issues
and planning capacity.

Cassandra exposes a number of statistics and management operations via Java Management Extensions
(JMX). Java Management Extensions (JMX) is a Java technology that supplies tools for managing and
monitoring Java applications and services. Any statistic or operation that a Java application has exposed
as an MBean can then be monitored or manipulated using JMX.

During normal operation, Cassandra outputs information and statistics that you can monitor using JMX-
compliant tools, such as:

• The Cassandra nodetool utility
• DataStax OpsCenter management console
• JConsole

Using the same tools, you can perform certain administrative commands and operations such as flushing
caches or doing a node repair.

Monitoring using nodetool utility

The nodetool utility is a command-line interface for monitoring Cassandra and performing routine database
operations. Included in the Cassandra distribution, nodetool and is typically run directly from an operational
Cassandra node.

The nodetool utility supports the most important JMX metrics and operations, and includes other useful
commands for Cassandra administration. This utility is commonly used to output a quick summary of the
ring and its current state of general health with the status command. For example:

The nodetool utility provides commands for viewing detailed metrics for tables, server metrics, and
compaction statistics:

• nodetool cfstats displays statistics for each table and keyspace.
• nodetool cfhistograms provides statistics about a table, including read/write latency, row size,

column count, and number of SSTables.
• nodetool netstats provides statistics about network operations and connections.
• nodetool tpstats provides statistics about the number of active, pending, and completed tasks for

each stage of Cassandra operations by thread pool.

http://www.datastax.com/products/opscenter

Operations

107

DataStax OpsCenter

DataStax OpsCenter is a graphical user interface for monitoring and administering all nodes in a
Cassandra cluster from one centralized console. DataStax OpsCenter is bundled with DataStax support
offerings. You can register for a free version for development or non-production use.

OpsCenter provides a graphical representation of performance trends in a summary view that is hard
to obtain with other monitoring tools. The GUI provides views for different time periods as well as
the capability to drill down on single data points. Both real-time and historical performance data for a
Cassandra or DataStax Enterprise cluster are available in OpsCenter. OpsCenter metrics are captured and
stored within Cassandra.

Within OpsCenter you can customize the performance metrics viewed to meet your monitoring needs.
Administrators can also perform routine node administration tasks from OpsCenter. Metrics within
OpsCenter are divided into three general categories: table metrics, cluster metrics, and OS metrics. For
many of the available metrics, you can view aggregated cluster-wide information or view information on a
per-node basis.

Monitoring using JConsole

JConsole is a JMX-compliant tool for monitoring Java applications such as Cassandra. It is included with
Sun JDK 5.0 and higher. JConsole consumes the JMX metrics and operations exposed by Cassandra and
displays them in a well-organized GUI. For each node monitored, JConsole provides these six separate tab
views:

• Overview

Displays overview information about the Java VM and monitored values.
• Memory

Displays information about memory use.
• Threads

Displays information about thread use.

http://www.datastax.com/products/opscenter

Operations

108

• Classes

Displays information about class loading.
• VM Summary

Displays information about the Java Virtual Machine (VM).
• Mbeans

Displays information about MBeans.

The Overview and Memory tabs contain information that is very useful for Cassandra developers.
The Memory tab allows you to compare heap and non-heap memory usage, and provides a control to
immediately perform Java garbage collection.

For specific Cassandra metrics and operations, the most important area of JConsole is the MBeans tab.
This tab lists the following Cassandra MBeans:

• org.apache.cassandra.db

Includes caching, table metrics, and compaction.
• org.apache.cassandra.internal

Internal server operations such as gossip and hinted handoff.
• org.apache.cassandra.net

Inter-node communication including FailureDetector, MessagingService and StreamingService.
• org.apache.cassandra.request

Tasks related to read, write, and replication operations.

When you select an MBean in the tree, its MBeanInfo and MBean Descriptor are displayed on the right,
and any attributes, operations or notifications appear in the tree below it. For example, selecting and
expanding the org.apache.cassandra.db MBean to view available actions for a table results in a display like
the following:

If you choose to monitor Cassandra using JConsole, keep in mind that JConsole consumes a significant
amount of system resources. For this reason, DataStax recommends running JConsole on a remote
machine rather than on the same host as a Cassandra node.

The JConsole CompactionManagerMBean exposes compaction metrics that can indicate when you need
to add capacity to your cluster.

Compaction metrics

Monitoring compaction performance is an important aspect of knowing when to add capacity to your
cluster. The following attributes are exposed through CompactionManagerMBean:

Operations

109

Table 8: Compaction Metrics

Attribute Description

CompletedTasks Number of completed compactions since the last
start of this Cassandra instance

PendingTasks Number of estimated tasks remaining to perform

ColumnFamilyInProgress The table currently being compacted. This attribute
is null if no compactions are in progress.

BytesTotalInProgress Total number of data bytes (index and filter are not
included) being compacted. This attribute is null if
no compactions are in progress.

BytesCompacted The progress of the current compaction. This
attribute is null if no compactions are in progress.

Thread pool and read/write latency statistics

Cassandra maintains distinct thread pools for different stages of execution. Each of the thread pools
provide statistics on the number of tasks that are active, pending, and completed. Trends on these pools
for increases in the pending tasks column indicate when to add additional capacity. After a baseline is
established, configure alarms for any increases above normal in the pending tasks column. Use nodetool
tpstats on the command line to view the thread pool details shown in the following table.

Table 9: Compaction Metrics

Thread Pool Description

AE_SERVICE_STAGE Shows anti-entropy tasks.

CONSISTENCY-MANAGER Handles the background consistency checks if they
were triggered from the client's consistency level.

FLUSH-SORTER-POOL Sorts flushes that have been submitted.

FLUSH-WRITER-POOL Writes the sorted flushes.

GOSSIP_STAGE Activity of the Gossip protocol on the ring.

LB-OPERATIONS The number of load balancing operations.

LB-TARGET Used by nodes leaving the ring.

MEMTABLE-POST-FLUSHER Memtable flushes that are waiting to be written to
the commit log.

MESSAGE-STREAMING-POOL Streaming operations. Usually triggered by
bootstrapping or decommissioning nodes.

MIGRATION_STAGE Tasks resulting from the call of system_* methods
in the API that have modified the schema.

MISC_STAGE

MUTATION_STAGE API calls that are modifying data.

READ_STAGE API calls that have read data.

RESPONSE_STAGE Response tasks from other nodes to message
streaming from this node.

STREAM_STAGE Stream tasks from this node.

Operations

110

Read/Write latency metrics

Cassandra tracks latency (averages and totals) of read, write, and slicing operations at the server level
through StorageProxyMBean.

Table statistics

For individual tables, ColumnFamilyStoreMBean provides the same general latency attributes as
StorageProxyMBean. Unlike StorageProxyMBean, ColumnFamilyStoreMBean has a number of other
statistics that are important to monitor for performance trends. The most important of these are:

Table 10: Compaction Metrics

Attribute Description

MemtableDataSize The total size consumed by this table's data (not
including metadata).

MemtableColumnsCount Returns the total number of columns present in the
memtable (across all keys).

MemtableSwitchCount How many times the memtable has been flushed
out.

RecentReadLatencyMicros The average read latency since the last call to this
bean.

RecentWriterLatencyMicros The average write latency since the last call to this
bean.

LiveSSTableCount The number of live SSTables for this table.

The recent read latency and write latency counters are important in making sure operations are happening
in a consistent manner. If these counters start to increase after a period of staying flat, you probably need
to add capacity to the cluster.

You can set a threshold and monitor LiveSSTableCount to ensure that the number of SSTables for a given
table does not become too great.

Tuning Bloom filters
Cassandra uses Bloom filters to determine whether an SSTable has data for a particular row.

Bloom filters are unused for range scans, but are used for index scans. Bloom filters are probabilistic
sets that allow you to trade memory for accuracy. This means that higher Bloom filter attribute
settings bloom_filter_fp_chance use less memory, but will result in more disk I/O if the SSTables
are highly fragmented. Bloom filter settings range from 0 to 1.0 (disabled). The default value of
bloom_filter_fp_chance depends on the compaction strategy. The LeveledCompactionStrategy uses a
higher default value (0.1) than the SizeTieredCompactionStrategy or DateTieredCompactionStrategy,
which have a default of 0.01. Memory savings are nonlinear; going from 0.01 to 0.1 saves about one third
of the memory. SSTables using LCS contain a relatively smaller ranges of keys than those using STCS,
which facilitates efficient exclusion of the SSTables even without a bloom filter; however, adding a small
bloom filter helps when there are many levels in LCS.

The settings you choose depend the type of workload. For example, to run an analytics application that
heavily scans a particular table, you would want to inhibit the Bloom filter on the table by setting it high.

To view the observed Bloom filters false positive rate and the number of SSTables consulted per read use
cfstats in the nodetool utility.

Bloom filters are stored off-heap so you don't need include it when determining the -Xmx settings (the
maximum memory size that the heap can reach for the JVM).

/documentation/cql/3.1/cql/cql_reference/tabProp.html
/documentation/cql/3.1/cql/cql_reference/tabProp.html

Operations

111

To change the bloom_filter_attribute on a table, use CQL. For example:

ALTER TABLE addamsFamily WITH bloom_filter_fp_chance = 0.1;

After updating the value of bloom_filter_fp_chance on a table, Bloom filters need to be regenerated in one
of these ways:

• Initiate compaction
• Upgrade SSTables

You do not have to restart Cassandra after regenerating SSTables.

Data caching

Configuring data caches

Cassandra includes integrated caching and distributes cache data around the cluster for you. When a node
goes down, the client can read from another cached replica of the data. The integrated architecture also
facilitates troubleshooting because there is no separate caching tier, and cached data matches what’s in
the database exactly. The integrated cache solves the cold start problem by virtue of saving your cache to
disk periodically and being able to read contents back in when it restarts—you never have to start with a
cold cache.

About the partition key cache
The partition key cache is a cache of the partition index for a Cassandra table. Using the key cache instead
of relying on the OS page cache saves CPU time and memory. However, enabling just the key cache
results in disk (or OS page cache) activity to actually read the requested data rows.

About the row cache

The row cache is similar to a traditional cache like memcached. When a row is accessed, the entire row
is pulled into memory, merging from multiple SSTables if necessary, and cached, so that further reads
against that row can be satisfied without hitting disk at all.

Important: Cassandra caches all rows in a partition when reading the partition.

While storing the row cache off-heap, Cassandra has to deserialize a partition into heap to read from it.
Consequently, use the row cache under these conditions only:

• The partition you will cache is small.
• Your users or applications will read most of the partition all at once.

Do not use the row cache unless you fully understand how to prevent misusing the row cache. Misuse
exhausts the JVM heap and causes Cassandra to fail.

Typically, you enable either the partition key or row cache for a table--not both. The main exception is for
caching archive tables that are infrequently read. Disable caching entirely for archive tables.

Enabling and configuring caching

About this task

Use CQL to enable or disable caching by configuring the caching table property. Set parameters in the
cassandra.yaml file to configure other caching properties:

• Partition key cache size
• Row cache size
• How often Cassandra saves partition key caches to disk
• How often Cassandra saves row caches to disk

/documentation/cql/3.1/cql/ddl/ddl_primary_index_c.html
/documentation/cql/3.1/cql/cql_reference/cql_storage_options_c.html

Operations

112

Procedure

Set the table caching property in the WITH clause of the table definition. Enclose the table property in
single quotation marks. For example, configure Cassandra to disable the partition key cache and the
row cache.

CREATE TABLE users (
 userid text PRIMARY KEY,
 first_name text,
 last_name text,
)
WITH caching = 'none';

How caching works

When both row cache and partition key cache are configured, the row cache returns results whenever
possible. In the event of a row cache miss, the partition key cache might still provide a hit that makes
the disk seek much more efficient. This diagram depicts two read operations on a table with both caches
already populated.

One read operation hits the row cache, returning the requested row without a disk seek. The other read
operation requests a row that is not present in the row cache but is present in the partition key cache. After
accessing the row in the SSTable, the system returns the data and populates the row cache with this read
operation.

Tips for efficient cache use

Some tips for efficient cache use are:

• Store lower-demand data or data with extremely long rows in a table with minimal or no caching.
• Deploy a large number of Cassandra nodes under a relatively light load per node.
• Logically separate heavily-read data into discrete tables.

Cassandra memtables have overhead for index structures on top of the actual data they store. If the size
of the values stored in the heavily-read columns is small compared to the number of columns and rows
themselves, this overhead can be substantial. Rows having this type of data do not lend themselves to
efficient row caching and caching rows can cause serious problems.

Monitoring and adjusting caching

Make changes to cache options in small, incremental adjustments, then monitor the effects of each change
using DataStax OpsCenter or the nodetool utility. The output of the nodetool info command shows the
following row cache and key cache metrics, which are configured in the cassandra.yaml file:

• Cache size in bytes
• Capacity in bytes
• Number of hits
• Number of requests

http://www.datastax.com/products/opscenter

Operations

113

• Recent hit rate
• Duration in seconds after which Cassandra saves the key cache.

For example, on start-up, the information from nodetool info might look something like this:

Token : (invoke with -T/--tokens to see all 256 tokens)
ID : 387d15ba-7103-491b-9327-1a691dbb504a
Gossip active : true
Thrift active : true
Native Transport active: true
Load : 11.35 KB
Generation No : 1384180190
Uptime (seconds) : 437
Heap Memory (MB) : 136.33 / 1996.81
Data Center : datacenter1
Rack : rack1
Exceptions : 0
Key Cache : size 360 (bytes), capacity 103809024 (bytes), 15 hits, 19
 requests, 0.789 recent hit rate, 14400 save period in seconds
Row Cache : size 0 (bytes), capacity 0 (bytes), 0 hits, 0 requests, NaN
 recent hit rate, 0 save period in seconds

In the event of high memory consumption, consider tuning data caches.

Configuring memtable throughput
Configuring memtable throughput can improve write performance. Cassandra flushes memtables to disk,
creating SSTables when the commit log space threshold has been exceeded. Configure the commit log
space threshold per node in the cassandra.yaml. How you tune memtable thresholds depends on your
data and write load. Increase memtable throughput under either of these conditions:

• The write load includes a high volume of updates on a smaller set of data.
• A steady stream of continuous writes occurs. This action leads to more efficient compaction.

Allocating memory for memtables reduces the memory available for caching and other internal Cassandra
structures, so tune carefully and in small increments.

Configuring compaction

About this task

As discussed earlier, the compaction process merges keys, combines columns, evicts tombstones,
consolidates SSTables, and creates a new index in the merged SSTable.

In the cassandra.yaml file, you configure these global compaction parameters:

• snapshot_before_compaction
• in_memory_compaction_limit_in_mb
• multithreaded_compaction
• compaction_preheat_key_cache
• concurrent_compactors
• compaction_throughput_mb_per_sec

The compaction_throughput_mb_per_sec parameter is designed for use with large partitions because
compaction is throttled to the specified total throughput across the entire system.

Cassandra provides a start-up option for testing compaction strategies without affecting the production
workload.

Using CQL, you configure a compaction strategy:

/documentation/cql/3.1/cql/ddl/ddl_intro_c.html
/documentation/cql/3.1/cql/cql_reference/tabProp.html?scroll=tabProp__moreCompaction

Operations

114

• Size-tiered compaction
• Date-tiered compaction
• Leveled compaction

To configure the compaction strategy property and CQL compaction subproperties, such as the maximum
number of SSTables to compact and minimum SSTable size, use CREATE TABLE or ALTER TABLE.

Procedure

1. Update a table to set the compaction strategy using the ALTER TABLE statement.

ALTER TABLE users WITH
 compaction = { 'class' : 'LeveledCompactionStrategy' }

2. Change the compaction strategy property to SizeTieredCompactionStrategy and specify the minimum
number of SSTables to trigger a compaction using the CQL min_threshold attribute.

ALTER TABLE users
 WITH compaction =
 {'class' : 'SizeTieredCompactionStrategy', 'min_threshold' : 6 }

Results

You can monitor the results of your configuration using compaction metrics, see Compaction metrics.

Compression
Compression maximizes the storage capacity of Cassandra nodes by reducing the volume of data on disk
and disk I/O, particularly for read-dominated workloads. Cassandra quickly finds the location of rows in the
SSTable index and decompresses the relevant row chunks.

Write performance is not negatively impacted by compression in Cassandra as it is in traditional
databases. In traditional relational databases, writes require overwrites to existing data files on disk. The
database has to locate the relevant pages on disk, decompress them, overwrite the relevant data, and
finally recompress. In a relational database, compression is an expensive operation in terms of CPU cycles
and disk I/O. Because Cassandra SSTable data files are immutable (they are not written to again after
they have been flushed to disk), there is no recompression cycle necessary in order to process writes.
SSTables are compressed only once when they are written to disk. Writes on compressed tables can show
up to a 10 percent performance improvement.

When to compress data

Compression is best suited for tables that have many rows and each row has the same columns, or at
least as many columns, as other rows. For example, a table containing user data such as username, email,
and state, is a good candidate for compression. The greater the similarity of the data across rows, the
greater the compression ratio and gain in read performance.

A table that has rows of different sets of columns is not well-suited for compression. Dynamic tables do not
yield good compression ratios.

Don't confuse table compression with compact storage of columns, which is used for backward
compatibility of old applications with CQL.

Depending on the data characteristics of the table, compressing its data can result in:

• 2x-4x reduction in data size
• 25-35% performance improvement on reads
• 5-10% performance improvement on writes

After configuring compression on an existing table, subsequently created SSTables are compressed.
Existing SSTables on disk are not compressed immediately. Cassandra compresses existing SSTables

/documentation/cql/3.1/cql/cql_reference/cql_storage_options_c.html
/documentation/cql/3.1/cql/cql_reference/create_table_r.html
/documentation/cql/3.1/cql/cql_reference/alter_table_r.html
/documentation/cql/3.1/cql/cql_reference/tabProp.html?scroll=tabProp__moreCompaction
/documentation/cql/3.1/cql/cql_reference/create_table_r.html

Operations

115

when the normal Cassandra compaction process occurs. Force existing SSTables to be rewritten and
compressed by using nodetool upgradesstables (Cassandra 1.0.4 or later) or nodetool scrub.

Configuring compression

About this task

You configure a table property and subproperties to manage compression. The CQL table properties
documentation describes the types of compression options that are available. Compression is enabled by
default in Cassandra 1.1 and later.

Procedure

1. Disable compression, using CQL to set the compression parameters to an empty string.

CREATE TABLE DogTypes (
 block_id uuid,
 species text,
 alias text,
 population varint,
 PRIMARY KEY (block_id)
)
 WITH compression = { 'sstable_compression' : '' };

2. Enable compression on an existing table, using ALTER TABLE to set the compression algorithm
sstable_compression to LZ4Compressor (Cassandra 1.2.2 and later), SnappyCompressor, or
DeflateCompressor.

CREATE TABLE DogTypes (
 block_id uuid,
 species text,
 alias text,
 population varint,
 PRIMARY KEY (block_id)
)
 WITH compression = { 'sstable_compression' : 'LZ4Compressor' };

3. Change compression on an existing table, using ALTER TABLE and setting the compression algorithm
sstable_compression to DeflateCompressor.

ALTER TABLE CatTypes
 WITH compression = { 'sstable_compression' : 'DeflateCompressor',
 'chunk_length_kb' : 64 }

You tune data compression on a per-table basis using CQL to alter a table.

Testing compaction and compression

About this task

Write survey mode is a Cassandra startup option for testing new compaction and compression strategies.
In write survey mode, you can test out new compaction and compression strategies on that node and
benchmark the write performance differences, without affecting the production cluster.

Write survey mode adds a node to a database cluster. The node accepts all write traffic as if it were part of
the normal Cassandra cluster, but the node does not officially join the ring.

Also use write survey mode to try out a new Cassandra version. The nodes you add in write survey mode
to a cluster must be of the same major release version as other nodes in the cluster. The write survey
mode relies on the streaming subsystem that transfers data between nodes in bulk and differs from one
major release to another.

/documentation/cql/3.1/cql/cql_reference/tabProp.html?scroll=tabProp__moreCompression
/documentation/cql/3.1/cql/cql_reference/tabProp.html?scroll=tabProp__moreCompression

Operations

116

If you want to see how read performance is affected by modifications, stop the node, bring it up as a
standalone machine, and then benchmark read operations on the node.

Procedure

Enable write survey mode by starting a Cassandra node using the write_survey option.

bin/cassandra – Dcassandra.write_survey=true

This example shows how to start a tarball installation of Cassandra.

Tuning Java resources
Consider tuning Java resources in the event of a performance degradation or high memory consumption.

There are two files that control environment settings for Cassandra:

• conf/cassandra-env.sh

Java Virtual Machine (JVM) configuration settings
• bin/cassandra-in.sh

Sets up Cassandra environment variables such as CLASSPATH and JAVA_HOME.

Heap sizing options

If you decide to change the Java heap sizing, both MAX_HEAP_SIZE and HEAP_NEWSIZE should should
be set together in conf/cassandra-env.sh.

• MAX_HEAP_SIZE

Sets the maximum heap size for the JVM. The same value is also used for the minimum heap size. This
allows the heap to be locked in memory at process start to keep it from being swapped out by the OS.

• HEAP_NEWSIZE

The size of the young generation. The larger this is, the longer GC pause times will be. The shorter it is,
the more expensive GC will be (usually). A good guideline is 100 MB per CPU core.

Tuning the Java heap

Because Cassandra is a database, it spends significant time interacting with the operating system's
I/O infrastructure through the JVM, so a well-tuned Java heap size is important. Cassandra's default
configuration opens the JVM with a heap size that is based on the total amount of system memory:

System Memory Heap Size

Less than 2GB 1/2 of system memory

2GB to 4GB 1GB

Greater than 4GB 1/4 system memory, but not more than 8GB

Many users new to Cassandra are tempted to turn up Java heap size too high, which consumes the
majority of the underlying system's RAM. In most cases, increasing the Java heap size is actually
detrimental for these reasons:

• In most cases, the capability of Java to gracefully handle garbage collection above 8GB quickly
diminishes.

• Modern operating systems maintain the OS page cache for frequently accessed data and are very good
at keeping this data in memory, but can be prevented from doing its job by an elevated Java heap size.

Operations

117

If you have more than 2GB of system memory, which is typical, keep the size of the Java heap relatively
small to allow more memory for the page cache.

Some Solr users have reported that increasing the stack size improves performance under Tomcat. To
increase the stack size, uncomment and modify the default -Xss128k setting in the cassandra-env.sh file.
Also, decreasing the memtable space to make room for Solr caches might improve performance. Modify
the memtable space using the memtable_total_space_in_mb property in the cassandra.yaml file.

Because MapReduce runs outside the JVM, changes to the JVM do not affect Analytics/Hadoop
operations directly.

How Cassandra uses memory

Using a java-based system like Cassandra, you can typically allocate about 8GB of memory on the heap
before garbage collection pause time starts to become a problem. Modern machines have much more
memory than that and Cassandra can make use of additional memory as page cache when files on disk
are accessed. Allocating more than 8GB of memory on the heap poses a problem due to the amount of
Cassandra metadata about data on disk. The Cassandra metadata resides in memory and is proportional
to total data. Some of the components grow proportionally to the size of total memory.

In Cassandra 1.2 and later, the Bloom filter and compression offset map that store this metadata reside off-
heap, greatly increasing the capacity per node of data that Cassandra can handle efficiently. In Cassandra
2.0, the partition summary also resides off-heap.

About the off-heap row cache

Cassandra can store cached rows in native memory, outside the Java heap. This results in both a smaller
per-row memory footprint and reduced JVM heap requirements, which helps keep the heap size in the
sweet spot for JVM garbage collection performance.

Tuning Java garbage collection

Cassandra's GCInspector class logs information about garbage collection whenever a garbage collection
takes longer than 200ms. Garbage collections that occur frequently and take a moderate length of time
to complete (such as ConcurrentMarkSweep taking a few seconds), indicate that there is a lot of garbage
collection pressure on the JVM. Remedies include adding nodes, lowering cache sizes, or adjusting the
JVM options regarding garbage collection.

JMX options

Cassandra exposes a number of statistics and management operations via Java Management Extensions
(JMX). Java Management Extensions (JMX) is a Java technology that supplies tools for managing and
monitoring Java applications and services. Any statistic or operation that a Java application has exposed
as an MBean can then be monitored or manipulated using JMX. JConsole, the nodetool utility, and
DataStax OpsCenter are examples of JMX-compliant management tools.

By default, you can modify the following properties in the conf/cassandra-env.sh file to configure JMX to
listen on port 7199 without authentication.

• com.sun.management.jmxremote.port

The port on which Cassandra listens from JMX connections.
• com.sun.management.jmxremote.ssl

Enable/disable SSL for JMX.
• com.sun.management.jmxremote.authenticate

Enable/disable remote authentication for JMX.
• -Djava.rmi.server.hostname

Operations

118

Sets the interface hostname or IP that JMX should use to connect. Uncomment and set if you are
having trouble connecting.

Purging gossip state on a node

About this task

Gossip information is persisted locally by each node to use immediately on node restart without having to
wait for gossip communications.

Procedure

In the unlikely event, you need to correct a problem in the gossip state:

1. Using MX4J or JConsole, connect to the node's JMX port and then use the JMX method
Gossiper.unsafeAssassinateEndpoints(ip_address) to assassinate the problem node.

This takes a few seconds to complete so wait for confirmation that the node is deleted.

2. Stop your client application from sending writes to the cluser.

3. Take the entire cluster offline:

a) Drain each node.

$ nodetool options drain
b) Stop each node:

• Packaged installs:

$ sudo service cassandra stop
• Tarball installs:

$ sudo service cassandra stop

4. Clear the data from the peers directory:

$ sudo rm -r /var/lib/cassandra/data/system/peers/*

5. Clear the gossip state when the node starts:

• For tarball installations, you can use a command line option or edit the cassandra-env.sh. To use
the command line:

$ install_location/bin/cassandra -Dcassandra.load_ring_state=false
• For package installations or if you are not using the command line option above, add the following

line to the cassandra-env.sh file:

JVM_OPTS="$JVM_OPTS -Dcassandra.load_ring_state=false"

• Packaged installs: /usr/share/cassandra/cassandra-env.sh
• Tarball installs: install_location/conf/cassandra-env.sh

6. Bring the cluster online one node at a time, starting with the seed nodes.

• Packaged installs:

$ sudo service cassandra start
• Tarball installs:

$ cd install_location
$ bin/cassandra

Operations

119

What to do next
Remove the line you added in the cassandra-env.sh file.

Repairing nodes
Running node repair.

To understand how repair works and the information described in this topic, please read the blog article
Advanced repair techniques.

The nodetool repair command repairs inconsistencies across all of the replicas for a given range of data.
Run repair in these situations:

• As a best practice, you should schedule repairs weekly.

Note: If deletions never occur, you should still schedule regular repairs. Be aware that setting a
column to null is a delete.

• During node recovery. For example, when bringing a node back into the cluster after a failure.
• On nodes containing data that is not read frequently.
• To update data on a node that has been down.

Guidelines for running routine node repair include:

• The hard requirement for routine repair frequency is the value of gc_grace_seconds. Run a repair
operation at least once on each node within this time period. Following this important guideline ensures
that deletes are properly handled in the cluster.

• Use caution when running routine node repair on more than one node at a time and schedule regular
repair operations for low-usage hours.

• In systems that seldom delete or overwrite data, you can raise the value of gc_grace with minimal
impact to disk space. This allows wider intervals for scheduling repair operations with the nodetool
utility.

Repair requires intensive disk I/O. This occurs because of the validation compaction used for building the
Merkle tree. To mitigate heavy disk usage:

• Use the nodetool compaction throttling options (setcompactionthroughput and setcompactionthreshold).
• Use nodetool repair.

The repair command takes a snapshot of each replica immediately and then sequentially repairs each
replica from the snapshots. For example, if you have RF=3 and A, B and C represents three replicas,
this command takes a snapshot of each replica immediately and then sequentially repairs each replica
from the snapshots (A<->B, A<->C, B<->C) instead of repairing A, B, and C all at once. This allows the
dynamic snitch to maintain performance for your application via the other replicas, because at least one
replica in the snapshot is not undergoing repair.

Recall that snapshots are hardlinks to existing SSTables, immutable, and require almost no disk space.
This means that for any given replica set, only one replica at a time performs the validation compaction.
This allows the dynamic snitch to maintain performance for your application via the other replicas.

Note: Using the nodetool repair -pr (–partitioner-range) option repairs only the primary range
for that node, the other replicas for that range still have to perform the Merkle tree calculation,
causing a validation compaction. Because all the replicas are compacting at the same time, all
the nodes may be slow to respond for that portion of the data.

This happens because the Merkle trees don’t have infinite resolution and Cassandra makes a tradeoff
between the size and space. Currently, Cassandra uses a fixed depth of 15 for the tree (32K leaf nodes).
For a node containing a million partitions with one damaged partition, about 30 partitions are streamed,
which is the number that fall into each of the leaves of the tree. Of course, the problem gets worse when
more partitions exist per node, and results in a lot of disk space usage and needless compaction.

http://www.datastax.com/dev/blog/advanced-repair-techniques
/documentation/cql/3.1/cql/cql_reference/tabProp.html
http://www.datastax.com/dev/blog/dynamic-snitching-in-cassandra-past-present-and-future

Operations

120

To mitigate overstreaming, you can use subrange repair. Subrange repair allows for repairing only a
portion of the data belonging to the node. Because the Merkle tree precision is fixed, this effectively
increases the overall precision.

To use subrange repair:

1. Use the Java describe_splits call to ask for a split containing 32K partitions.
2. Iterate throughout the entire range incrementally or in parallel. This completely eliminates the

overstreaming behavior and wasted disk usage overhead.
3. Pass the tokens you received for the split to the nodetool repair -st (–start-token) and -et (–end-

token) options.
4. Pass the -local (–in-local-dc) option to nodetool to repair only within the local data center. This reduces

the cross data-center transfer load.

Adding or removing nodes, data centers, or clusters

Adding nodes to an existing cluster
Steps to add nodes when using virtual nodes.

About this task

Virtual nodes (vnodes) greatly simplify adding nodes to an existing cluster:

• Calculating tokens and assigning them to each node is no longer required.
• Rebalancing a cluster is no longer necessary because a node joining the cluster assumes responsibility

for an even portion of the data.

For a detailed explanation about how this works, see Virtual nodes.

Note: If you do not use vnodes, follow the instructions in the 1.1 topic Adding Capacity to an
Existing Cluster.

Procedure

1. Install Cassandra on the new nodes, but do not start Cassandra.

If you used the Debian install, Cassandra starts automatically and you must and stop the node and
clear the data.

2. Set the following properties in the cassandra.yaml and, depending on the snitch, the cassandra-
topology.properties or cassandra-rackdc.properties configuration files:

• auto_bootstrap - If this option has been set to false, you must set it to true. This option is not listed in
the default cassandra.yaml configuration file and defaults to true.

• cluster_name - The name of the cluster the new node is joining.
• listen_address/broadcast_address - May usually be left blank. Otherwise, use IP address or host

name that other Cassandra nodes use to connect to the new node.
• endpoint_snitch - The snitch Cassandra uses for locating nodes and routing requests.
• num_tokens - The number of vnodes to assign to the node. If the hardware capabilities vary among

the nodes in your cluster, you can assign a proportional number of vnodes to the larger machines.
• seed_provider - The -seeds list in this setting determines which nodes the new node should contact

to learn about the cluster and establish the gossip process.

Note: Seed nodes cannot bootstrap. Make sure the new node is not listed in the -seeds list.

• Change any other non-default settings you have made to your existing cluster in the
cassandra.yaml file and cassandra-topology.properties or cassandra-
rackdc.properties files. Use the diff command to find and merge (by head) any differences
between existing and new nodes.

http://www.datastax.com/docs/1.1/cluster_management#adding-capacity-to-an-existing-cluster
http://www.datastax.com/docs/1.1/cluster_management#adding-capacity-to-an-existing-cluster

Operations

121

3. Start Cassandra on each new node. Allow two minutes between node initializations. You can monitor
the startup and data streaming process using nodetool netstats.

4. After all new nodes are running, run nodetool cleanup on each of the previously existing nodes to
remove the keys no longer belonging to those nodes. Wait for cleanup to complete on one node before
doing the next.

Cleanup may be safely postponed for low-usage hours.

Adding a data center to a cluster
Steps to add a data center to an existing cluster.

Procedure

1. Ensure that you are using NetworkTopologyStrategy for all of your keyspaces.

2. For each node, set the following properties in the cassandra.yaml file:.

a) Add (or edit) auto_bootstrap: false.

By default, this setting is true and not listed in the cassandra.yaml file. Setting this parameter to
false prevents the new nodes from attempting to get all the data from the other nodes in the data
center. When you run nodetool rebuild in the last step, each node is properly mapped.

b) Set other properties, such as -seeds and endpoint_snitch, to match the cluster settings.

For more guidance, see Initializing a multiple node cluster (multiple data centers).
c) If you want to enable vnodes, set num_tokens.

The recommended value is 256. Do not set the initial_token parameter.

3. Update the relevant property file for snitch used on all servers to include the new nodes. You do not
need to restart.

• GossipingPropertyFileSnitch: cassandra-rackdc.properties
• PropertyFileSnitch: cassandra-topology.properties

4. Ensure that your clients are configured correctly for the new cluster:

• If your client uses the DataStax Java, C#, or Python driver, set the load-balancing policy to
DCAwareRoundRobinPolicy (Java, C#, Python).

• If you are using another client such as Hector, make sure it does not auto-detect the new nodes so
that they aren't contacted by the client until explicitly directed. For example if you are using Hector,
use sethostConfig.setAutoDiscoverHosts(false);. If you are using Astyanax, use
ConnectionPoolConfigurationImpl.setLocalDatacenter("<data center name">) to
ensure you are connecting to the specified data center.

• If you are using Astyanax 2.x, with integration with the DataStax Java Driver 2.0,
you can set the load-balancing policy to DCAwareRoundRobinPolicy by calling
JavaDriverConfigBuilder.withLoadBalancingPolicy().

AstyanaxContext<Keyspace> context = new AstyanaxContext.Builder()
 ...
 .withConnectionPoolConfiguration(new JavaDriverConfigBuilder()
 .withLoadBalancingPolicy(new TokenAwarePolicy(new
 DCAwareRoundRobinPolicy()))
 .build())
 ...

5. If using a QUORUM consistency level for reads or writes, check the LOCAL_QUORUM or
EACH_QUORUM consistency level to see if the level meets your requirements for multiple data
centers.

6. Start Cassandra on the new nodes.

7. After all nodes are running in the cluster:

http://www.datastax.com/drivers/java/2.0/com/datastax/driver/core/policies/DCAwareRoundRobinPolicy.html
http://www.datastax.com/drivers/csharp/apidocs/html/74972c38-2e00-0ecd-e8c1-7247e6e6f820.htm
http://datastax.github.io/python-driver/api/cassandra/policies.html#cassandra.policies.DCAwareRoundRobinPolicy

Operations

122

a) Change the keyspace properties to specify the desired replication factor for the new data center.

For example, set strategy options to DC1:2, DC2:2.

For more information, see ALTER KEYSPACE.
b) Run nodetool rebuild specifying the existing data center on all nodes in the new data center:

nodetool rebuild -- name_of_existing_data_center

Otherwise, requests to the new data center with LOCAL_ONE or ONE consistency levels may fail if
the existing data centers are not completely in-sync.

You can run rebuild on one or more nodes at the same time. The choices depends on whether your
cluster can handle the extra IO and network pressure of running on multiple nodes. Running on one
node at a time has the least impact on the existing cluster.

Attention: If you don't specify the existing data center in the command line, the new nodes
will appear to rebuild successfully, but will not contain any data.

8. For each new node, change to true or remove auto_bootstrap: false in the cassandra.yaml file.

Returns this parameter to its normal setting so the nodes can get all the data from the other nodes in
the data center if restarted.

Replacing a dead node
Steps to replace a node that has died for some reason, such as hardware failure.

About this task

You must prepare and start the replacement node, integrate it into the cluster, and then remove the dead
node. If the node is a seed node, see Replacing a dead seed node.

Procedure

1. Confirm that the node is dead using nodetool status:

The nodetool command shows a down status for the dead node (DN):

2. Note the Address of the dead node; it is used in step 5.

3. Install Cassandra on the new node, but do not start Cassandra.

If you used the Debian/Ubuntu install, Cassandra starts automatically and you must and stop the node
and clear the data.

4. Set the following properties in the cassandra.yaml and, depending on the snitch, the cassandra-
topology.properties or cassandra-rackdc.properties configuration files:

• auto_bootstrap - If this option has been set to false, you must set it to true. This option is not listed in
the default cassandra.yaml configuration file and defaults to true.

• cluster_name - The name of the cluster the new node is joining.
• listen_address/broadcast_address - May usually be left blank. Otherwise, use IP address or host

name that other Cassandra nodes use to connect to the new node.
• endpoint_snitch - The snitch Cassandra uses for locating nodes and routing requests.
• num_tokens - The number of vnodes to assign to the node. If the hardware capabilities vary among

the nodes in your cluster, you can assign a proportional number of vnodes to the larger machines.
• seed_provider - The -seeds list in this setting determines which nodes the new node should contact

to learn about the cluster and establish the gossip process.

/documentation/cql/3.1/cql/cql_reference/cql_storage_options_c.html
/documentation/cql/3.1/cql/cql_reference/alter_keyspace_r.html

Operations

123

Note: Seed nodes cannot bootstrap. Make sure the new node is not listed in the -seeds list.

• Change any other non-default settings you have made to your existing cluster in the
cassandra.yaml file and cassandra-topology.properties or cassandra-
rackdc.properties files. Use the diff command to find and merge (by head) any differences
between existing and new nodes.

5. Start the replacement node with the replace_address option:

• Packaged installs: Add the following option to /usr/share/cassandra/cassandra-env.sh file:

JVM_OPTS="$JVM_OPTS -Dcassandra.replace_address=address_of_dead_node
• Tarball installs: Start Cassandra with this option:

$ sudo bin/cassandra -Dcassandra.replace_address=address_of_dead_node

6. If using a packaged install, after the new node finishes bootstrapping, remove the option you added in
step 5.

What to do next

Remove the old node's IP address from the cassandra-topology.properties or cassandra-
rackdc.properties file

Caution: Wait at least 72 hours to ensure that old node information is removed from gossip. If
removed from the property file too soon, problems may result.

Replacing a dead seed node
Steps to replace a seed node.

About this task

Because Cassandra doesn't allow a seed node to be bootstrapped, use the following steps for replacing
the dead node:

Procedure

1. Promote an existing node to a seed node by adding its IP address to -seeds list and remove (demote)
the IP address of the dead seed node from the cassandra.yaml file for each node in the cluster.

2. Replace the dead node, as described in Replacing a dead node.

Replacing a running node
Steps to replace a node with a new node, such as when updating to newer hardware or performing
proactive maintenance.

About this task

You must prepare and start the replacement node, integrate it into the cluster, and then decommision the
old node.

Note: To change the IP address of a node, simply change the IP of node and then restart
Cassandra. If you change the IP address of a seed node, you must update the - seeds parameter in
the seed_provider for each node in the cassandra.yaml file.

Procedure

1. Prepare and start the replacement node, as described in Adding nodes to an existing cluster.

Note: If not using vnodes, see Adding Capacity to an Existing Cluster in the Cassandra 1.1
documentation.

2. Confirm that the replacement node is alive:

/documentation/cassandra/2.0/cassandra/configuration/configCassandra_yaml_r.html#reference_ds_qfg_n1r_1k__seed_provider
http://www.datastax.com/docs/1.1/cluster_management#adding-capacity-to-an-existing-cluster

Operations

124

• Run nodetool ring if not using vnodes.
• Run nodetool status if using vnodes.

The status should show:

• nodetool ring: Up
• nodetool status: UN

3. Note the Host ID of the node; it is used in the next step.

4. Using the Host ID of the original node, decommission the original node from the cluster using the
nodetool decommission command.

Decommissioning a data center
Steps to properly remove a data center so no information is lost.

About this task

Procedure

1. Make sure no clients are still writing to any nodes in the data center.

2. Run a full repair with nodetool repair.

This ensures that all data is propagated from the data center being decommissioned.

3. Change all keyspaces so they no longer reference the data center being removed.

4. Run nodetool decommission on every node in the data center being removed.

Removing a node
Reduce the size of a data center.

About this task
Use these instructions when you want to remove nodes to reduce the size of your cluster, not for replacing
a dead node.

Attention: If you are not using virtual nodes (vnodes), you must rebalance the cluster.

Procedure

1. Check whether the node is up or down using nodetool status:

The nodetool command shows the status of the node (UN=up, DN=down):

2. If the node is up, run nodetool decommission.

This assigns the ranges that the node was responsible for to other nodes and replicates the data
appropriately.

Use nodetool netstats to monitor the progress.

3. If the node is down:

• If the cluster uses vnodes, remove the node using the nodetool removenode command.
• If the cluster does not use vnodes, before running the nodetool removenode command, adjust your

tokens to evenly distribute the data across the remaining nodes to avoid creating a hot spot. See the
following in the Cassandra 1.1 documentation:

/documentation/cql/3.1/cql/cql_reference/alter_keyspace_r.html

Operations

125

• About Data Partitioning in Cassandra
• Generating Tokens

Switching snitches

About this task

Because snitches determine how Cassandra distributes replicas, the procedure to switch snitches depends
on whether or not the topology of the cluster will change:

• If data has not been inserted into the cluster, there is no change in the network topology. This means
that you only need to set the snitch; no other steps are necessary.

• If data has been inserted into the cluster, it's possible that the topology has changed and you will need
to perform additional steps.

A change in topology means that there is a change in the data centers and/or racks where the nodes are
placed. Topology changes may occur when the replicas are placed in different places by the new snitch.
Specifically, the replication strategy places the replicas based on the information provided by the new
snitch. The following examples demonstrate the differences:

• No topology change

Suppose you have 5 nodes using the SimpleSnitch in a single data center and you change to 5 nodes
in 1 data center and 1 rack using a network snitch such as the GossipingPropertyFileSnitch.

• Topology change

Suppose you have 5 nodes using the SimpleSnitch in a single data center and you change to 5 nodes
in 2 data centers using the PropertyFileSnitch.

Note: If splitting from one data center to two, you need to change the schema for the keyspace
that are splitting. Additionally, the data center names must change accordingly.

• Topology change

Suppose you have 5 nodes using the SimpleSnitch in a single data center and you change to 5 nodes
in 1 data center and 2 racks using the RackInferringSnitch.

The configuration files for snitches are located in:

• Tarball installs: install_location/conf
• Packaged installs: /etc/cassandra

Procedure

1. Create a properties file with data center and rack information.

• cassandra-rackdc.properties - GossipingPropertyFileSnitch EC2Snitch and
EC2MultiRegionSnitch only

• cassandra-topology.properties - all other network snitches

2. Copy the cassandra-topology.properties or cassandra-rackdc.properties file to the
Cassandra configuration directory on all the cluster's nodes. They won't be used until the new snitch is
enabled.

3. Change the snitch for each node in the cluster in the node's cassandra.yaml file. For example:

endpoint_snitch: GossipingPropertyFileSnitch

4. If the topology has not changed, you can restart each node one at a time.

Any change in the cassandra.yaml file requires a node restart.

5. If the topology of the network has changed:

a) Shut down all the nodes, then restart them.
b) Run a sequential repair and nodetool cleanup on each node.

http://www.datastax.com/docs/1.1/cluster_architecture/partitioning#about-data-partitioning-in-cassandra
http://www.datastax.com/docs/1.1/initialize/token_generation#generating-tokens
/documentation/cql/3.1/cql/cql_reference/cql_storage_options_c.html

Operations

126

Edge cases for transitioning or migrating a cluster
Unusual migration scenarios without interruption of service.

About this task

The information in this topic is intended for the following types of scenarios (without any interruption of
service):

• Transition a cluster on EC2 to a cluster on Amazon virtual private cloud (VPC).
• Migrate from a cluster when the network separates the current cluster from the future location.
• Migrate from an early Cassandra cluster to a recent major version.

Procedure

The following method ensures that if something goes wrong with the new cluster, you still have the existing
cluster until you no longer need it.

1. Set up and configure the new cluster as described in Provisioning a new cluster.

Note: If you're not using vnodes, be sure to configure the token ranges in the new nodes to
match the ranges in the old cluster.

2. Set up the schema for the new cluster using CQL.

3. Configure your client to write to both clusters.

Depending on how the writes are done, code changes may be needed. Be sure to use identical
consistency levels.

4. Ensure that the data is flowing to the new nodes so you won't have any gaps when you copy the
snapshots to the new cluster in step 6.

5. Snapshot the old EC2 cluster.

6. Copy the data files from your keyspaces to the nodes.

• If not using vnodes and the if the node ratio is 1:1, it's simpler and more efficient to simply copy the
data files to their matching nodes.

• If the clusters are different sizes or if you are using vnodes, use the Cassandra bulk loader
(sstableloader) (sstableloader).

7. You can either switch to the new cluster all at once or perform an incremental migration.

For example, to perform an incremental migration, you can set your client to designate a percentage of
the reads that go to the new cluster. This allows you to test the new cluster before decommissioning the
old cluster.

8. Decommission the old cluster:

a) Remove the cluster from the OpsCenter.
b) Remove the nodes.

/documentation/opscenter/5.0/opsc/online_help/opscCreatingCluster_t.html
/documentation/cql/3.1/cql/cql_using/about_cql_c.html
/documentation/opscenter/5.0/opsc/online_help/opscRemovingCluster_t.html

Backing up and restoring data

127

Backing up and restoring data

Cassandra backs up data by taking a snapshot of all on-disk data files (SSTable files) stored in the data
directory.

You can take a snapshot of all keyspaces, a single keyspace, or a single table while the system is online.

Using a parallel ssh tool (such as pssh), you can snapshot an entire cluster. This provides an eventually
consistent backup. Although no one node is guaranteed to be consistent with its replica nodes at the time
a snapshot is taken, a restored snapshot resumes consistency using Cassandra's built-in consistency
mechanisms.

After a system-wide snapshot is performed, you can enable incremental backups on each node to backup
data that has changed since the last snapshot: each time an SSTable is flushed, a hard link is copied into a
/backups subdirectory of the data directory (provided JNA is enabled).

Note: If JNA is enabled, snapshots are performed by hard links. If not enabled, I/O activity
increases as the files are copied from one location to another, which significantly reduces efficiency.

Taking a snapshot

About this task

Snapshots are taken per node using the nodetool snapshot command. To take a global snapshot, run the
nodetool snapshot command using a parallel ssh utility, such as pssh.

A snapshot first flushes all in-memory writes to disk, then makes a hard link of the SSTable files for each
keyspace. You must have enough free disk space on the node to accommodate making snapshots of your
data files. A single snapshot requires little disk space. However, snapshots can cause your disk usage to
grow more quickly over time because a snapshot prevents old obsolete data files from being deleted. After
the snapshot is complete, you can move the backup files to another location if needed, or you can leave
them in place.

Note: Cassandra can only restore data from a snapshot when the table schema exists. It is
recommended that you also backup the schema.

Procedure

Run the nodetool snapshot command, specifying the hostname, JMX port, and keyspace. For example:

$ nodetool -h localhost -p 7199 snapshot mykeyspace

Results

The snapshot is created in data_directory_location/keyspace_name/table_name-UUID/
snapshots/snapshot_name directory. Each snapshot directory contains numerous .db files that
contain the data at the time of the snapshot.

For example:

Packaged installs:

/var/lib/cassandra/data/mykeyspace/users-081a1500136111e482d09318a3b15cc2/
snapshots/1406227071618/mykeyspace-users-ka-1-Data.db

Tarball installs:

install_location/data/data/mykeyspace/users-081a1500136111e482d09318a3b15cc2/
snapshots/1406227071618/mykeyspace-users-ka-1-Data.db

Backing up and restoring data

128

Deleting snapshot files

About this task

When taking a snapshot, previous snapshot files are not automatically deleted. You should remove old
snapshots that are no longer needed.

The nodetool clearsnapshot command removes all existing snapshot files from the snapshot directory of
each keyspace. You should make it part of your back-up process to clear old snapshots before taking a
new one.

Procedure

To delete all snapshots for a node, run the nodetool clearsnapshot command. For example:

$ nodetool -h localhost -p 7199 clearsnapshot

To delete snapshots on all nodes at once, run the nodetool clearsnapshot command using a parallel
ssh utility.

Enabling incremental backups

About this task

When incremental backups are enabled (disabled by default), Cassandra hard-links each flushed SSTable
to a backups directory under the keyspace data directory. This allows storing backups offsite without
transferring entire snapshots. Also, incremental backups combine with snapshots to provide a dependable,
up-to-date backup mechanism.

As with snapshots, Cassandra does not automatically clear incremental backup files. DataStax
recommends setting up a process to clear incremental backup hard-links each time a new snapshot is
created.

Procedure

Edit the cassandra.yaml configuration file on each node in the cluster and change the value of
incremental_backups to true.

Restoring from a Snapshot

About this task

Restoring a keyspace from a snapshot requires all snapshot files for the table, and if using incremental
backups, any incremental backup files created after the snapshot was taken.

Generally, before restoring a snapshot, you should truncate the table. If the backup occurs before the
delete and you restore the backup after the delete without first truncating, you do not get back the original
data (row). Until compaction, the tombstone is in a different SSTable than the original row, so restoring
the SSTable containing the original row does not remove the tombstone and the data still appears to be
deleted.

Cassandra can only restore data from a snapshot when the table schema exists. If you have not backed up
the schema, you can do the either of the following:

• Method 1

/documentation/cql/3.1/cql/cql_reference/truncate_r.html
/documentation/cql/3.1/cql/cql_reference/delete_r.html

Backing up and restoring data

129

1. Restore the snapshot, as described below.
2. Recreate the schema.

• Method 2

1. Recreate the schema.
2. Restore the snapshot, as described below.
3. Run nodetool refresh.

Procedure

You can restore a snapshot in several ways:
• Use the sstableloader tool.
• Copy the snapshot SSTable directory (see Taking a snapshot) to the

data/keyspace/table_name-UUID directory and then call the JMX method
loadNewSSTables() in the column family MBean for each column family through JConsole. You can
use nodetool refresh instead of the loadNewSSTables() call.

The location of the data directory depends on the type of installation:

• Packaged installs: /var/lib/cassandra/data
• Tarball installs: install_location/data/data

• Use the Node Restart Method described below.

Node restart method

About this task

If restoring a single node, you must first shutdown the node. If restoring an entire cluster, you must shut
down all nodes, restore the snapshot data, and then start all nodes again.

Note: Restoring from snapshots and incremental backups temporarily causes intensive CPU and I/
O activity on the node being restored.

Procedure

1. Shut down the node.

2. Clear all files in the commitlog directory:

• Packaged installs: /var/lib/cassandra/commitlog
• Tarball installs: install_location/data/commitlog

This prevents the commitlog replay from putting data back, which would defeat the purpose of restoring
data to a particular point in time.

3. Delete all *.db files in data_directory_location/keyspace_name/table_name-UUID directory, but DO
NOT delete the /snapshots and /backups subdirectories.

where data_directory_location is

• Packaged installs: /var/lib/cassandra/data
• Tarball installs: install_location/data/data

4. Locate the most recent snapshot folder in this directory:

data_directory_location/keyspace_name/table_name-UUID/
snapshots/snapshot_name

5. Copy its contents into this directory:

data_directory_location/keyspace_name/table_name-UUID directory.

6. If using incremental backups, copy all contents of this directory:

Backing up and restoring data

130

data_directory_location/keyspace_name/table_name-UUID/backups

7. Paste it into this directory:

data_directory_location/keyspace_name/table_name-UUID

8. Restart the node.

Restarting causes a temporary burst of I/O activity and consumes a large amount of CPU resources.

9. Run nodetool repair.

Restoring a snapshot into a new cluster

About this task

Suppose you want to copy a snapshot of SSTable data files from a three node Cassandra cluster with
vnodes enabled (256 tokens) and recover it on another newly created three node cluster (256 tokens). The
token ranges will not match so you need to specify the tokens for the new cluster that were used in the old
cluster.

Note: This procedure assumes you are familiar with restoring a snapshot and configuring and
initializing a cluster. If not, see Initializing a cluster.

Procedure

To recover the snapshot on the new cluster:

1. From the old cluster, retrieve the list of tokens associated with each node's IP:

$ nodetool ring | grep ip_address_of_node | awk '{print $NF ","}' | xargs

2. In the cassandra.yaml file for each node in the new cluster, add the list of tokens you obtained in the
previous step to the initial_token parameter using the same num_tokens setting as in the old cluster.

3. Make any other necessary changes in the cassandra.yaml and property files so that the new nodes
match the old cluster settings.

4. Clear the system table data from each new node:

$ sudo rm -rf /var/lib/cassandra/data/system/*

This allows the new nodes to use the initial tokens defined in the cassandra.yaml when they restart.

5. Restore the SSTable files snapshotted from the old cluster onto the new cluster using the same
directories. Otherwise the new cluster does not have data to read in when you restart the nodes.

6. Start each node using the specified list of token ranges in cassandra.yaml:

initial_token: -9211270970129494930, -9138351317258731895,
 -8980763462514965928, ...

This allows Cassandra to read the SSTable snapshot from the old cluster.

Cassandra tools

131

Cassandra tools

The nodetool utility
A command line interface for Cassandra for managing a cluster.

Command format

• Packaged installs: nodetool -h HOSTNAME [-p JMX_PORT] COMMAND
• Tarball installs: install_location/bin/nodetool -h HOSTNAME [-p JMX_PORT] COMMAND
• Remote Method Invocation: nodetool -h HOSTNAME [-p JMX_PORT -u JMX_USERNAME -pw

JMX_PASSWORD] COMMAND

If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for
the host, then you must specify credentials.

Most nodetool commands operate on a single node in the cluster if -h is not used to identify one or more
other nodes. These commands operate cluster-wide:

• rebuild
• repair
• taketoken

If the node from which you issue the command is the intended target, you do not need the -h option to
identify the target; otherwise, identify the target node, or nodes, using the -h option.

cfhistograms
Provides statistics about a table that could be used to plot a frequency function.

Synopsis

nodetool <options> cfhistograms -- <keyspace> <table>

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

• -- Separates an option from an argument that could be mistaken for a option.
• keyspace is the name of a keyspace.
• table is the name of a table.

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Cassandra tools

132

Description

The nodetool cfhistograms command provides statistics about a table, including number of
SSTables, read/write latency, partition (row) size, and cell count.

Example

After performing the Wikipedia demo, run this command to get statistics about the solr table in the wiki
keyspace.

nodetool cfhistograms wiki solr

The output shows latencies in microseconds (µs), partition (formerly called row) size in bytes, and the
number of SSTables and the cell count. The Offset column corresponds to the x-axis in a histogram.
It represents buckets of values, which are a series of ranges. Each offset includes the range of values
greater than the previous offset and less than or equal to the current offset. The offsets start at 1 and
each subsequent offset is calculated by multiplying the previous offset by 1.2, rounding up, and removing
duplicates. The offsets can range from 1 to approximately 25 million, with less precision as the offsets get
larger.

For example:

• Offset 1 shows that 3579 requests only had to look at one SSTable. The SSTables column corresponds
to how many SSTables were involved in a read request.

• Offset 86 shows that there were 663 requests with a write latency between 73 and 86 µs. The range
falls into the 73 to 86 bucket.

On some versions of Cassandra, the output looks like this:

wiki/solr histograms
Offset SSTables Write Latency Read Latency Row Size
 Column Count
1 3579 0 0 0
 0
2 0 0 0 0
 0
. . .
35 0 0 0 0
 0
42 0 0 27 0
 0
50 0 0 187 0
 0
60 0 10 460 0
 0
72 0 200 689 0
 0
86 0 663 552 0
 0
103 0 796 367 0
 0
124 0 297 736 0
 0
149 0 265 243 0
 0
179 0 460 263 0
 0
. . .
25109160 0 0 0 0
 0

On other versions of Cassandra 2.0.x, the output does not label the columns. The offset is on the left, the
latency on the right:

SSTables per Read

http://www.datastax.com/documentation/getting_started/doc/getting_started/gettingStartedDemoSolr_31_t.html

Cassandra tools

133

1 sstables: 3579

Write Latency (microseconds)
 50 us: 1
 60 us: 195
 72 us: 1029
 86 us: 876
 103 us: 433
 124 us: 170
 149 us: 208
 179 us: 247
 215 us: 216
 258 us: 137
 310 us: 43
 372 us: 9
 446 us: 4
 535 us: 1
 642 us: 2
 770 us: 2
 924 us: 1
1109 us: 1
1331 us: 2
1597 us: 0
1916 us: 0
2299 us: 1
2759 us: 1

Read Latency (microseconds)
 50 us: 4
 60 us: 69
 72 us: 384
 86 us: 802
 103 us: 936
 124 us: 523
 149 us: 452
 179 us: 271
 215 us: 106
 258 us: 13
 310 us: 4
 372 us: 6
 446 us: 1
 535 us: 3
 642 us: 3
 770 us: 0
 924 us: 0
 1109 us: 0
 1331 us: 1
 1597 us: 0
 1916 us: 0
 2299 us: 0
 2759 us: 0
 3311 us: 0
 3973 us: 0
 4768 us: 0
 5722 us: 0
 6866 us: 0
 8239 us: 0
 9887 us: 0
11864 us: 0
14237 us: 1

Partition Size (bytes)
No Data

Cassandra tools

134

Cell Count per Partition
No Data

OpsCenter displays the same information in a better format for understanding the statistics.

cfstats
Provides statistics about tables.

Synopsis

nodetool <options> cfstats -i -- (<keyspace>.<table> ...)

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

• -- Separates an option from an argument that could be mistaken for a option.
• keyspace.table is one or more keyspace and table names in dot notation.

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description

The nodetool cfstats command provides statistics about one or more tables. You use dot notation
to specify one or more keyspace and table names. If you do not specify a keyspace and table, Cassandra
provides statistics about all tables.

This table describes the nodetool cfstats output.

Table 11: nodetool cfstats output

Name of
statistic

Example
value

Brief
description

Related information

Keyspace libdata Name of the
keyspace

Keyspace and table

Read count 11207 Number of
requests to
read tables
in the libdata
keyspace
since startup

Read latency 0.047931114482020164
ms

Latency
reading the
tables in
the libdata
keyspace

OpsCenter alert metrics

Write count 17598 Number of
requests

Same as above

/documentation/cql/3.1/cql/cql_reference/cql_storage_options_c.html
/documentation/opscenter/4.0/opsc/online_help/opscAlertMetrics_r.html

Cassandra tools

135

Name of
statistic

Example
value

Brief
description

Related information

to update
tables in
the libdata
keyspace
since startup

Write latency 0.053502954881236506
ms

Latency
writing tables
in the libdata
keyspace

Same as above

Pending tasks 0 Tasks in the
queue for
reads, writes,
and cluster
operations of
tables in the
keyspace

OpsCenter pending task metrics

Table libout Name of the
Cassandra
table

SSTable count 3 Number of
SSTables
containing
data from the
table

How to use the SSTable counts metric and OpsCenter alert
metrics

Space used
(live), bytes:

9592399 Space that
is measured
depends on
operating
system

Advanced system alert metrics

Space used
(total), bytes:

9592399 Same as
above

Same as above

SSTable
compression
ratio

0.36751363892150946Fraction
of data-
representation
size resulting
from
compression

Types of compression option)

Memtable cell
count

0 Number of
cells (storage
engine rows
x columns)
of data in the
memtable

Cassandra memtable structure in memory

Memtable data
size, bytes:

0 Size of the
memtable
data

Same as above

/documentation/opscenter/4.0/opsc/online_help/opscPendingTaskMetrics_r.html
/documentation/opscenter/4.0/opsc/online_help/opscAlertMetrics_r.html
/documentation/opscenter/4.0/opsc/online_help/opscAlertMetrics_r.html
/documentation/opscenter/4.0/opsc/online_help/opscAdvancedSystemAlertMetrics_r.html
/documentation/cql/3.1/cql/cql_reference/compressSubprop.html

Cassandra tools

136

Name of
statistic

Example
value

Brief
description

Related information

Memtable switch
count

3 Number of
times a full
memtable
was
swapped for
an empty
one that
increases
each
time the
memtable
for a table
is flushed to
disk

How memtables are measured article

Local read count 11207 Number of
local read
requests for
the libout
table since
startup

OpsCenter alert documentation

Local read
latency

0.048 ms Round
trip time in
milliseconds
to complete
a request
to read the
libout table

Factors that affect read latency

Local write
count

17598 Number
of local
requests to
update the
libout the
table since
startup

OpsCenter alert documentation

Local write
latency

0.054 ms Round
trip time in
milliseconds
to complete
an update
to the libout
table

Factors that affect write latency

Pending tasks 0 Number of
read, write,
and cluster
operations
that are
pending

OpsCenter pending task metrics documentation

Bloom filter false
positives

0 Number
of false
positives,

Tuning bloom filters

http://thelastpickle.com/blog/2011/05/04/How-are-Memtables-measured.html
/documentation/opscenter/4.0/opsc/online_help/opscAlertMetrics_r.html
/documentation/opscenter/4.0/opsc/online_help/opscAlertMetrics_r.html
/documentation/opscenter/4.0/opsc/online_help/opscPendingTaskMetrics_r.html

Cassandra tools

137

Name of
statistic

Example
value

Brief
description

Related information

which occur
when the
bloom filter
said the row
existed, but
it actually
did not exist
in absolute
numbers

Bloom filter false
ratio

0.00000 Fraction of
all bloom
filter checks
resulting in a
false positive

Same as above

Bloom filter
space used,
bytes

11688 Bytes of
bloom filter
data

Same as above

Compacted
partition
minimum bytes

1110 Lower size
limit for the
partition
being
compacted in
memory

Used to calculate what the approximate row cache size
should be. Multiply the reported row cache size, which is
the number of rows in the cache, by the compacted row
mean size for every table and sum them.

Compacted
partition
maximum bytes

126934 Upper size
limit for
compacted
table rows,
configurable
in the
cassandra.yaml
in_memory_compaction
_limit_in_mb

Same as above

Compacted
partition mean
bytes

2730 The average
size of
compacted
table rows

Same as above

Average
live cells per
slice (last five
minutes)

0.0

Average
tombstones per
slice (last five
minutes)

0.0

Example

This example shows an excerpt of the output of the command after flushing a table of library data to disk.

Keyspace: libdata

Cassandra tools

138

 Read Count: 11207
 Read Latency: 0.047931114482020164 ms.
 Write Count: 17598
 Write Latency: 0.053502954881236506 ms.
 Pending Tasks: 0
 Table: libout
 SSTable count: 3
 Space used (live), bytes: 9088955
 Space used (total), bytes: 9088955
 Space used by snapshots (total), bytes: 0
 SSTable Compression Ratio: 0.36751363892150946
 Memtable cell count: 0
 Memtable data size, bytes: 0
 Memtable switch count: 3
 Local read count: 11207
 Local read latency: 0.048 ms
 Local write count: 17598
 Local write latency: 0.054 ms
 Pending tasks: 0
 Bloom filter false positives: 0
 Bloom filter false ratio: 0.00000
 Bloom filter space used, bytes: 11688
 Compacted partition minimum bytes: 1110
 Compacted partition maximum bytes: 126934
 Compacted partition mean bytes: 2730
 Average live cells per slice (last five minutes): 0.0
 Average tombstones per slice (last five minutes): 0.0

cleanup
Cleans up keyspaces and partition keys no longer belonging to a node.

Synopsis

nodetool <options> cleanup -- <keyspace > (<table> ...)

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

• -- Separates an option from an argument that could be mistaken for a option.
• keyspace is a keyspace name.
• table is one or more table names, separated by a space.

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description

Use this command to remove unwanted data after adding a new node to the cluster. Cassandra does
not automatically remove data from nodes that lose part of their partition range to a newly added node.
Run nodetool cleanup on the source node and on neighboring nodes that shared the same subrange
after the new node is up and running. Failure to run this command after adding a node causes Cassandra

Cassandra tools

139

to include the old data to rebalance the load on that node. Running the nodetool cleanup command
causes a temporary increase in disk space usage proportional to the size of your largest SSTable. Disk I/O
occurs when running this command.

Running this command affects nodes that use a counter column in a table. Cassandra assigns a new
counter ID to the node.

Optionally, this command takes a list of table names. If you do not specify a keyspace, this command
cleans all keyspaces no longer belonging to a node.

clearsnapshot
Removes one or more snapshots.

Synopsis

nodetool <options> clearsnapshot -t <snapshot > -- (<keyspace> ...)

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

• -t means the following file contains the snapshot.
• -- Separates an option from an argument that could be mistaken for a option.
• keyspace is one or more keyspace names, separated by a space.

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description

Deletes snapshots for one or more keyspaces. To remove all snapshots, omit the snapshot name.

compact
Forces a major compaction on one or more tables.

Synopsis

nodetool <options> compact <keyspace> (<table> ...)

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

• -- Separates an option and argument that could be mistaken for a option.
• keyspace is the name of a keyspace.
• table is one or more table names, separated by a space.

Cassandra tools

140

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description

This command starts the compaction process on tables that use the SizeTieredCompactionStrategy or
DateTieredCompactionStrategy. You can specify a keyspace for compaction. If you do not specify a
keyspace, the nodetool command uses the current keyspace. You can specify one or more tables for
compaction. If you do not specify a table(s), compaction of all tables in the keyspace occurs. This is
called a major compaction. If you do specify a table(s), compaction of the specified table(s) occurs. This is
called a minor compaction. A major compaction consolidates all existing SSTables into a single SSTable.
During compaction, there is a temporary spike in disk space usage and disk I/O because the old and new
SSTables co-exist. A major compaction can cause considerable disk I/O.

compactionhistory
Provides the history of compaction operations.

Synopsis

nodetool <options> compactionhistory

options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

compactionstats
Provide statistics about a compaction.

Synopsis

nodetool <options> compactionstats

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

• -- separates an option and argument that could be mistaken for a option.
• data center is the name of an arbitrarily chosen data center from which to select sources for streaming.

Cassandra tools

141

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description

The total column shows the total number of uncompressed bytes of SSTables being compacted. The
system log lists the names of the SSTables compacted.

Example

$ bin/nodetool compactionstats
pending tasks: 5
 compaction type keyspace table completed
 total unit progress
 Compaction Keyspace1 Standard1 282310680
 302170540 bytes 93.43%
 Compaction Keyspace1 Standard1 58457931
 307520780 bytes 19.01%
Active compaction remaining time : 0h00m16s

decommission
Deactivates a node by streaming its data to another node.

Synopsis

nodetool <options> decommission

options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
Causes a live node to decommission itself, streaming its data to the next node on the ring. Use netstats to
monitor the progress, as described on http://wiki.apache.org/cassandra/NodeProbe#Decommission and
http://wiki.apache.org/cassandra/Operations#Removing_nodes_entirely .

http://wiki.apache.org/cassandra/NodeTool#Decommission
http://wiki.apache.org/cassandra/Operations#Removing_nodes_entirely

Cassandra tools

142

describering
Provides the partition ranges of a keyspace.

Synopsis

nodetool <options> describering -- <keyspace>

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

• -- Separates an option from an argument that could be mistaken for a option.
• keyspace is a keyspace name.

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

disableautocompaction
Disables autocompaction for a keyspace and one or more tables.

Synopsis

nodetool <options> disableautocompaction -- <keyspace> (<table> ...)

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

• -- Separates an option and argument that could be mistaken for a option.
• keyspace is the name of a keyspace.
• table is one or more table names, separated by a space.

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description

The keyspace can be followed by one or more tables.

Cassandra tools

143

disablebackup
Disables incremental backup.

Synopsis

nodetool <options> disablebackup

options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

disablebinary
Disables the native transport.

Synopsis

nodetool <options> disablebinary

options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description

Disables the binary protocol, also known as the native transport.

disablegossip
Disables the gossip protocol.

Synopsis

nodetool <options> disablegossip

options are:

• (-h | --host) <host name> | <ip address>

Cassandra tools

144

• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description

This command effectively marks the node as being down.

disablehandoff
Disables storing of future hints on the current node.

Synopsis

nodetool <options> disablehandoff

options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

disablethrift
Disables the Thrift server.

Synopsis

nodetool <options> disablethrift

options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR

Cassandra tools

145

• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

drain
Drains the node.

Synopsis

nodetool <options> drain

options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description

Flushes all memtables from the node to SSTables on disk. Cassandra stops listening for connections from
the client and other nodes. You need to restart Cassandra after running nodetool drain. You typically
use this command before upgrading a node to a new version of Cassandra. To simply flush memtables to
disk, use nodetool flush.

enableautocompaction
Enables autocompaction for a keyspace and one or more tables.

Synopsis

nodetool <options> enableautocompaction -- <keyspace> (<table> ...)

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

• -- Separates an option and argument that could be mistaken for a option.
• keyspace is the name of a keyspace.
• table is the name of one or more keyspaces, separated by a space.

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Cassandra tools

146

Description
The keyspace can be followed by one or more tables.

enablebackup
Enables incremental backup.

Synopsis

nodetool <options> enablebackup

options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

enablebinary
Re-enables native transport.

Synopsis

nodetool <options> enablebinary

options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description

Re-enables the binary protocol, also known as native transport.

enablegossip
Re-enables gossip.

Synopsis

nodetool <options> enablegossip

Cassandra tools

147

options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

enablehandoff
Re-enables the storing of future hints on the current node.

Synopsis

nodetool <options> enablehandoff

options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

enablethrift
Re-enables the Thrift server.

Synopsis

nodetool <options> enablethrift

options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable

Cassandra tools

148

• Orange (and) means not literal, indicates scope

flush
Flushes one or more tables from the memtable.

Synopsis

 nodetool <options> flush -- <keyspace> (<table> ...)

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

• -- Separates an option and argument that could be mistaken for a option.
• keyspace is the name of a keyspace.
• table is the name of one or more tables, separated by a space.

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description

You can specify a keyspace followed by one or more tables that you want to flush from the memtable to
SSTables on disk.

getcompactionthreshold
Provides the minimum and maximum compaction thresholds in megabytes for a table.

Synopsis

 nodetool <options> getcompactionthreshold -- <keyspace> <table>

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

• -- Separates an option and argument that could be mistaken for a option.
• keyspace is the name of a keyspace.
• table is the name of a table.

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Cassandra tools

149

getendpoints
Provides the end points that own the partition key.

Synopsis

nodetool <options> getendpoints -- <keyspace> <table> key

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

• -- Separates an option and argument that could be mistaken for a option.
• keyspace is a keyspace name.
• table is a table name.
• key is the partition key of the end points you want to get.

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

getsstables
Provides the SSTables that own the partition key.

Synopsis

nodetool <options> getsstables -- <keyspace> <table> key

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

• -- Separates an option and argument that could be mistaken for a option.
• keyspace is a keyspace name.
• table is a table name.
• key is the partition key of the SSTables.

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Cassandra tools

150

getstreamthroughput
Provides the megabytes per second throughput limit for streaming in the system.

Synopsis

nodetool <options> getstreamthroughput

options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

gossipinfo
Provides the gossip information for the cluster.

Synopsis

nodetool <options> gossipinfo

options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

info
Provides node information, such as load and uptime.

Synopsis

nodetool <options> info (-T | --tokens)

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

Cassandra tools

151

• -T or --tokens means provide all token information.

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description

Provides node information including the token and on disk storage (load) information, times started
(generation), uptime in seconds, and heap memory usage.

invalidatekeycache
Resets the global key cache parameter to the default, which saves all keys.

Synopsis

nodetool <options> invalidatekeycache

options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
By default the key_cache_keys_to_save is disabled in the cassandra.yaml. This command resets the
parameter to the default.

invalidaterowcache
Resets the global key cache parameter, row_cache_keys_to_save, to the default (not set), which saves all
keys.

Synopsis

nodetool <options> invalidaterowcache

options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

Cassandra tools

152

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

join
Causes the node to join the ring.

Synopsis

nodetool <options> join

options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description

Causes the node to join the ring, assuming the node was initially not started in the ring using the -
Djoin_ring=false cassandra utility option. The joining node should be properly configured with the desired
options for seed list, initial token, and auto-bootstrapping.

move
Moves the node on the token ring to a new token.

Synopsis

nodetool <options> move -- <new token>

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

• -- Separates an option and argument that could be mistaken for a option.
• new token is a number in the range 0 to 2 127 -1 for negative tokens.

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR

Cassandra tools

153

• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description

Escape negative tokens using \\ . For example: move \\-123 . This command essentially combines
decommission and bootstrapoperations.

netstats
Provides network information about the host.

Synopsis

nodetool <options> netstats

options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description

The default host is the connected host if the user does not include a host name or IP address in the
command. The output includes the following information:

• JVM settings
• Mode
• Read repair statistics
• Attempted

The number of successfully completed read repair operations
• Mismatch (blocking)

The number of read repair operations since server restart that blocked a query.
• Mismatch (background)

The number of read repair operations since server restart performed in the background.
• Pool name

Information about client read and write requests by thread pool.

Example

Get the network information for a node 10.171.147.128:

nodetool -h 10.171.147.128 netstats

An example of output is:

Mode: NORMAL
Not sending any streams.

Cassandra tools

154

Not receiving any streams.
Read Repair Statistics:
Attempted: 1
Mismatch (Blocking): 0
Mismatch (Background): 0
Pool Name Active Pending Completed
Commands n/a 0 0
Responses n/a 0 0

pausehandoff
Pauses the hints delivery process

Synopsis

nodetool <options> pausehandoff

options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

proxyhistograms
Provides a histogram of network statistics.

Synopsis

nodetool <options> proxyhistograms

options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description

The output of this command shows the full request latency recorded by the coordinator. The output
includes the percentile rank of read and write latency values for inter-node communication. Range latency
is the latency of range scans, such as getting all partitions, executing an IN statement, or performing any

Cassandra tools

155

selection that requires ALLOW FILTERING or index lookups. Typically, you use the command to see if
requests encounter a slow node.

Examples
This example shows the output from nodetool proxyhistograms after running 4,500 insert statements and
45,000 select statements on a three ccm node-cluster on a local computer. The output shows an offset on
the left and latencies in microseconds (µs) on the right. The offset corresponds to the x-axis in a histogram.
It represents buckets of values, which are a series of ranges. Each offset includes the range of values
greater than the previous offset and less than or equal to the current offset. Each offset is calculated by
multiplying the previous offset by 1.2, rounding up, and removing duplicates.

$ nodetool proxyhistograms
proxy histograms

Read Latency (microseconds)
61214 us: 1

Write Latency (microseconds)
 103 us: 22
 124 us: 142
 149 us: 297
 179 us: 1190
 215 us: 1823
 258 us: 2091
 310 us: 1291
 372 us: 753
 446 us: 297
 535 us: 72
 642 us: 26
 770 us: 15
 924 us: 4
 1109 us: 0
 1331 us: 0
 1597 us: 0
 1916 us: 0
 2299 us: 0
 2759 us: 0
 3311 us: 1
 3973 us: 0
 4768 us: 0
 5722 us: 0
 6866 us: 0
 8239 us: 0
 9887 us: 0
11864 us: 0
14237 us: 0
17084 us: 0
20501 us: 0
24601 us: 0
29521 us: 0
35425 us: 0
42510 us: 0
51012 us: 1

Range Latency (microseconds)
 310 us: 1
 372 us: 139
 446 us: 1824
 535 us: 8933
 642 us: 6123
 770 us: 3672
 924 us: 2178

https://github.com/pcmanus/ccm

Cassandra tools

156

 1109 us: 1152
 1331 us: 673
 1597 us: 112
 1916 us: 15
 2299 us: 2
 2759 us: 1
 3311 us: 1
 3973 us: 0
 4768 us: 0
 5722 us: 0
 6866 us: 0
 8239 us: 1
 9887 us: 0
11864 us: 0
14237 us: 2
17084 us: 0
20501 us: 0
24601 us: 0
29521 us: 1
35425 us: 0
42510 us: 1
51012 us: 1

rangekeysample
Provides the sampled keys held across all keyspaces.

Synopsis

nodetool <options> rangekeysample

options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

rebuild
Rebuilds data by streaming from other nodes.

Synopsis

nodetool <options> rebuild -- <data center>

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

• -- Separates an option and argument that could be mistaken for a option.

Cassandra tools

157

• data center is the name of an arbitrarily chosen data center from which to select sources for streaming.

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description

This command operates on multiple nodes in a cluster. Like bootstrap, rebuild only streams data from a
single source replica per range. Use this command to bring up a new data center in an existing cluster.
See Adding a data center to a cluster .

For example, when adding a new data center, you would run the following on all nodes in the new data
center:

nodetool rebuild -- name_of_existing_data_center

Attention: If you don't specify the existing data center in the command line, the new nodes will
appear to rebuild successfully, but will not contain any data.

You can run rebuild on one or more nodes at the same time. The choices depends on whether your cluster
can handle the extra IO and network pressure of running on multiple nodes. Running on one node at a time
has the least impact on the existing cluster.

rebuild_index
Performs a full rebuild of the index for a table

Synopsis

nodetool <options> rebuild_index -- <keyspace> <table> (<index> ...)

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

• -- Separates an option and argument that could be mistaken for a option.
• keyspace is a keyspace name.
• table is a table name.
• index is a list of index names separated by a space.

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Cassandra tools

158

Description

Fully rebuilds one or more indexes for a table.

refresh
Loads newly placed SSTables onto the system without a restart.

Synopsis

nodetool <options> refresh -- <keyspace> <table>

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

• -- Separates an option and argument that could be mistaken for a option.
• keyspace is a keyspace name.
• table is a table name.

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

removenode
Provides the status of current node removal, forces completion of pending removal, or removes the
identified node.

Synopsis

nodetool <options> removenode --<status> | <force> | <ID>

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

• -- Separates an option and argument that could be mistaken for a option.
• status provides status information.
• force forces completion of the pending removal.
• ID is the host ID, in UUID format.

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Cassandra tools

159

Description
This command removes a node, shows the status of a removal operation, or forces the completion
of a pending removal. When the node is down and nodetool decommission cannot be used, use
nodetool removenode. Run this command only on nodes that are down. If the cluster does not use
vnodes, before running the nodetool removenode command, adjust the tokens.

Examples

Determine the UUID of the node to remove by running nodetool status. Use the UUID of the node that
is down to remove the node.

$ nodetool status

Datacenter: DC1
===============
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address Load Tokens Owns (effective) Host ID
 Rack
UN 192.168.2.101 112.82 KB 256 31.7% 420129fc-0d84-42b0-
be41-ef7dd3a8ad06 RAC1
DN 192.168.2.103 91.11 KB 256 33.9% d0844a21-3698-4883-
ab66-9e2fd5150edd RAC1
UN 192.168.2.102 124.42 KB 256 32.6% 8d5ed9f4-7764-4dbd-
bad8-43fddce94b7c RAC1

$ nodetool removenode d0844a21-3698-4883-ab66-9e2fd5150edd

View the status of the operation to remove the node:

$ nodetool removenode status

RemovalStatus: No token removals in process.

Confirm that the node has been removed.

$ nodetool status

Datacenter: DC1
===============
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address Load Tokens Owns (effective) Host ID
 Rack
UN 192.168.2.101 112.82 KB 256 37.7% 420129fc-0d84-42b0-
be41-ef7dd3a8ad06 RAC1
UN 192.168.2.102 124.42 KB 256 38.3% 8d5ed9f4-7764-4dbd-
bad8-43fddce94b7c RAC1

repair
Repairs one or more tables.

Synopsis

nodetool <options> repair
 (-dc <dc_name> | --in-dc <dc_name>)
 (-et <end_token> | --end-token <end_token>)
 (-local | --in-local-dc)
 (-par | --parallel)
 (-pr | --partitioner-range)
 (-st <start_token> --start-token <start_token>)
-- <keyspace> (<table> ...)

• options are:

Cassandra tools

160

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

• -dc, or --in-dc, followed by dc_name, or means restrict repair to nodes in the named data center, which
must be the local data center.

• -et, or --end-token, followed by the UUID of a token means stop repairing a range of nodes after
repairing this token.

• -local, or --in-local-dc, means repair nodes in the same data center only.
• -par, or --parallel, means carry out a parallel repair.
• pr, or --partitioner-range, means repair only the first range returned by the partitioner.
• -st, or --start-token, followed by the UUID of a token means start repairing a range of nodes at this

token.
• -- Separates an option and argument that could be mistaken for a option.
• keyspace is the keyspace name.
• table is one or more table names, separated by a space.

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description

This command operates on multiple nodes in a cluster, and includes an option to restrict repair to a set
of nodes. This command begins an anti-entropy node repair operation. If the -pr option is specified, only
the first range returned by the partitioner for a node is repaired. This allows you to repair each node in
the cluster in succession without duplicating work. If the -pr option is not specified, Cassandra repairs all
replica ranges that fall within the responsibility of the node.

By default, the repair command takes a snapshot of each replica immediately and then sequentially repairs
each replica from the snapshots. For example, if you have RF=3 and A, B and C represents three replicas,
this command takes a snapshot of each replica immediately and then sequentially repairs each replica
from the snapshots (A<->B, A<->C, B<->C) instead of repairing A, B, and C all at once. This allows the
dynamic snitch to maintain performance for your application via the other replicas, because at least one
replica in the snapshot is not undergoing repair.

Parallel repair constructs the Merkle tables for all nodes at the same time. Use a parallel repair to complete
the repair quickly or when you have operational downtime that allows the resources to be completely
consumed during the repair.

To restrict the repair to the local data center, use the -dc option followed by the name of the data center.
Issue the command from a node in the data center you want to repair. Issuing the command from a data
center other than the named one returns an error.

$ nodetool repair -dc DC1
[2014-07-24 21:59:55,326] Nothing to repair for keyspace 'system'
[2014-07-24 21:59:55,617] Starting repair command #2, repairing 490 ranges
 for keyspace system_traces (seq=true, full=true)
[2014-07-24 22:23:14,299] Repair session 323b9490-137e-11e4-88e3-c972e09793ca
 for range (820981369067266915,822627736366088177] finished
[2014-07-24 22:23:14,320] Repair session 38496a61-137e-11e4-88e3-c972e09793ca
 for range (2506042417712465541,2515941262699962473] finished
. . .

Cassandra tools

161

An inspection of the system.log shows repair taking place only on IP addresses in DC1.

. . .
INFO [AntiEntropyStage:1] 2014-07-24 22:23:10,708 RepairSession.java:171
 - [repair #16499ef0-1381-11e4-88e3-c972e09793ca] Received merkle tree
 for sessions from /192.168.2.101
INFO [RepairJobTask:1] 2014-07-24 22:23:10,740 RepairJob.java:145
 - [repair #16499ef0-1381-11e4-88e3-c972e09793ca] requesting merkle trees
 for events (to [/192.168.2.103, /192.168.2.101])
. . .

For more information about the repair operation, see "Repairing nodes."

resetlocalschema
Reset the node's local schema and resynchronizes.

Synopsis

nodetool <options> resetlocalschema

options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password>
• (-u | --username) <user name>

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

resumehandoff
Resume hints delivery process.

Synopsis

nodetool <options> resumehandoff

options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password>
• (-u | --username) <user name>

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Cassandra tools

162

ring
Provides node status and information about the ring.

Synopsis

nodetool <options> ring (-r | --resolve-ip) -- <keyspace>

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

• -r, or --resolve-ip, means to provide node names instead of IP addresses.
• -- Separates an option and argument that could be mistaken for a option.
• keyspace is a keyspace name.

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description

Displays node status and information about the ring as determined by the node being queried. This
information can give you an idea of the load balance and if any nodes are down. If your cluster is not
properly configured, different nodes may show a different ring. Check that the node appears the same way
in the ring.If you use virtual nodes (vnodes), use nodetool status for succinct output.

• Address

The node's URL.
• DC (data center)

The data center containing the node.
• Rack

The rack or, in the case of Amazon EC2, the availability zone of the node.
• Status - Up or Down

Indicates whether the node is functioning or not.
• State - N (normal), L (leaving), J (joining), M (moving)

The state of the node in relation to the cluster.
• Load - updates every 90 seconds

The amount of file system data under the cassandra data directory after excluding all content in the
snapshots subdirectories. Because all SSTable data files are included, any data that is not cleaned up,
such as TTL-expired cell or tombstoned data) is counted.

• Token

The end of the token range up to and including the value listed. For an explanation of token ranges, see
Data Distribution in the Ring .

• Owns

The percentage of the data owned by the node per data center times the replication factor. For
example, a node can own 33% of the ring, but show100% if the replication factor is 3.

http://www.datastax.com/docs/1.1/cluster_architecture/partitioning#data-distribution-in-the-ring

Cassandra tools

163

• Host ID

The network ID of the node.

scrub
Rebuild SSTables for one or more Cassandra tables.

Synopsis

nodetool <options> scrub <keyspace> -- (-ns | --no-snapshot) (-s | --skip-
corrupted) (<table> ...)

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -- Separates an option and argument that could be mistaken for a option.
• keyspace is the name of a keyspace.
• -ns, or --no-snapshot, triggers a snapshot of the scrubbed table first assuming snapshots are not

disabled (the default).
• - s, or --skip-corrupted skips corrupted partitions even when scrubbing counter tables. (default false)
• table is one or more table names, separated by a space.

Synopsis Legend

• Angle brackets (< >) means not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
Rebuilds SSTables on a node for the named tables and snapshots data files before rebuilding as a safety
measure. If possible use upgradesstables. While scrub rebuilds SSTables, it also discards data that it
deems broken and creates a snapshot, which you have to remove manually. If scrub can't validate the
column value against the column definition's data type, it logs the partition key and skips to the next
partition. If the -ns option is specified, snapshot creation is disabled.

Skipping corrupt rows in tables having counter columns results in undercounts. By default the scrub
operation stops if you attempt to skip such a row. To force the scrub to skip the row and continue
scrubbing, re-run nodetool scrub using the --skip-corrupted option.

setcachecapacity
Set global key and row cache capacities in megabytes.

Synopsis

nodetool <options> setcachecapacity -- <key-cache-capacity> <row-cache-
capacity>

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>

Cassandra tools

164

• (-pw | --password) <password >
• (-u | --username) <user name>

• -- Separates an option and argument that could be mistaken for a option.
• key-cache-capacity is the maximum size in MB of the key cache in memory.
• row-cache-capacity corresponds to the maximum size in MB of the row cache in memory.

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
The key-cache-capacity argument corresponds to the key_cache_size_in_mb parameter in the
cassandra.yaml. Each key cache hit saves one seek and each row cache hit saves a minimum of two
seeks. Devoting some memory to the key cache is usually a good tradeoff considering the positive effect
on the response time. The default value is empty, which means a minimum of five percent of the heap in
MB or 100 MB.

The row-cache-capacity argument corresponds to the row_cache_size_in_mb parameter in the
cassandra.yaml. By default, row caching is zero (disabled).

setcachekeystosave
Sets the number of keys saved by each cache for faster post-restart warmup.

Synopsis

nodetool <options> setcachekeystosave -- <key-cache-keys-to-save> <row-cache-
keys-to-save>

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

• -- Separates an option and argument that could be mistaken for a option.
• key-cache-keys-to-save is the number of keys from the key cache to save to the saved caches

directory.
• row-cache-keys-to-save is the number of keys from the row cache to save to the saved caches

directory.

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description

This command saves the specified number of key and row caches to the saved caches directory,
which you specify in the cassandra.yaml. The key-cache-keys-to-save argument corresponds to the

Cassandra tools

165

key_cache_keys_to_save in the cassandra.yaml, which is disabled by default, meaning all keys will
be saved. The row-cache-keys-to-save argument corresponds to the row_cache_keys_to_save in the
cassandra.yaml, which is disabled by default.

setcompactionthreshold
Sets minimum and maximum compaction thresholds for a table.

Synopsis

nodetool <options> setcompactionthreshold -- <keyspace> <table> <minthreshold>
 <maxthreshold>

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

• -- Separates an option and argument that could be mistaken for a option.
• keyspace is the name of a keyspace.
• table is a table name.
• minthreshold sets the minimum number of SSTables to trigger a minor compaction when using

SizeTieredCompactionStrategy or DateTieredCompactionStrategy.
• maxthreshold sets the maximum number of SSTables to allow in a minor compaction when using

SizeTieredCompactionStrategy or DateTieredCompactionStrategy.

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
This parameter controls how many SSTables of a similar size must be present before a minor compaction
is scheduled. The max_threshold sets an upper bound on the number of SSTables that may be compacted
in a single minor compaction, as described in http://wiki.apache.org/cassandra/MemtableSSTable .

When using LeveledCompactionStrategy, maxthreshold sets the MAX_COMPACTING_L0, which limits
the number of L0 SSTables that are compacted concurrently to avoid wasting memory or running out of
memory when compacting highly overlapping SSTables.

setcompactionthroughput
Sets the throughput capacity for compaction in the system, or disables throttling.

Synopsis

nodetool <options> setcompactionthroughput -- <value_in_mb>

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

• -- Separates an option and argument that could be mistaken for a option.

/documentation/cassandra/2.0/cassandra/reference/referenceTableAttributes.html#reference_ds_zyq_zmz_1k__max_compaction_threshold
http://wiki.apache.org/cassandra/MemtableSSTable

Cassandra tools

166

• value_in_mb is the throughput capacity in MB per second for compaction.

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description

Set value_in_mb to 0 to disable throttling.

sethintedhandoffthrottlekb
Sets hinted handoff throttle in kb/sec per delivery thread. (Cassandra 2.0.11 and later)

Synopsis

nodetool <options> sethintedhandoffthrottlekb <value_in_kb/sec>

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• value_in_kb/sec is the throttle time.

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description

When a node detects that a node for which it is holding hints has recovered, it begins sending the hints to
that node. This setting specifies the maximum sleep interval per delivery thread in kilobytes per second
after delivering each hint. The interval shrinks proportionally to the number of nodes in the cluster. For
example, if there are two nodes in the cluster, each delivery thread uses the maximum interval; if there are
three nodes, each node throttles to half of the maximum interval, because the two nodes are expected to
deliver hints simultaneously.

Example

nodetool sethintedhandoffthrottlekb 2048

setstreamthroughput
Sets the throughput capacity in MB for streaming in the system, or disable throttling.

Synopsis

nodetool <options> setstreamthroughput -- <value_in_mb>

Cassandra tools

167

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

• -- Separates an option and argument that could be mistaken for a option.
• value_in_mb is the throughput capacity in MB per second for streaming.

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
Set value_in_MB to 0 to disable throttling.

settraceprobability
Sets the probability for tracing a request.

Synopsis

nodetool <options> settraceprobability -- <value>

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

• -- Separates an option and argument that could be mistaken for a option.
• value is a probability between 0 and 1.

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
Probabilistic tracing is useful to determine the cause of intermittent query performance problems by
identifying which queries are responsible. This option traces some or all statements sent to a cluster.
Tracing a request usually requires at least 10 rows to be inserted.

A probability of 1.0 will trace everything whereas lesser amounts (for example, 0.10) only sample a certain
percentage of statements. Care should be taken on large and active systems, as system-wide tracing
will have a performance impact. Unless you are under very light load, tracing all requests (probability
1.0) will probably overwhelm your system. Start with a small fraction, for example, 0.001 and increase
only if necessary. The trace information is stored in a system_traces keyspace that holds two tables –
sessions and events, which can be easily queried to answer questions, such as what the most time-

Cassandra tools

168

consuming query has been since a trace was started. Query the parameters map and thread column in the
system_traces.sessions and events tables for probabilistic tracing information.

snapshot
Take a snapshot of one or more keyspaces, or of a table, to backup data.

Synopsis

nodetool <options> snapshot (
 (-cf <table> | --column-family <table>)
 (-t <tag> | --tag <tag>)
 -- (<keyspace>) | (<keyspace> ...)
)

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

• -cf, or --column-family, followed by the name of the table to be backed up.
• -t or --tag, followed by the snapshot name.
• -- Separates an option and argument that could be mistaken for a option.
• keyspace is one keyspace name that is required when using the -cf option, or one or more optional

keyspace names, separated by a space.

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
Use this command to back up data using a snapshot. Depending on how you use the command, the
following data is included:

• All keyspaces on a node.

Omit the optional keyspace and table parameters, as shown in the first example.
• One or more keyspaces and all tables in the named keyspaces.

Include one or more names of the keyspaces, as shown in the second and third examples.
• A single table.

Include the name of a single keyspace and a table using the -cf option, as shown in the last example.

Cassandra flushes the node before taking a snapshot, takes the snapshot, and stores the data in the
snapshots directory of each keyspace in the data directory. If you do not specify the name of a snapshot
directory using the -t option, Cassandra names the directory using the timestamp of the snapshot, for
example 1391460334889. Follow the procedure for taking a snapshot before upgrading Cassandra. When
upgrading, backup all keyspaces. For more information about snapshots, see Apache documentation .

Example: All keyspaces

Take a snapshot of all keyspaces on the node. On Linux, in the Cassandra bin directory, for example:

$./nodetool snapshot

http://wiki.apache.org/cassandra/Operations#Backing_up_data

Cassandra tools

169

The following message appears:

Requested creating snapshot(s) for [all keyspaces] with snapshot name
 [1391464041163]
Snapshot directory: 1391464041163

Because you did not specify a snapshot name, Cassandra names snapshot directories using the
timestamp of the snapshot. If the keyspace contains no data, empty directories are not created.

Example: Single keyspace snapshot

Assuming you created the keyspace and tables in the music service example, take a snapshot of the music
keyspace and name the snapshot 2014.06.24. On Linux, in the Cassandra bin directory, for example:

$./nodetool snapshot -t 2014.06.24 music

The following message appears:

Requested creating snapshot(s) for [music] with snapshot name [2014.06.24]
Snapshot directory: 2014.06.24

Assuming the music keyspace contains two tables, songs and playlists, taking a snapshot of the keyspace
creates multiple snapshot directories named 2014.06.24. A number of .db files containing the data are
located in these directories. For example:

$ cd /var/lib/cassandra/data/music/playlists-bf8118508cfd11e3972273ded3cb6170/
snapshots/2014.06.24
$ ls
music-playlists-ka-1-CompressionInfo.db music-playlists-ka-1-Index.db
 music-playlists-ka-1-TOC.txt
music-playlists-ka-1-Data.db music-playlists-ka-1-Statistics.db
music-playlists-ka-1-Filter.db music-playlists-ka-1-Summary.db
$ cd /var/lib/cassandra/data/music/songs-
b8e385a08cfd11e3972273ded3cb6170/2014.06.24/snapshots/2014.06.24
music-songs-ka-1-CompressionInfo.db music-songs-ka-1-Index.db music-songs-
ka-1-TOC.txt
music-songs-ka-1-Data.db music-songs-ka-1-Statistics.db
music-songs-ka-1-Filter.db music-songs-ka-1-Summary.db

Example: Multiple keyspaces snapshot

Assuming you created a keyspace named mykeyspace in addition to the music keyspace, take a snapshot
of both keyspaces. On Linux, in the Cassandra bin directory, for example:

$./nodetool snapshot mykeyspace music

The following message appears:

Requested creating snapshot(s) for [mykeyspace, music] with snapshot name
 [1391460334889]
Snapshot directory: 1391460334889

Example: Single table snapshot

Take a snapshot of only the playlists table in the music keyspace. On Linux, in the Cassandra bin
directory, for example:

$./nodetool snapshot -cf playlists music
Requested creating snapshot(s) for [music] with snapshot name [1391461910600]
Snapshot directory: 1391461910600

Cassandra creates the snapshot directory named 1391461910600 that contains the
backup data of playlists table in /var/lib/cassandra/data/music/playlists-
bf8118508cfd11e3972273ded3cb6170/snapshots, for example.

/documentation/cql/3.1/cql/ddl/ddl_intro_c.html

Cassandra tools

170

status
Provide information about the cluster, such as the state, load, and IDs.

Synopsis

nodetool <options> status (-r | --resolve-ip) -- <keyspace>

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

• -r, or --resolve-ip, means to provide node names instead of IP addresses.
• -- Separates an option and argument that could be mistaken for a option.
• keyspace is a keyspace name.

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description

The status command provides the following information:

• Status - U (up) or D (down)

Indicates whether the node is functioning or not.
• State - N (normal), L (leaving), J (joining), M (moving)

The state of the node in relation to the cluster.
• Address

The node's URL.
• Load - updates every 90 seconds

The amount of file system data under the cassandra data directory after excluding all content in the
snapshots subdirectories. Because all SSTable data files are included, any data that is not cleaned up,
such as TTL-expired cell or tombstoned data) is counted.

• Tokens

The number of tokens set for the node.
• Owns

The percentage of the data owned by the node per data center times the replication factor. For
example, a node can own 33% of the ring, but show100% if the replication factor is 3.

Attention: If your cluster uses multiple data centers with different keyspaces that use different
replication strategies or replication factors, you must specify a keyspace to get meaningful
ownship information.

• Host ID

The network ID of the node.
• Rack

The rack or, in the case of Amazon EC2, the availability zone of the node.

Cassandra tools

171

statusbinary
Provide the status of native transport.

Synopsis

nodetool <options> statusbinary

options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
Provides the status of the binary protocol, also known as the native transport.

statusthrift
Provide the status of the Thrift server.

Synopsis

nodetool <options> statusthrift

options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

stop
Stops the compaction process.

Synopsis

nodetool <options> stop -- <compaction_type>

• options are:

• (-h | --host) <host name> | <ip address>

Cassandra tools

172

• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

• -- Separates an option and argument that could be mistaken for a option.
• A compaction type: COMPACTION, VALIDATION, CLEANUP, SCRUB, INDEX_BUILD

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description

Stops an operation from continuing to run. This command is typically used to stop a compaction that has a
negative impact on the performance of a node. After the compaction stops, Cassandra continues with the
remaining operations in the queue. Eventually, Cassandra restarts the compaction.

stopdaemon
Stops the cassandra daemon.

Synopsis

nodetool <options> stopdaemon

options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

taketoken
Deprecated. Do not use. Using this command can result in data loss.

Synopsis

nodetool <options> taketoken -- (<token>, ...)

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

• -- Separates an option from an argument that could be mistaken for a option.

Cassandra tools

173

• token is a token to move.

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description

This command operates on multiple nodes in a cluster and was made available in Cassandra 2.0.6 for
moving virtual nodes (vnodes). This command is being removed in the next release. Using this command
can result in data loss.

tpstats
Provides usage statistics of thread pools.

Synopsis

nodetool <options> tpstats

options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password>
• (-u | --username) <user name>

Synopsis Legend

• Angle brackets (< >) means not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description

Run the nodetool tpstats command on the local node. The nodetool tpstats command provides statistics
about the number of active, pending, and completed tasks for each stage of Cassandra operations by
thread pool. A high number of pending tasks for any pool can indicate performance problems, as described
in http://wiki.apache.org/cassandra/Operations#Monitoring .

This table describes the indicators:

Table 12: nodetool tpstats output

Name of statistic Task Related information

ReadStage Local reads

RequestResponse Handle responses from other
nodes

MutationStage Local writes A high number of pending write
requests indicates a problem

http://wiki.apache.org/cassandra/Operations#Monitoring

Cassandra tools

174

Name of statistic Task Related information

handling them. Tune hardware or
Cassandra configuration.

ReadRepairStage A digest query and update of
replicas of a key

ReplicateOnWriteStage Counter writes, replications
after a local write

GossipStage Handle gossip rounds every
second

AntiEntropyStage Repair consistency Nodetool repair

MigrationStage Make schema changes

MemoryMeter Actual object memory
including JVM overhead

MemtablePostFlusher Flush the commit log and
other operations after flushing
the memtable

FlushWriter Flush the memtable to disk,
the status of the sort and
write-to-disk operations

Tune hardware or Cassandra
configuration.

MiscStage Miscellaneous operations

PendingRangeCalculator Calculate pending ranges
per bootstraps and departed
nodes

Developer notes

commitlog_archiver Save the commit log

InternalResponseStage Respond to non-client
initiated messages, including
bootstrapping and schema
checking

HintedHandoff Send missed mutations to
other nodes

Example

Run the command every two seconds.

nodetool -h labcluster tpstats

Example output is:

Pool Name Active Pending Completed Blocked All
 time blocked
ReadStage 3 2 19570606 0
 0
RequestResponseStage 0 1 10552500 0
 0
MutationStage 0 0 11554725 0
 0
ReadRepairStage 0 0 124792 0
 0
ReplicateOnWriteStage 0 0 0 0
 0

http://wiki.apache.org/cassandra/DigestQueries
https://issues.apache.org/jira/secure/attachment/12564093/5135-v2.txt

Cassandra tools

175

GossipStage 0 0 2713 0
 0
AntiEntropyStage 0 0 50 0
 0
MigrationStage 0 0 0 0
 0
MemoryMeter 1 4 545 0
 0
MemtablePostFlusher 0 0 417 0
 0
FlushWriter 0 0 371 0
 0
MiscStage 0 0 25 0
 0
PendingRangeCalculator 0 0 16 0
 0
commitlog_archiver 0 0 0 0
 0
InternalResponseStage 0 0 0 0
 0
HintedHandoff 0 0 10 0
 0

Message type Dropped
RANGE_SLICE 0
READ_REPAIR 0
BINARY 0
READ 0
MUTATION 0
_TRACE 0
REQUEST_RESPONSE 0

truncatehints
Truncates all hints on the local node, or truncates hints for the one or more endpoints.

Synopsis

nodetool <options> truncatehints -- (<endpoint> ...)

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

• -- Separates an option and argument that could be mistaken for a option.
• endpoint is one or more endpoint IP addresses or host names which hints are to be deleted.

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Cassandra tools

176

upgradesstables
Rewrites SSTables for tables that are not running the current version of Cassandra.

Synopsis

nodetool <options> upgradesstables
 (-a | --include-all-sstables)
 -- (<keyspace> <table> ...)

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

• -a or --include-all-sstables, followed by the snapshot name.
• -- Separates an option and argument that could be mistaken for a option.
• keyspace a keyspace name.
• table is one or more table names, separated by a space.

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
Rebuilds SSTables on a node that are not compatible with the current version. Use this command when
upgrading your server or changing compression options.

version
Provides the version number of Cassandra running on the specified node.

Synopsis

nodetool <options> version

options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

Synopsis Legend

• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Cassandra tools

177

Cassandra bulk loader (sstableloader)
The Cassandra bulk loader, also called the sstableloader tool, provides the ability to bulk load external data
into a cluster, load existing SSTables into another cluster with a different number of nodes or replication
strategy, and restore snapshots.

About this task

The sstableloader tool streams a set of SSTable data files to a live cluster. It does not simply copy the
set of SSTables to every node, but transfers the relevant part of the data to each node, conforming to the
replication strategy of the cluster. The table into which the data is loaded does not need to be empty.

If tables are repaired in a different cluster, after being loaded, the tables will be unrepaired.

Because sstableloader uses Cassandra gossip, make sure of the following:

• The cassandra.yaml configuration file is in the classpath and properly configured.
• At least one node in the cluster is configured as seed.
• In the cassandra.yaml file, the following properties are properly configured for the cluster that you

are importing into:

• cluster_name
• listen_address
• storage_port
• rpc_address
• rpc_port

If you use sstableloader to load external data, you must first generate SSTables.

If you use DataStax Enterprise, you can use Sqoop to migrate external data to Cassandra.

Generating SSTables

SSTableWriter is the API to create raw Cassandra data files locally for bulk load into your cluster. The
Cassandra source code includes the CQLSSTableWriter implementation for creating SSTable files from
external data without needing to understand the details of how those map to the underlying storage engine.
Import the org.apache.cassandra.io.sstable.CQLSSTableWriter class, and define the schema
for the data you want to import, a writer for the schema, and a prepared insert statement, as shown in
Cassandra 2.0.1, 2.0.2, and a quick peek at 2.0.3.

Using sstableloader

Before loading the data, you must define the schema of the tables with CQL or Thrift.

To get the best throughput from SSTable loading, you can use multiple instances of sstableloader to
stream across multiple machines. No hard limit exists on the number of SSTables that sstableloader can
run at the same time, so you can add additional loaders until you see no further improvement.

If you use sstableloader on the same machine as the Cassandra node, you can't use the same network
interface as the Cassandra node. However, you can use the JMX StorageService > bulkload() call from
that node. This method takes the absolute path to the directory where the SSTables are located, and
loads them just as sstableloader does. However, because the node is both source and destination for the
streaming, it increases the load on that node. This means that you should load data from machines that are
not Cassandra nodes when loading into a live cluster.

The sstableloader bulk loads the SSTables found in the keyspace directory to the configured target cluster.

Packaged installs:

$ sstableloader [options] path_to_keyspace

Tarball installs:

/documentation/datastax_enterprise/4.5/datastax_enterprise/ana/anaSqpAbt.html
http://www.datastax.com/dev/blog/cassandra-2-0-1-2-0-2-and-a-quick-peek-at-2-0-3
/documentation/cql/3.1/cql/cql_using/about_cql_c.html

Cassandra tools

178

$ cd install_location/bin
$ sstableloader [options] path_to_keyspace

For example:

1. Go to the location of the SSTables:

$ cd /var/lib/cassandra/data/Keyspace1/Standard1/
2. To view the contents of the keyspace:

$ ls

Keyspace1-Standard1-jb-60-CRC.db
Keyspace1-Standard1-jb-60-Data.db
...
Keyspace1-Standard1-jb-60-TOC.txt

3. To bulk load the files, specify the path to Keyspace1/Standard1/ in the target cluster:

$ sstableloader -d 110.82.155.1 /var/lib/cassandra/data/Keyspace1/Standard1/
 ## package installation

$ install_location/bin/sstableloader -d 110.82.155.1 /var/lib/cassandra/
data/Keyspace1/Standard1/ ## tarball installation

This bulk loads all the files.

Table 13: sstableloader

Short option Long option Description

-d <initial hosts> --nodes <initial hosts> Connect to comma separated list of hosts for initial ring
information.

-debug Display stack traces.

-h --help Display help.

-i <NODES> --ignore <NODES> Do not stream to this comma separated list of nodes.

--no-progress Do not display progress.

-p <rpc port> --port <rpc port> RPC port (default 9160).

-t <throttle> --throttle <throttle> Throttle speed in Mbits (default unlimited).

-v --verbose Verbose output.

The cassandra utility
Starts the Cassandra Java server process.

Usage

For tarballs, run the following from the command line:

cassandra [OPTIONS]

For package installs, add the following to the /etc/cassandra/cassandra-env.sh file:

JVM_OPTS="$JVM_OPTS -D[PARAMETER]

Cassandra tools

179

Include file

For convenience on Linux installations, Cassandra uses an include file, cassandra.in.sh, to source
these environment variables. Use the following locations for this file:

• Tarball installs: install_location/bin
• Packaged installs: /usr/share/cassandra

Cassandra also uses the Java options set in cassandra-env.sh. If you want to pass additional options
to the Java virtual machine, such as maximum and minimum heap size, edit the options in this file rather
than setting them in the environment.

General options

Option Description

-f Start the cassandra process in foreground. The default is to start as background
process.

-h Help.

-p filename Log the process ID in the named file. Useful for stopping Cassandra by killing its PID.

-v Print the version and exit.

Start-up parameters

-D parameter

Specifies the following start-up parameters:

cassandra.available_processors=number_of_processors

In a multi-instance deployment, multiple Cassandra instances will independently assume that all CPU
processors are available to it. This setting allows you to specify a smaller set of processors and perhaps
have affinity.

cassandra.config=directory

The directory location of the cassandra.yaml file.

cassandra.initial_token=token

Sets the initial partitioner token for a node the first time the node is started.

cassandra.join_ring=true|false

Set to false to start Cassandra on a node but not have the node join the cluster.

cassandra.load_ring_state=true |false

Set to false to clear all gossip state for the node on restart. Use when you have changed node information
in cassandra.yaml (such as listen_address).

cassandra.metricsReporterConfigFile=file

Enable pluggable metrics reporter. See Pluggable metrics reporting in Cassandra 2.0.2.

cassandra.native_transport_port=port

Set the port on which the CQL native transport listens for clients. (Default: 9042)

cassandra.partitioner=partitioner

Set the partitioner. (Default: org.apache.cassandra.dht.Murmur3Partitioner)

cassandra.renew_counter_id=true|false

Set to true to reset local counter info on a node. Used to recover from data loss to a counter table.

1. Remove all SSTables for counter tables on the node.
2. Restart the node with the value of this parameter set to true.
3. Run nodetool repair once the node is up again.

http://www.datastax.com/dev/blog/pluggable-metrics-reporting-in-cassandra-2-0-2

Cassandra tools

180

cassandra.replace_address=listen_address or broadcast_address of dead node

To replace a node that has died, restart a new node in its place specifying the listen_address or
broadcast_address that the new node is assuming. The new node must not have any data in its data
directory, that is, it must be in the same state as before bootstrapping.

Note: The broadcast_address defaults to the listen_address except when using the
EC2MultiRegionSnitch.

cassandra.replayList=table

Allow restoring specific tables from an archived commit log.

cassandra.ring_delay_ms=ms

Allows overriding of the default RING_DELAY (1000ms), which is the amount of time a node waits before
joining the ring.

cassandra.rpc_port=port

Set the port for the Thrift RPC service, which is used for client connections. (Default: 9160).

cassandra.ssl_storage_port=port

Set the SSL port for encrypted communication. (Default: 7001)

cassandra.start_native_transport=true|false

Enable or disable the native transport server. See start_native_transport in cassandra.yaml.

cassandra.start_rpc=true/false

Enable or disable the Thrift RPC server. (Default: true)

cassandra.storage_port=port

Set the port for inter-node communication. (Default: 7000)

cassandra.triggers_dir=directory

Set the default location for the trigger JARs. (Default: conf/triggers)

cassandra.write_survey=true

For testing new compaction and compression strategies. It allows you to experiment with different strategies
and benchmark write performance differences without affecting the production workload. See Testing
compaction and compression.

Example

• Clear gossip state when starting a node. (Useful when the node has changed its configuration,
such as its listen IP address.)

Command line: bin/cassandra -Dcassandra.load_ring_state=false

cassandra-env.sh: JVM_OPTS="$JVM_OPTS -Dcassandra.load_ring_state=false"
• Start Cassandra on a node and do not join the cluster when already configured in the

cassandra.yaml file:

Command line: bin/cassandra -Dcassandra.join_ring=false

cassandra-env.sh: JVM_OPTS="$JVM_OPTS -Dcassandra.join_ring=false"
• Replacing a dead node:

Command line: bin/cassandra -Dcassandra.replace_address=10.91.176.160

cassandra-env.sh: JVM_OPTS="$JVM_OPTS -Dcassandra.replace_address=10.91.176.160"

Related topics

The cassandra.yaml configuration file

Cassandra tools

181

The cassandra-stress tool
A Java-based stress testing utility for benchmarking and load testing a Cassandra cluster.

About this task

The binary installation of the tool also includes a daemon, which in larger-scale testing can prevent
potential skews in the test results by keeping the JVM warm.

Modes of operation:

• Inserting: Loads test data.
• Reading: Reads test data.
• Indexed range slicing: Works with RandomPartitioner on indexed tables.

The cassandra-stress tool creates a keyspace called Keyspace1 and within that, tables named Standard1,
Super1, Counter1, and SuperCounter1, depending on what type of table is being tested. These are
automatically created the first time you run the stress test and will be reused on subsequent runs unless
you drop the keyspace using CQL. It is not possible to change the names; they are hard-coded.

Commands:

• Packaged installs: cassandra-stress [options]
• Tarball installs: install_location/tools/bin/cassandra-stress [options]

You can use these modes with or without the cassandra-stress daemon running (binary installs only).

Options for cassandra-stress

Short option Long option Description

-V --average-size-values Generate column values of average rather than
specific size.

-C <CARDINALITY> --cardinality <CARDINALITY> Number of unique values stored in columns.
Default is 50.

-c <COLUMNS> --columns <COLUMNS> Number of columns per key. Default is 5.

-S <COLUMN-
SIZE>

--column-size <COLUMN-
SIZE>

Size of column values in bytes. Default is 34.

-Z <COMPACTION-
STRATEGY>

--compaction-strategy
<COMPACTION-STRATEGY>

Specifies which compaction strategy to use.

-U
<COMPARATOR>

--comparator
<COMPARATOR>

Specifies which column comparator to use.
Supported types are: TimeUUIDType, AsciiType,
and UTF8Type.

-I
<COMPRESSION>

--compression
<COMPRESSION>

Specifies the compression to use for SSTables.
Default is no compression.

-e
<CONSISTENCY-
LEVEL>

--consistency-level
<CONSISTENCY-LEVEL>

Consistency level to use.

-x <CREATE-
INDEX>

--create-index <CREATE-
INDEX>

Type of index to create on columns (KEYS).

-L l --enable-cql Perform queries using CQL (Cassandra Query
Language).

/documentation/cql/3.1/cql/cql_using/use_remove_data_c.html
/documentation/cql/3.1/cql/cql_reference/tabProp.html
/documentation/cql/3.1/index.html

Cassandra tools

182

Short option Long option Description

-y <TYPE> --family-type <TYPE> Sets the table type.

-f <FILE> --file <FILE> Write output to a given file.

-h --help Show help.

-k --keep-going Ignore errors when inserting or reading. When set,
--keep-trying has no effect. Default is false.

-K <KEEP-
TRYING>

--keep-trying <KEEP-
TRYING>

Retry on-going operation N times (in case of
failure). Use a positive integer. The default is 10.

-g <KEYS-PER-
CALL>

-g, --keys-per-call <KEYS-
PER-CALL>

Number of keys to per call. Default is 1000.

-d <NODES> --nodes <NODES> Nodes to perform the test against. Must be
comma separated with no spaces. Default is
localhost.

-D <NODESFILE> --nodesfile <NODESFILE> File containing host nodes (one per line).

-W --no-replicate-on-write Set replicate_on_write to false for counters. Only
for counters with a consistency level of ONE
(CL=ONE).

-F <NUM-
DIFFERENT-
KEYS>

--num-different-keys <NUM-
DIFFERENT-KEYS>

Number of different keys. If less than NUM-KEYS,
the same key is re-used multiple times. Default is
NUM-KEYS.

-n <NUMKEYS> --num-keys <NUMKEYS> Number of keys to write or read. Default is
1,000,000.

-o <OPERATION> --operation <OPERATION> Operation to perform: INSERT, READ,
INDEXED_RANGE_SLICE, MULTI_GET,
COUNTER_ADD, COUNTER_GET. Default is
INSERT.

-p <PORT> --port <PORT> Thrift port. Default is 9160.

-i <PROGRESS-
INTERVAL>

--progress-interval
<PROGRESS-INTERVAL>

The interval, in seconds, at which progress is
output. Default is 10 seconds.

-Q <QUERY-
NAMES>

--query-names <QUERY-
NAMES>

Comma-separated list of column names to
retrieve from each row.

-r --random Use random key generator. When used --stdev
has no effect. Default is false.

-l <REPLICATION-
FACTOR>

--replication-factor
<REPLICATION-FACTOR>

Replication Factor to use when creating tables.
Default is 1.

-R <REPLICATION-
STRATEGY>

--replication-strategy
<REPLICATION-STRATEGY>

Replication strategy to use (only on insert and
when a keyspace does not exist.) The default is
SimpleStrategy.

-T <SEND-TO> --send-to <SEND-TO> Sends the command as a request to the
cassandra-stressd daemon at the specified IP
address. The daemon must already be running at
that address.

-N <SKIP-KEYS> --skip-keys <SKIP-KEYS> Fraction of keys to skip initially. Default is 0.

/documentation/cql/3.1/cql/ddl/ddl_intro_c.html
/documentation/cql/3.1/cql/cql_using/use_counter_t.html

Cassandra tools

183

Short option Long option Description

-s <STDEV> --stdev <STDEV> Standard deviation. Default is 0.1.

-O <STRATEGY-
PROPERTIES>

--strategy-properties
<STRATEGY-PROPERTIES>

Replication strategy properties
in the following format:
<dc_name>:<num>,<dc_name>:<num>, For
use with NetworkTopologyStrategy.

-t <THREADS> --threads <THREADS> Number of threads to use. Default is 50.

-m --unframed Use unframed transport. Default is false.

-P --use-prepared-statements (CQL only) Perform queries using prepared
statements.

Using the Daemon Mode
Usage for the daemon mode in binary installs.

Run the daemon from:

install_location/tools/bin/cassandra-stressd start|stop|status [-h <host>]

During stress testing, you can keep the daemon running and send it commands through it using the --
send-to option.

Example

• Insert 1,000,000 rows to given host:

/tools/bin/cassandra-stress -d 192.168.1.101

When the number of rows is not specified, one million rows are inserted.
• Read 1,000,000 rows from given host:

tools/bin/cassandra-stress -d 192.168.1.101 -o read
• Insert 10,000,000 rows across two nodes:

/tools/bin/cassandra-stress -d 192.168.1.101,192.168.1.102 -n 10000000
• Insert 10,000,000 rows across two nodes using the daemon mode:

/tools/bin/cassandra-stress -d 192.168.1.101,192.168.1.102 -n 10000000 --
send-to 54.0.0.1

Interpreting the output of cassandra-stress
About the period output from the running tests.

Each line reports data for the interval between the last elapsed time and current elapsed time, which is set
by the --progress-interval option (default 10 seconds).

7251,725,725,56.1,95.1,191.8,10
19523,1227,1227,41.6,86.1,189.1,21
41348,2182,2182,22.5,75.7,176.0,31
...

Data Description

total Total number of operations since the start of the test.

interval_op_rate Number of operations per second performed during the interval.

interval_key_rate Number of keys/rows read or written per second during the interval (normally
be the same as interval_op_rate unless doing range slices).

Cassandra tools

184

Data Description

latency Average latency in milliseconds for each operation during that interval.

95th 95% of the time the latency was less than the number displayed in the column
(Cassandra 1.2 or later).

99th 99% of the time the latency was less than the number displayed in the column
(Cassandra 1.2 or later).

elapsed Number of seconds elapsed since the beginning of the test.

The sstablescrub utility
Scrub the all the SSTables for the specified table.

About this task

Use this tool to fix (throw away) corrupted tables. Before using this tool, try rebuild the tables using
nodetool scrub. Because corrupted rows are thrown away, run a repair after running this tool.

Usage:

• Packaged installs: sstablescrub [options] <keyspace> <table>
• Tarball installs: install_location/bin/sstablescrub [options] <keyspace> <table>

Table 14: Options

Flag Option Description

--debug Display stack traces.

-h --help Display help.

-m --manifest-check Only check and repair the leveled manifest, without actually scrubbing the
SSTables.

-v --verbose Verbose output.

The sstablesplit utility

About this task

Use this tool to split SSTables files into multiple SSTables of a maximum designated size.

Cassandra must be stopped to use this tool:

• Packaged installs:

$ sudo service cassandra stop
• Tarball installs:

$ ps auwx | grep cassandra
$ sudo kill pid

Usage:

• Packaged installs: sstablessplit [options] <filename> [<filename>]*
• Tarball installs: install_location/bin/sstablessplit [options] <filename>

[<filename>]*

Cassandra tools

185

Example:

$ sstablesplit -s 40 /var/lib/cassandra/data/Keyspace1/Standard1/*

Table 15: Options

Flag Option Description

--debug Display stack traces.

-h --help Display help.

--no-snapshot Do not snapshot the SSTables before splitting.

-s --size <size> Maximum size in MB for the output SSTables (default: 50).

-v --verbose Verbose output.

sstablekeys
The sstablekeys utility dumps table keys.

About this task

To list the keys in an SSTable, find the name of the SSTable file. The file is located in the data directory
and has a .db extension. The location of the data directory, listed in the "Install locations" section,
depends on the type of installation. After finding the name of the file, use the name as an argument to the
sstablekeys command.

$ bin/sstablekeys <sstable_name>

Procedure

1. Create the playlists table in the music keyspace as shown in Data modeling.

2. Insert the row of data about ZZ Top in playlists:

INSERT INTO music.playlists (id, song_order, song_id, title, artist, album)
 VALUES (62c36092-82a1-3a00-93d1-46196ee77204,
 1,
 a3e64f8f-bd44-4f28-b8d9-6938726e34d4,
 'La Grange',
 'ZZ Top',
 'Tres Hombres');

3. Flush the data to disk.

$ nodetool flush music playlists

4. Look at keys in the SSTable data. For example, use sstablekeys followed by the path to the data. Use
the path to data for your Cassandra installation:

$ sstablekeys <path to data>/data/data/music/
 playlists-8b9f4cc0229211e4b02073ded3cb6170/music-playlists-ka-1-Data.db

The output appears, for example:

62c3609282a13a0093d146196ee77204

/documentation/cql/3.1/cql/ddl/ddl_intro_c.html
/documentation/cql/3.1/cql/cql_reference/insert_r.html

Cassandra tools

186

The sstableupgrade tool
Upgrade the SSTables in the specified table (or snapshot) to match the current version of Cassandra.

About this task

This tool rewrites the SSTables in the specified table to match the currently installed version of Cassandra.

If restoring with sstableloader, you must upgrade your snapshots before restoring for any snapshot taken in
a major version older than the major version that Cassandra is currently running.

Usage:

• Packaged installs: sstableupgrade [options] <keyspace> <cf> [snapshot]
• Tarball installs: install_location/bin/sstableupgrade [options] <keyspace> <cf>

[snapshot]

The snapshot option only upgrades the specified snapshot.

Table 16: Options

Flag Option Description

--debug Display stack traces.

-h --help Display help.

References

187

References

Starting and stopping Cassandra

Starting Cassandra as a service
Start the Cassandra Java server process for packaged installations.

About this task

Startup scripts are provided in /etc/init.d. The service runs as the cassandra user.

Procedure

You must have root or sudo permissions to start Cassandra as a service.

On initial start-up, each node must be started one at a time, starting with your seed nodes:

$ sudo service cassandra start

On Enterprise Linux systems, the Cassandra service runs as a java process.

Starting Cassandra as a stand-alone process
Start the Cassandra Java server process for tarball installations.

Procedure

On initial start-up, each node must be started one at a time, starting with your seed nodes.
• To start Cassandra in the background:

$ cd install_location
$ bin/cassandra

• To start Cassandra in the foreground:

$ cd install_location
$ bin/cassandra -f

Stopping Cassandra as a service
Stop the Cassandra Java server process on packaged installations.

Procedure

You must have root or sudo permissions to stop the Cassandra service:

$ sudo service cassandra stop

Stopping Cassandra as a stand-alone process
Stop the Cassandra Java server process on tarball installations.

Procedure

Find the Cassandra Java process ID (PID), and then kill the process using its PID number:

References

188

$ ps auwx | grep cassandra
$ sudo kill pid

Clearing the data as a service
Remove all data from a package installation.

Procedure

To clear the data from the default directories:

After stopping the service, run the following command:

$ sudo rm -rf /var/lib/cassandra/*

Clearing the data as a stand-alone process
Remove all data from a tarball installation.

Procedure

To clear all data from the default directories, including the commitlog and saved_caches:

1. After stopping the process, run the following command from the install directory:

$ cd install_location
$ sudo rm -rf data/*

2. To clear the only the data directory:

$ cd install_location
$ sudo rm -rf data/data/*

Install locations

Tarball installation directories

The configuration files are located in the following directories:

Configuration Files Locations

cassandra.yaml install_location/conf

cassandra-topology.properties install_location/conf

cassandra-rackdc.properties install_location/conf

cassandra-env.sh install_location/conf

cassandra.in.sh install_location/bin

The binary tarball releases install into the installation directory.

Directories Description

bin Utilities and start scripts

conf Configuration files and environment settings

interface Thrift and Avro client APIs

javadoc Cassandra Java API documentation

References

189

Directories Description

lib JAR and license files

For DataStax Enterprise installs, see Configuration File Locations.

Package installation directories

The configuration files are located in the following directories:

Configuration Files Locations

cassandra.yaml /etc/cassandra

cassandra-topology.properties /etc/cassandra

cassandra-rackdc.properties /etc/cassandra

cassandra-env.sh /etc/cassandra

cassandra.in.sh /usr/share/cassandra

The packaged releases install into these directories:

Directories Description

/var/lib/cassandra Data directories

/var/log/cassandra Log directory

/var/run/cassandra Runtime files

/usr/share/cassandra Environment settings

/usr/share/cassandra/lib JAR files

/usr/bin Binary files

/usr/sbin

/etc/cassandra Configuration files

/etc/init.d Service startup script

/etc/security/limits.d Cassandra user limits

/etc/default

For DataStax Enterprise installs, see Configuration File Locations.

Cassandra-CLI utility (deprecated)
Cassandra stores storage configuration attributes in the system keyspace. You set storage configuration
attributes on a per-keyspace or per-table basis programmatically or using a client application, such as CLI
or Thrift.

Important: The CLI utility is deprecated and will be removed in Cassandra 3.0. For ease of use
and performance, switch from Thrift and CLI to CQL and cqlsh.

Keyspace attributes

A keyspace must have a user-defined name, a replica placement strategy, and options that specify the
number of copies per data center or node.

http://www.datastax.com/docs/datastax_enterprise3.1/reference/reference_dse
/documentation/datastax_enterprise/4.0/datastax_enterprise/reference/refDsePackageLoc.html
/documentation/cql/3.1/cql/cql_intro_c.html

References

190

name

Required. The name for the keyspace.

placement_strategy

Required. Determines how Cassandra distributes replicas for a keyspace among nodes in the ring. Values
are:

• SimpleStrategy or org.apache.cassandra.locator.SimpleStrategy
• NetworkTopologyStrategy or

org.apache.cassandra.locator.NetworkTopologyStrategy

NetworkTopologyStrategy requires a snitch to be able to determine rack and data center locations of a node.
For more information about replication placement strategy, see Data replication.

strategy_options

Specifies configuration options for the chosen replication strategy class. The replication factor option is the
total number of replicas across the cluster. A replication factor of 1 means that there is only one copy of
each row on one node. A replication factor of 2 means there are two copies of each row, where each copy
is on a different node. All replicas are equally important; there is no primary or master replica. As a general
rule, the replication factor should not exceed the number of nodes in the cluster. However, you can increase
the replication factor and then add the desired number of nodes.

When the replication factor exceeds the number of nodes, writes are rejected, but reads are served as long
as the desired consistency level can be met.

For more information about configuring the replication placement strategy for a cluster and data centers,
see Choosing keyspace replication options.

durable_writes

(Default: true) When set to false, data written to the keyspace bypasses the commit log. Be careful using
this option because you risk losing data.

Table attributes

The following attributes can be declared per table.

bloom_filter_fp_chance

See CQL properties in CQL for Cassandra 2.0.

bucket_high

See CQL Compaction Subproperties in CQL for Cassandra 2.0.

bucket_low

See CQL Compaction Subproperties in CQL for Cassandra 2.0.

caching

See CQL properties in CQL for Cassandra 2.0.

chunk_length_kb

See CQLCompression Subproperties in CQL for Cassandra 2.0.

column_metadata

(Default: N/A - container attribute) Column metadata defines these attributes of a column:

• name: Binds a validation_class and (optionally) an index to a column.
• validation_class: Type used to check the column value.
• index_name: Name of the index.
• index_type: Type of index. Currently the only supported value is KEYS.

Setting a value for the name option is required. The validation_class is set to the default_validation_class
of the table if you do not set the validation_class option explicitly. The value of index_type must be set to
create an index for a column. The value of index_name is not valid unless index_type is also set.

/documentation/cql/3.1/cql/cql_reference/tabProp.html#tabProp__table_cql_properties
/documentation/cql/3.1/cql/cql_reference/compactSubprop.html#compactSubprop__compactionSubproperties
/documentation/cql/3.1/cql/cql_reference/compactSubprop.html#compactSubprop__compactionSubproperties
/documentation/cql/3.1/cql/cql_reference/tabProp.html#tabProp__table_cql_properties
/documentation/cql/3.1/cql/cql_reference/compressSubprop.html#compressSubprop__table_compression

References

191

Setting and updating column metadata with the Cassandra-CLI utility requires a slightly different command
syntax than other attributes; note the brackets and curly braces in this example:

[default@demo] UPDATE COLUMN FAMILY users WITH comparator =UTF8Type
AND column_metadata =[{column_name: full_name, validation_class: UTF8Type,
 index_type: KEYS }];

column_type

(Default: Standard) The standard type of table contains regular columns.

comment

See CQL properties in CQL for Cassandra 2.0.

compaction_strategy

See compaction in CQL properties in CQL for Cassandra 2.0.

comparator

(Default: BytesType) Defines the data types used to validate and sort column names. There are several
built-in column comparators available. The comparator cannot be changed after you create a table.

compare_subcolumns_with

(Default: BytesType) Required when the column_type attribute is set to Super. Same as comparator but for
the sub-columns of a super column. Deprecated as of Cassandra 1.0, but can still be declared for backward
compatibility.

compression_options

(Default: N/A - container attribute) Sets the compression algorithm and sub-properties for the table. Choices
are:

• sstable_compression
• chunk_length_kb
• crc_check_chance

crc_check_chance

See CQLCompression Subproperties in CQL for Cassandra 2.0.

default_time_to_live

See CQL properties in CQL for Cassandra 2.0.

default_validation_class

(Default: N/A) Defines the data type used to validate column values. There are several built-in column
validators available.

dclocal_read_repair_chance

See CQLCompression Subproperties in CQL for Cassandra 2.0.

gc_grace

See CQL properties in CQL for Cassandra 2.0.

index_interval

See CQL properties in CQL for Cassandra 2.0.

key_validation_class

(Default: N/A) Defines the data type used to validate row key values. There are several built-in key validators
available, however CounterColumnType (distributed counters) cannot be used as a row key validator.

max_compaction_threshold

See max_threshold in CQL Compaction Subproperties in CQL for Cassandra 2.0.

min_compaction_threshold

See min_threshold in CQL Compaction Subproperties in CQL for Cassandra 2.0.

memtable_flush_after_mins

/documentation/cql/3.1/cql/cql_reference/tabProp.html#tabProp__table_cql_properties
/documentation/cql/3.1/cql/cql_reference/tabProp.html#tabProp__table_cql_properties
/documentation/cql/3.1/cql/cql_reference/compressSubprop.html#compressSubprop__table_compression
/documentation/cql/3.1/cql/cql_reference/tabProp.html#tabProp__table_cql_properties
/documentation/cql/3.1/cql/cql_reference/compressSubprop.html#compressSubprop__table_compression
/documentation/cql/3.1/cql/cql_reference/tabProp.html#tabProp__table_cql_properties
/documentation/cql/3.1/cql/cql_reference/tabProp.html#tabProp__table_cql_properties
/documentation/cql/3.1/cql/cql_reference/compactSubprop.html#compactSubprop__compactionSubproperties
/documentation/cql/3.1/cql/cql_reference/compactSubprop.html#compactSubprop__compactionSubproperties

References

192

Deprecated as of Cassandra 1.0, but can still be declared for backward compatibility. Use
commitlog_total_space_in_mb.

memtable_flush_period_in_ms

See CQL properties in CQL for Cassandra 2.0.

memtable_operations_in_millions

Deprecated as of Cassandra 1.0, but can still be declared for backward compatibility. Use
commitlog_total_space_in_mb.

memtable_throughput_in_mb

Deprecated as of Cassandra 1.0, but can still be declared for backward compatibility. Use
commitlog_total_space_in_mb.

min_sstable_size

See CQL Compaction Subproperties in CQL for Cassandra 2.0.

name

(Default: N/A) Required. The user-defined name of the table.

populate_io_cache_on_flush

See CQLCompression Subproperties in CQL for Cassandra 2.0.

read_repair_chance

See CQL properties in CQL for Cassandra 2.0.

replicate_on_write

See CQLCompression Subproperties in CQL for Cassandra 2.0.

speculative_retry

See CQL properties in CQL for Cassandra 2.0.

sstable_size_in_mb

See CQL Compaction Subproperties in CQL for Cassandra 2.0.

sstable_compression

See compression in CQL properties in CQL for Cassandra 2.0.

tombstone_compaction_interval

See CQL Compaction Subproperties in CQL for Cassandra 2.0.

tombstone_threshold

See CQL Compaction Subproperties in CQL for Cassandra 2.0.

/documentation/cql/3.1/cql/cql_reference/tabProp.html#tabProp__table_cql_properties
/documentation/cql/3.1/cql/cql_reference/compactSubprop.html#compactSubprop__compactionSubproperties
/documentation/cql/3.1/cql/cql_reference/compressSubprop.html#compressSubprop__table_compression
/documentation/cql/3.1/cql/cql_reference/tabProp.html#tabProp__table_cql_properties
/documentation/cql/3.1/cql/cql_reference/compressSubprop.html#compressSubprop__table_compression
/documentation/cql/3.1/cql/cql_reference/tabProp.html#tabProp__table_cql_properties
/documentation/cql/3.1/cql/cql_reference/compactSubprop.html#compactSubprop__compactionSubproperties
/documentation/cql/3.1/cql/cql_reference/tabProp.html#tabProp__table_cql_properties
/documentation/cql/3.1/cql/cql_reference/compactSubprop.html#compactSubprop__compactionSubproperties
/documentation/cql/3.1/cql/cql_reference/compactSubprop.html#compactSubprop__compactionSubproperties

Moving data to or from other databases

193

Moving data to or from other databases

Cassandra offers several solutions for migrating from other databases:

• The COPY command, which mirrors what the PostgreSQL RDBMS uses for file/export import.
• The Cassandra bulk loader provides the ability to bulk load external data into a cluster.

About the COPY command

You can use COPY in Cassandra’s CQL shell to load flat file data into Cassandra (nearly all RDBMS’s
have unload utilities that allow table data to be written to OS files) as well as data to be written out to OS
files.

ETL Tools

If you need more sophistication applied to a data movement situation (more than just extract-load), then
you can use any number of extract-transform-load (ETL) solutions that now support Cassandra. These
tools provide excellent transformation routines that allow you to manipulate source data in literally any way
you need and then load it into a Cassandra target. They also supply many other features such as visual,
point-and-click interfaces, scheduling engines, and more.

Many ETL vendors who support Cassandra supply community editions of their products that are free
and able to solve many different use cases. Enterprise editions are also available that supply many other
compelling features that serious enterprise data users need.

You can freely download and try ETL tools from Jaspersoft, Pentaho, and Talend that all work with
community Cassandra.

/documentation/cql/3.1/cql/cql_reference/copy_r.html

Troubleshooting

194

Troubleshooting

This section contains the following topics:

Peculiar Linux kernel performance problem on NUMA systems
Problems due to zone_reclaim_mode.

The Linux kernel can be inconsistent in enabling/disabling zone_reclaim_mode. This can result in odd
performance problems:

• Random huge CPU spikes resulting in large increases in latency and throughput.
• Programs hanging indefinitely apparently doing nothing.
• Symptoms appearing and disappearing suddenly.
• After a reboot, the symptoms generally do not show again for some time.

To ensure that zone_reclaim_mode is disabled:

echo 0 > /proc/sys/vm/zone_reclaim_mode

Reads are getting slower while writes are still fast
The cluster's IO capacity is not enough to handle the write load it is receiving.

Check the SSTable counts in cfstats. If the count is continually growing, the cluster's IO capacity is not
enough to handle the write load it is receiving. Reads have slowed down because the data is fragmented
across many SSTables and compaction is continually running trying to reduce them. Adding more IO
capacity, either via more machines in the cluster, or faster drives such as SSDs, will be necessary to solve
this.

If the SSTable count is relatively low (32 or less) then the amount of file cache available per machine
compared to the amount of data per machine needs to be considered, as well as the application's read
pattern. The amount of file cache can be formulated as (TotalMemory – JVMHeapSize) and if the
amount of data is greater and the read pattern is approximately random, an equal ratio of reads to the
cache:data ratio will need to seek the disk. With spinning media, this is a slow operation. You may be
able to mitigate many of the seeks by using a key cache of 100%, and a small amount of row cache
(10000-20000) if you have some hot rows and they are not extremely large.

Nodes seem to freeze after some period of time
Some portion of the JVM is being swapped out by the operating system (OS).

Check your system.log for messages from the GCInspector. If the GCInspector is indicating that either
the ParNew or ConcurrentMarkSweep collectors took longer than 15 seconds, there is a high probability
that some portion of the JVM is being swapped out by the OS.

One way this might happen is if the mmap DiskAccessMode is used without JNA support. The address
space will be exhausted by mmap, and the OS will decide to swap out some portion of the JVM that
isn't in use, but eventually the JVM will try to GC this space. Adding the JNA libraries will solve this
(they cannot be shipped with Cassandra due to carrying a GPL license, but are freely available) or the
DiskAccessMode can be switched to mmap_index_only, which as the name implies will only mmap the
indices, using much less address space.

DataStax strongly recommends that you disable swap entirely (sudo swapoff --all). Because
Cassandra has multiple replicas and transparent failover, it is preferable for a replica to be killed
immediately when memory is low rather than go into swap. This allows traffic to be immediately redirected

Troubleshooting

195

to a functioning replica instead of continuing to hit the replica that has high latency due to swapping. If
your system has a lot of DRAM, swapping still lowers performance significantly because the OS swaps
out executable code so that more DRAM is available for caching disks. To make this change permanent,
remove all swap file entries from /etc/fstab.

If you insist on using swap, you can set vm.swappiness=1. This allows the kernel swap out the absolute
least used parts.

If the GCInspector isn't reporting very long GC times, but is reporting moderate times frequently
(ConcurrentMarkSweep taking a few seconds very often) then it is likely that the JVM is experiencing
extreme GC pressure and will eventually OOM. See the section below on OOM errors.

You must disable swap entirely. Failure to do so can severely lower performance. Because Cassandra
has multiple replicas and transparent failover, it is preferable for a replica to be killed immediately when
memory is low rather than go into swap. This allows traffic to be immediately redirected to a functioning
replica instead of continuing to hit the replica that has high latency due to swapping. If your system has a
lot of DRAM, swapping still lowers performance significantly because the OS swaps out executable code
so that more DRAM is available for caching disks.

Nodes are dying with OOM errors
Nodes are dying with OutOfMemory exceptions.

Check for these typical causes:

Row cache is too large, or is caching large rows

Row cache is generally a high-end optimization. Try disabling it and see if the OOM problems continue.

The memtable sizes are too large for the amount of heap allocated to the JVM

You can expect N + 2 memtables resident in memory, where N is the number of tables. Adding another
1GB on top of that for Cassandra itself is a good estimate of total heap usage.

If none of these seem to apply to your situation, try loading the heap dump in MAT and see which class is
consuming the bulk of the heap for clues.

Nodetool or JMX connections failing on remote nodes
Nodetool commands can be run locally but not on other nodes in the cluster.

If you can run nodetool commands locally but not on other nodes in the ring, you may have a common JMX
connection problem that is resolved by adding an entry like the following in install_location/conf/
cassandra-env.sh on each node:

JVM_OPTS = "$JVM_OPTS -Djava.rmi.server.hostname=<public name>"

If you still cannot run nodetool commands remotely after making this configuration change, do a full
evaluation of your firewall and network security. The nodetool utility communicates through JMX on port
7199.

View of ring differs between some nodes
Indicates that the ring is in a bad state.

This situation can happen when not using virtual nodes (vnodes) and there are token conflicts (for
instance, when bootstrapping two nodes simultaneously with automatic token selection.) Unfortunately, the
only way to resolve this is to do a full cluster restart. A rolling restart is insufficient since gossip from nodes
with the bad state will repopulate it on newly booted nodes.

http://www.eclipse.org/mat/

Troubleshooting

196

Java reports an error saying there are too many open files
Java may not have open enough file descriptors.

Cassandra generally needs more than the default (1024) amount of file descriptors. To increase the
number of file descriptors, change the security limits on your Cassandra nodes as described in the
Recommended Settings section of Insufficient user resource limits errors .

Another, much less likely possibility, is a file descriptor leak in Cassandra. Run lsof -n | grep java
to check that the number of file descriptors opened by Java is reasonable and reports the error if the
number is greater than a few thousand.

 Insufficient user resource limits errors
Insufficient resource limits may result in a number of errors in Cassandra and OpsCenter.

Cassandra errors

Insufficient as (address space) or memlock setting

ERROR [SSTableBatchOpen:1] 2012-07-25 15:46:02,913
 AbstractCassandraDaemon.java (line 139)
Fatal exception in thread Thread [SSTableBatchOpen:1,5,main]
java.io.IOError: java.io.IOException: Map failed at ...

Insufficient memlock settings

WARN [main] 2011-06-15 09:58:56,861 CLibrary.java (line 118) Unable to lock
 JVM memory (ENOMEM).
This can result in part of the JVM being swapped out, especially with mmapped
 I/O enabled.
Increase RLIMIT_MEMLOCK or run Cassandra as root.

Insufficient nofiles setting

WARN 05:13:43,644 Transport error occurred during acceptance of message.
org.apache.thrift.transport.TTransportException: java.net.SocketException:
Too many open files ...

Insufficient nofiles setting

ERROR [MutationStage:11] 2012-04-30 09:46:08,102 AbstractCassandraDaemon.java
 (line 139)
Fatal exception in thread Thread [MutationStage:11,5,main]
java.lang.OutOfMemoryError: unable to create new native thread

Recommended settings

You can view the current limits using the ulimit -a command. Although limits can also be temporarily
set using this command, DataStax recommends making the changes permanent:

Packaged installs: Ensure that the following settings are included in the /etc/security/limits.d/
cassandra.conf file:

cassandra - memlock unlimited
cassandra - nofile 100000
cassandra - nproc 32768
cassandra - as unlimited

Tarball installs: Ensure that the following settings are included in the /etc/security/limits.conf file:

* - memlock unlimited
* - nofile 100000
* - nproc 32768

Troubleshooting

197

* - as unlimited

If you run Cassandra as root, some Linux distributions such as Ubuntu, require setting the limits for root
explicitly instead of using *:

root - memlock unlimited
root - nofile 100000
root - nproc 32768
root - as unlimited

For CentOS, RHEL, OEL systems, also set the nproc limits in /etc/security/limits.d/90-
nproc.conf :

* - nproc 32768

For all installations, add the following line to /etc/sysctl.conf :

vm.max_map_count = 131072

To make the changes take effect, reboot the server or run the following command:

$ sudo sysctl -p

To confirm the limits are applied to the Cassandra process, run the following command where pid is the
process ID of the currently running Cassandra process:

$ cat /proc/<pid>/limits

OpsCenter errors

See the OpsCenter Troubleshooting documentation.

Cannot initialize class org.xerial.snappy.Snappy
An error may occur when Snappy compression/decompression is enabled although its library is available
from the classpath.

java.util.concurrent.ExecutionException: java.lang.NoClassDefFoundError:
 Could not initialize class org.xerial.snappy.Snappy
...
Caused by: java.lang.NoClassDefFoundError: Could not initialize class
 org.xerial.snappy.Snappy
 at
 org.apache.cassandra.io.compress.SnappyCompressor.initialCompressedBufferLength
 (SnappyCompressor.java:39)

The native library snappy-1.0.4.1-libsnappyjava.so for Snappy compression is included in the
snappy-java-1.0.4.1.jar file. When the JVM initializes the JAR, the library is added to the default
temp directory. If the default temp directory is mounted with a noexec option, it results in the above
exception.

One solution is to specify a different temp directory that has already been mounted without the noexec
option, as follows:

• If you use the DSE/Cassandra command $_BIN/dse cassandra or $_BIN/cassandra, simply
append the command line:

• DSE: bin/dse cassandra -t -Dorg.xerial.snappy.tempdir=/path/to/newtmp
• Cassandra: bin/cassandra -Dorg.xerial.snappy.tempdir=/path/to/newtmp

• If starting from a package using service dse start or service cassandra start, add a system environment
variable JVM_OPTS with the value:

JVM_OPTS=-Dorg.xerial.snappy.tempdir=/path/to/newtmp

The default cassandra-env.sh looks for the variable and appends to it when starting the JVM.

/documentation/opscenter/4.0/opsc/troubleshooting/opscTroubleshooting_g.html

Troubleshooting

198

Firewall idle connection timeout causing nodes to lose communication
during low traffic times

About this task

During low traffic intervals, a firewall configured with an idle connection timeout can close connections to
local nodes and nodes in other data centers. The default idle connection timeout is usually 60 minutes and
configurable by the network administrator.

Procedure

To prevent connections between nodes from timing out, set the TCP keep alive variables:

1. Get a list of available kernel variables:

$ sysctl -A | grep net.ipv4

The following variables should exist:

• net.ipv4.tcp_keepalive_time

Time of connection inactivity after which the first keep alive request is sent.
• net.ipv4.tcp_keepalive_probes

Number of keep alive requests retransmitted before the connection is considered broken.
• net.ipv4.tcp_keepalive_intvl

Time interval between keep alive probes.

2. To change these settings:

$ sudo sysctl -w net.ipv4.tcp_keepalive_time=60
 net.ipv4.tcp_keepalive_probes=3 net.ipv4.tcp_keepalive_intvl=10

This sample command changes TCP keepalive timeout to 60 seconds with 3 probes, 10 seconds gap
between each. This setting detects dead TCP connections after 90 seconds (60 + 10 + 10 + 10). There
is no need to be concerned about the additional traffic as it's negligible and permanently leaving these
settings shouldn't be an issue.

DataStax Community release notes

199

DataStax Community release notes

Apache Cassandra 2.0.10 CHANGES.txt lists the changes in this release.

You can view version changes by branch or tag in the branch drop-down list:

https://github.com/apache/cassandra/blob/cassandra-2.0.10/CHANGES.txt

Tips for using DataStax documentation

200

Tips for using DataStax documentation

Navigating the documents

To navigate, use the table of contents or search in the left navigation bar. Additional controls are:

Hide or display the left navigation.

Go back or forward through the topics as listed in
the table of contents.

Toggle highlighting of search terms.

Print page.

See doc tweets and provide feedback.

Grab to adjust the size of the navigation pane.

Appears on headings for bookmarking. Right-click
the ¶ to get the link.

Toggles the legend for CQL statements and
nodetool options.

Other resources

You can find more information and help at:

• Documentation home page
• Datasheets
• Webinars
• Whitepapers
• Developer blogs
• Support

http://www.datastax.com/docs
http://www.datastax.com/resources/datasheets
http://www.datastax.com/resources/webinars
http://www.datastax.com/resources/whitepapers
http://www.datastax.com/dev/blog
http://www.datastax.com/what-we-offer/products-services/support

	Contents
	About Apache Cassandra
	What's new in Cassandra

	CQL
	Understanding the architecture
	Architecture in brief
	Internode communications (gossip)
	Failure detection and recovery

	Data distribution and replication
	Consistent hashing
	Virtual nodes
	How data is distributed across a cluster (using virtual nodes)

	Data replication
	Choosing keyspace replication options

	Partitioners
	Murmur3Partitioner
	RandomPartitioner
	ByteOrderedPartitioner

	Snitches
	Dynamic snitching
	SimpleSnitch
	RackInferringSnitch
	PropertyFileSnitch
	GossipingPropertyFileSnitch
	EC2Snitch
	EC2MultiRegionSnitch
	GoogleCloudSnitch
	CloudstackSnitch

	Client requests
	Planning a cluster deployment
	Selecting hardware for enterprise implementations
	Planning an Amazon EC2 cluster
	Calculating usable disk capacity
	Calculating user data size
	Anti-patterns in Cassandra

	Installing
	Installing on RHEL-based systems
	Installing on Debian-based systems
	Installing the binary tarball
	Installing on Windows systems
	Installing on cloud providers
	Installing on Amazon EC2
	Create security group
	Create key pair
	Launch instances
	Connect to instances
	Expand cluster

	Installing on GoGrid

	Installing Oracle JRE and JNA
	Installing the JRE on RHEL-based systems
	Installing the JRE on Debian-based systems
	Installing the JNA on RHEL-based systems
	Installing the JNA on Debian-based systems
	Installing the JNA from the JAR file

	Recommended production settings

	Initializing a cluster
	Initializing a multiple node cluster (single data center)
	Initializing a multiple node cluster (multiple data centers)

	Security
	Securing Cassandra
	SSL encryption
	Client-to-node encryption
	Node-to-node encryption
	Using cqlsh with SSL encryption
	Preparing server certificates
	Adding new trusted users

	Internal authentication
	Internal authentication
	Configuring authentication
	Logging in using cqlsh

	Internal authorization
	Object permissions
	Configuring internal authorization

	Configuring firewall port access

	Database internals
	Managing data
	Separate table directories

	Cassandra storage basics
	The write path to compaction
	How Cassandra stores indexes
	About index updates

	The write path of an update
	About deletes
	About hinted handoff writes
	About reads
	How off-heap components affect reads
	Reading from a partition
	How write patterns affect reads
	How the row cache affects reads

	About transactions and concurrency control
	Lightweight transactions
	Atomicity
	Consistency
	Isolation
	Durability

	About data consistency
	Configuring data consistency
	Read requests
	Examples of read consistency levels

	Write requests
	Multiple data center write requests

	Configuration
	The cassandra.yaml configuration file
	Configuring gossip settings
	Configuring the heap dump directory
	Generating tokens
	Configuring virtual nodes
	Enabling virtual nodes on a new cluster
	Enabling virtual nodes on an existing production cluster

	Logging configuration
	Logging configuration
	Changing Logging Levels

	Changing the rotation and size of the Cassandra output.log
	Changing the rotation and size of the Cassandra system.log

	Commit log archive configuration
	Hadoop support

	Operations
	Monitoring Cassandra
	Monitoring a Cassandra cluster
	Compaction metrics
	Thread pool and read/write latency statistics
	Table statistics

	Tuning Bloom filters
	Data caching
	Configuring data caches
	Enabling and configuring caching
	How caching works
	Tips for efficient cache use

	Monitoring and adjusting caching

	Configuring memtable throughput
	Configuring compaction
	Compression
	When to compress data
	Configuring compression

	Testing compaction and compression
	Tuning Java resources
	Purging gossip state on a node
	Repairing nodes
	Adding or removing nodes, data centers, or clusters
	Adding nodes to an existing cluster
	Adding a data center to a cluster
	Replacing a dead node
	Replacing a dead seed node
	Replacing a running node
	Decommissioning a data center
	Removing a node
	Switching snitches
	Edge cases for transitioning or migrating a cluster

	Backing up and restoring data
	Taking a snapshot
	Deleting snapshot files
	Enabling incremental backups
	Restoring from a Snapshot
	Node restart method

	Restoring a snapshot into a new cluster

	Cassandra tools
	The nodetool utility
	cfhistograms
	cfstats
	cleanup
	clearsnapshot
	compact
	compactionhistory
	compactionstats
	decommission
	describering
	disableautocompaction
	disablebackup
	disablebinary
	disablegossip
	disablehandoff
	disablethrift
	drain
	enableautocompaction
	enablebackup
	enablebinary
	enablegossip
	enablehandoff
	enablethrift
	flush
	getcompactionthreshold
	getendpoints
	getsstables
	getstreamthroughput
	gossipinfo
	info
	invalidatekeycache
	invalidaterowcache
	join
	move
	netstats
	pausehandoff
	proxyhistograms
	rangekeysample
	rebuild
	rebuild_index
	refresh
	removenode
	repair
	resetlocalschema
	resumehandoff
	ring
	scrub
	setcachecapacity
	setcachekeystosave
	setcompactionthreshold
	setcompactionthroughput
	sethintedhandoffthrottlekb
	setstreamthroughput
	settraceprobability
	snapshot
	status
	statusbinary
	statusthrift
	stop
	stopdaemon
	taketoken
	tpstats
	truncatehints
	upgradesstables
	version

	Cassandra bulk loader (sstableloader)
	The cassandra utility
	The cassandra-stress tool
	Options for cassandra-stress
	Using the Daemon Mode
	Interpreting the output of cassandra-stress

	The sstablescrub utility
	The sstablesplit utility
	sstablekeys
	The sstableupgrade tool

	References
	Starting and stopping Cassandra
	Starting Cassandra as a service
	Starting Cassandra as a stand-alone process
	Stopping Cassandra as a service
	Stopping Cassandra as a stand-alone process
	Clearing the data as a service
	Clearing the data as a stand-alone process

	Install locations
	Tarball installation directories
	Package installation directories

	Cassandra-CLI utility (deprecated)
	Table attributes

	Moving data to/from other databases
	Troubleshooting
	Peculiar Linux kernel performance problem on NUMA systems
	Reads are getting slower while writes are still fast
	Nodes seem to freeze after some period of time
	Nodes are dying with OOM errors
	Nodetool or JMX connections failing on remote nodes
	View of ring differs between some nodes
	Java reports an error saying there are too many open files
	Insufficient user resource limits errors
	Cannot initialize class org.xerial.snappy.Snappy
	Firewall idle connection timeout causing nodes to lose communication

	Release notes
	Using the docs

