
DataStax Distribution of
Apache Cassandra™ 3.x

Documentation
April 12, 2016

Apache, Apache Cassandra, Apache Hadoop, Hadoop and the
eye logo are trademarks of the Apache Software Foundation

© 2016 DataStax, Inc. All rights reserved.

Contents

2

Contents

About Apache Cassandra... 8

What's new?... 9

Understanding the architecture... 11
Architecture in brief... 11
Internode communications (gossip).. 14

Failure detection and recovery...14
Data distribution and replication..15

Consistent hashing... 15
Virtual nodes...16
Data replication...18

Partitioners...18
Murmur3Partitioner..19
RandomPartitioner.. 19
ByteOrderedPartitioner... 20

Snitches... 20
Dynamic snitching...20
SimpleSnitch... 21
RackInferringSnitch...21
PropertyFileSnitch...21
GossipingPropertyFileSnitch...22
Ec2Snitch.. 23
Ec2MultiRegionSnitch... 23
GoogleCloudSnitch... 25
CloudstackSnitch.. 25

Database internals... 26
Storage engine.. 26
How Cassandra reads and writes data...26

How is data written?...26
How is data maintained?..28
How is data updated?.. 30
How is data deleted?... 31
How are indexes stored and updated?.. 31
How is data read?.. 32
How do write patterns affect reads?.. 35

Data consistency... 35
How are consistent read and write operations handled?... 35
How are Cassandra transactions different from RDBMS transactions?.................................37
How do I accomplish lightweight transactions with linearizable consistency?........................38
How do I discover consistency level performance?... 39
How is the consistency level configured?.. 39
How is the serial consistency level configured?.. 42
How are read requests accomplished?..42
How are write requests accomplished?... 52

Contents

3

Planning a cluster deployment.. 55
Selecting hardware for enterprise implementations..55
Planning an Amazon EC2 cluster...58
Estimating partition size.. 59
Estimating usable disk capacity.. 60
Anti-patterns in Cassandra..60

Installing..63
Installing the DataStax Distribution of Apache Cassandra 3.x on RHEL-based systems................. 63
Installing DataStax Distribution of Apache Cassandra 3.x on Debian-based systems......................65
Installing from the binary tarball..66

Configuring Cassandra without root permissions...68
Installing earlier releases of DataStax Distribution of Apache Cassandra 3.x.................................. 68
Uninstalling the DataStax Distribution of Apache Cassandra 3.x... 69
Installing on cloud providers... 70
Installing the JDK.. 70

Installing Oracle JDK on RHEL-based Systems.. 70
Installing Oracle JDK on Debian or Ubuntu Systems.. 71
Installing OpenJDK on RHEL-based Systems... 72
Installing OpenJDK on Debian-based Systems... 72

Recommended production settings for Linux..73
Install locations.. 75

Tarball installation directories... 75
Package installation directories.. 76

Configuration..77
cassandra.yaml configuration file.. 78
Cassandra include file...95
Security.. 96

Securing Cassandra... 96
SSL encryption... 96
Preparing server certificates...96
Adding new trusted users...97
Client-to-node encryption..98
Using cqlsh with SSL encryption..99
Using nodetool (JMX) with SSL... 100
Node-to-node encryption.. 100

Internal authentication... 101
Internal authentication...101
Configuring authentication.. 102
Logging in using cqlsh..102

Internal authorization... 103
Object permissions... 103
Configuring internal authorization...103
Configuring firewall port access... 104
Enabling JMX authentication.. 104
Configuring gossip settings.. 106
Configuring the heap dump directory...107

Configuring virtual nodes...108
Enabling virtual nodes on a new cluster.. 108
Enabling virtual nodes on an existing production cluster... 108

Using multiple network interfaces... 108

Contents

4

Configuring logging..111
Commit log archive configuration..113
Generating tokens... 113
Hadoop support... 114

Initializing a cluster... 116
Initializing a multiple node cluster (single data center)... 116
Initializing a multiple node cluster (multiple data centers).. 119
Starting and stopping Cassandra..121

Starting Cassandra as a service.. 121
Starting Cassandra as a stand-alone process... 122
Stopping Cassandra as a service.. 122
Stopping Cassandra as a stand-alone process... 122
Clearing the data as a service... 122
Clearing the data as a stand-alone process.. 123

Operations.. 123
Adding or removing nodes, data centers, or clusters... 123

Adding nodes to an existing cluster... 123
Adding a data center to a cluster...125
Replacing a dead node or dead seed node.. 126
Replacing a running node.. 128
Moving a node from one rack to another...129
Decommissioning a data center...129
Removing a node... 129
Switching snitches.. 130
Changing keyspace replication strategy...131
Edge cases for transitioning or migrating a cluster..132
Adding or replacing single-token nodes... 132

Backing up and restoring data..134
About snapshots... 135
Taking a snapshot.. 135
Deleting snapshot files... 136
Enabling incremental backups..136
Restoring from a snapshot... 136
Restoring a snapshot into a new cluster..138
Recovering from a single disk failure using JBOD...139

Repairing nodes.. 140
Hinted Handoff: repair during write path.. 140
Read Repair: repair during read path.. 143
Manual repair: Anti-entropy repair..143
Migrating to incremental repairs...148

Monitoring Cassandra... 149
Monitoring a Cassandra cluster..149

Tuning Java resources..153
Data caching..155

Configuring data caches...155
Monitoring and adjusting caching...157

Configuring memtable throughput... 157
Configuring compaction...158
Compression..159

When to compress data... 159
Configuring compression.. 160

Testing compaction and compression...160

Contents

5

Tuning Bloom filters.. 161
Moving data to or from other databases...162
Purging gossip state on a node..162

Cassandra tools... 163
The nodetool utility.. 163

assassinate... 164
bootstrap... 165
cfhistograms..166
cfstats..166
cleanup..166
clearsnapshot..167
compact...168
compactionhistory... 169
compactionstats.. 171
decommission... 172
describecluster.. 172
describering...173
disableautocompaction... 175
disablebackup... 175
disablebinary... 176
disablegossip.. 176
disablehandoff...177
disablehintsfordc... 177
disablethrift..178
drain.. 179
enableautocompaction.. 180
enablebackup..180
enablebinary..181
enablegossip... 181
enablehandoff... 182
enablehintsfordc..182
enablethrift.. 183
flush...183
gcstats...184
getcompactionthreshold.. 185
getcompactionthroughput..186
getendpoints..186
getlogginglevels.. 187
getsstables.. 188
getstreamthroughput... 188
gettimeout... 189
gettraceprobability...190
gossipinfo.. 190
help... 191
info.. 192
invalidatecountercache... 192
invalidatekeycache..193
invalidaterowcache..194
join...194
listsnapshots... 195
move... 195
netstats..196
pausehandoff.. 197
proxyhistograms..198

Contents

6

rangekeysample..198
rebuild... 199
rebuild_index...199
refresh... 200
reloadtriggers.. 201
relocatesstables.. 201
removenode.. 202
repair... 203
replaybatchlog...206
resetlocalschema.. 207
resumehandoff.. 208
ring.. 208
scrub... 209
setcachecapacity...210
setcachekeystosave..211
setcompactionthreshold.. 212
setcompactionthroughput..212
sethintedhandoffthrottlekb...213
setlogginglevel.. 214
setstreamthroughput... 215
settimeout..215
settraceprobability... 216
snapshot..217
status...219
statusbackup... 221
statusbinary...221
statusgossip.. 222
statushandoff...222
statusthrift..223
stop... 223
stopdaemon.. 224
tablehistograms...225
tablestats...226
toppartitions...231
tpstats..233
truncatehints..237
upgradesstables..237
verify..238
version...239

The cassandra utility... 239
The cassandra-stress tool...241

Interpreting the output of cassandra-stress..249
SSTable utilities...250

sstabledump..250
sstableexpiredblockers..252
sstablekeys... 252
sstablelevelreset... 253
sstableloader (Cassandra bulk loader)...253
sstablemetadata..256
sstableofflinerelevel...259
sstablerepairedset...259
sstablescrub.. 260
sstablesplit.. 261
sstableupgrade..262
sstableutil.. 262
sstableverify.. 263

Contents

7

Troubleshooting... 263
Peculiar Linux kernel performance problem on NUMA systems...263
Nodes appear unresponsive due to a Linux futex_wait() kernel bug..263
Reads are getting slower while writes are still fast...264
Nodes seem to freeze after some period of time... 265
Nodes are dying with OOM errors..265
Nodetool or JMX connections failing on remote nodes.. 265
Handling schema disagreements.. 266
View of ring differs between some nodes...266
Java reports an error saying there are too many open files...266
Insufficient user resource limits errors.. 267
Cannot initialize class org.xerial.snappy.Snappy.. 268
Lost communication due to firewall timeouts..269

Release notes...269

About Apache Cassandra

8

About Apache Cassandra
Documentation for developers and administrators on installing, configuring, and using the features and capabilities of Apache Cassandra scalable open source NoSQL database.

Apache Cassandra™ is a massively scalable open source NoSQL database. Cassandra is perfect for
managing large amounts of structured, semi-structured, and unstructured data across multiple data centers
and the cloud. Cassandra delivers continuous availability, linear scalability, and operational simplicity
across many commodity servers with no single point of failure, along with a powerful dynamic data model
designed for maximum flexibility and fast response times.

How does Cassandra work?
Cassandra’s built-for-scale architecture means that it is capable of handling petabytes of information and
thousands of concurrent users/operations per second.

Cassandra is a
partitioned row store
database

Cassandra's architecture allows any authorized user to connect to any node
in any data center and access data using the CQL language. For ease of
use, CQL uses a similar syntax to SQL. The most basic way to interact
with Cassandra is using the CQL shell, cqlsh. Using cqlsh, you can create
keyspaces and tables, insert and query tables, plus much more. If you prefer
a graphical tool, you can use DataStax DevCenter. For production, DataStax
supplies a number drivers so that CQL statements can be passed from client
to cluster and back.

Automatic data
distribution

Cassandra provides automatic data distribution across all nodes that
participate in a ring or database cluster. There is nothing programmatic that
a developer or administrator needs to do or code to distribute data across a
cluster because data is transparently partitioned across all nodes in a cluster.

Built-in and
customizable
replication

Cassandra also provides built-in and customizable replication, which stores
redundant copies of data across nodes that participate in a Cassandra ring.
This means that if any node in a cluster goes down, one or more copies of that
node’s data is available on other machines in the cluster. Replication can be
configured to work across one data center, many data centers, and multiple
cloud availability zones.

Cassandra supplies
linear scalability

Cassandra supplies linear scalability, meaning that capacity may be easily
added simply by adding new nodes online. For example, if 2 nodes can handle
100,000 transactions per second, 4 nodes will support 200,000 transactions/
sec and 8 nodes will tackle 400,000 transactions/sec:

How is Cassandra different from relational databases?
Cassandra is designed from the ground up as a distributed database with peer-to-peer communication.
As a best practice, queries should be one per table. Data is denormalized to make this possible. For this

/en/cql/3.3/cql/cql_using/useAboutCQL.html
/en/developer/devcenter/doc/devcenter/features.html
/en/developer/driver-matrix/doc/common/driverMatrix.html

What's new in DataStax Distribution of Apache Cassandra 3.x

9

reason, the concept of JOINs between tables does not exist, although client-side joins can be used in
applications.

What is NoSQL?
Most common translation is "Not only SQL", meaning a database that uses a method of storage different
from a relational, or SQL, database. There are many different types of NoSQL databases, so a direct
comparison of even the most used types is not useful. Database administrators today must be polyglot-
friendly, meaning they must know how to work with many different RDBMS and NoSQL databases.

What is CQL?
Cassandra Query Language (CQL) is the primary interface into the Cassandra DBMS. Using CQL is
similar to using SQL (Structured Query Language). CQL and SQL share the same abstract idea of a table
constructed of columns and rows. The main difference from SQL is that Cassandra does not support joins
or subqueries. Instead, Cassandra emphasizes denormalization through CQL features like collections and
clustering specified at the schema level.

CQL is the recommended way to interact with Cassandra. Performance and the simplicity of reading and
using CQL is an advantage of modern Cassandra over older Cassandra APIs.

The CQL documentation contains a data modeling topic, examples, and command reference.

How do I interact with Cassandra?
The most basic way to interact with Cassandra is using the CQL shell, cqlsh. Using cqlsh, you can create
keyspaces and tables, insert and query tables, plus much more. If you prefer a graphical tool, you can use
DevCenter. For production, DataStax supplies a number of drivers in various programming languages, so
that CQL statements can be passed from client to cluster and back.

How can I move data to/from Cassandra?
Data is inserted using the CQL INSERT command, the CQL COPY command and CSV files, or
sstableloader. But in reality, you need to consider how your client application will query the tables, and do
data modeling first. The paradigm shift between relational and NoSQL means that a straight move of data
from an RDBMS database to Cassandra will be doomed to failure.

What other tools come with Cassandra?
Cassandra automatically installs nodetool, a useful command-line management tool for Cassandra. A tool
for load-stressing and basic benchmarking, cassandra-stress, is also installed by default.

What kind of hardware/cloud environment do I need to run Cassandra?
Cassandra is designed to run on commodity hardware with common specifications. In the cloud,
Cassandra is adapted for most common offerings.

What's new in DataStax Distribution of Apache
Cassandra 3.x

An overview of new features in the DataStax Distribution of Apache Cassandra 3.x.

Note: Cassandra is now releasing on a tick-tock schedule. For more information, see Cassandra 2.2, 3.0,
and beyond.

The latest version of DataStax Distribution of Apache Cassandra 3.x is 3.4.

/en/cql/3.3/cql/cqlIntro.html
/en/cql/3.3/index.html
/en/cql/3.3/cql/ddl/dataModelingApproach.html
/en/cql/3.3/cql/cql_using/useStartingCqlshTOC.html
http://docs.datastax.com/en/developer/devcenter/doc/devcenter/features.html
/en/developer/driver-matrix/doc/common/driverMatrix.html
http://www.planetcassandra.org/blog/cassandra-2-2-3-0-and-beyond/
http://www.planetcassandra.org/blog/cassandra-2-2-3-0-and-beyond/

What's new in DataStax Distribution of Apache Cassandra 3.x

10

The CHANGES.txt describes the changes in detail. You can view all version changes by branch or tag in
the drop-down list on the changes page.

New features Cassandra 3.2 and later

-graph option for
cassandra-stress

cassandra-stress results can be automatically graphed for data
visualization.

TTL for COPY FROM A TTL value can be specified when copying from CSV files.

bulkloader can
use third party
authentication

The bulkloader has an option -ap for third party authentication.

CREATE TABLE WITH
ID

If a table is accidentally dropped, it can be recreated with its ID and the
commitlog replayed to regain data.

Static columns can be
indexed

In Cassandra 3.4 and later, static columns can be indexed.

New option for
nodetool compact

In Cassandra 3.4 and later, addition of --user-definedcompact to nodetool
compact to allow user to submit a list of files. Handy for dealing with low disk
space or tombstone purging.

Display timestamp in
sub-second precision

In Cassandra 3.4 and later, timestamp defaults to include sub-second
precision.

nodetool gettimeout
and nodetool
settimeout

In Cassandra 3.4 and later, two nodetool commands to print out or set the
value of a timeout in milliseconds.

jvm.options file for GC
and some JVM options

Some JVM options have been moved from the cassandra-env.sh file into a
new file, jvm.optionsThe cassandra utility on page 239.

JBOD improvements Improvements to SSTable partitioning by token range have improved JBOD
compaction and backup. See Improving JBOD for more details. A new
command is available to support the improvements, nodetool relocatesstables.

New features released in Cassandra 3.0

Storage engine
refactored

The Storage Engine has been refactored.

Materialized Views Materialized views handle automated server-side denormalization, with
consistency between base and view data.

Support for Windows Support for Windows 7, Windows 8, Windows Server 2008, and Windows
Server 2012. See DataStax Cassandra 2.2 Windows Documentation.

Operations improvements

Addition of
MAX_WINDOW_SIZE_SECONDS
to DTCS compaction
settings

Allow DTCS compaction governance based on maximum window size rather
than SSTable age.

https://github.com/apache/cassandra/blob/cassandra-3.4/CHANGES.txt#L1-L87
/en/cql/3.3/cql/cql_reference/copy_r.html
/en/cql/3.3/cql/cql_reference/create_table_r.html
/en/cql/3.3/cql/cql_reference/timestamp_type_r.html
http://www.datastax.com/dev/blog/improving-jbod
/en/cassandra_win/3.0/cassandra/cassandraAbout.html
/en/cql/3.3/cql/cql_reference/compactSubprop.html

Understanding the architecture

11

File-based Hint Storage
and Improved Replay

Hints are now stored in files and replay is improved.

Default garbage
collector is changed to
G1

Default garbage collector is changed from Concurrent-Mark-Sweep (CMS) to
G1. G1 performance is better for nodes with heap size of 4GB or greater.

Changed syntax
for CREATE TABLE
compression options

Made the compression options more consistent for CREATE TABLE.

Add nodetool
command to force
blocking batchlog
replay

BatchlogManager can force batchlog replay using nodetool.

Nodetool over SSL Nodetool can connect using SSL like cqlsh.

New nodetool options
for hinted handoffs

Nodetool options disablehintsfordc and enablehintsfordc added. to
selectively disable or enable hinted handoffs for a data center.

nodetool stop Nodetool option added to stop compactions.

Other notable changes

Requires Java 8 Java 8 is now required.

nodetool cfstats and
nodetool cfhistograms
renamed

Renamed nodetool cfstats to nodetool tablestats. Renamed
nodetool cfhistograms to nodetool tablehistograms.

Native protocol v1 and
v2 are dropped

Native protocol v1 and v2 are dropped in Cassandra 3.0.

DataStax AMI does not
install Cassandra 2.2
and later

You can install Cassandra 2.1 and earlier versions on Amazon EC2 using
the DataStax AMI (Amazon Machine Image) as described in the AMI
documentation for Cassandra 2.1.

To install Cassandra 2.2 and later on Amazon EC2, use a trusted AMI for your
platform and the appropriate install method for that platform.

Understanding the architecture
Important topics for understanding Cassandra.

Architecture in brief
Essential information for understanding and using Cassandra.

Cassandra is designed to handle big data workloads across multiple nodes with no single point of failure.
Its architecture is based on the understanding that system and hardware failures can and do occur.
Cassandra addresses the problem of failures by employing a peer-to-peer distributed system across
homogeneous nodes where data is distributed among all nodes in the cluster. Each node frequently

/en/latest-dsc-ami
/en/latest-dsc-ami

Understanding the architecture

12

exchanges state information about itself and other nodes across the cluster using peer-to-peer gossip
communication protocol. A sequentially written commit log on each node captures write activity to ensure
data durability. Data is then indexed and written to an in-memory structure, called a memtable, which
resembles a write-back cache. Each time the memory structure is full, the data is written to disk in an
SSTables data file. All writes are automatically partitioned and replicated throughout the cluster. Cassandra
periodically consolidates SSTables using a process called compaction, discarding obsolete data marked
for deletion with a tombstone. To ensure all data across the cluster stays consistent, various repair
mechanisms are employed.

Cassandra is a partitioned row store database, where rows are organized into tables with a required
primary key. Cassandra's architecture allows any authorized user to connect to any node in any data
center and access data using the CQL language. For ease of use, CQL uses a similar syntax to SQL
and works with table data. Developers can access CQL through cqlsh, DevCenter, and via drivers for
application languages. Typically, a cluster has one keyspace per application composed of many different
tables.

Client read or write requests can be sent to any node in the cluster. When a client connects to a node with
a request, that node serves as the coordinator for that particular client operation. The coordinator acts as
a proxy between the client application and the nodes that own the data being requested. The coordinator
determines which nodes in the ring should get the request based on how the cluster is configured.

Key structures
• Node

Where you store your data. It is the basic infrastructure component of Cassandra.
• Data center

A collection of related nodes. A data center can be a physical data center or virtual data center.
Different workloads should use separate data centers, either physical or virtual. Replication is set by
data center. Using separate data centers prevents Cassandra transactions from being impacted by
other workloads and keeps requests close to each other for lower latency. Depending on the replication
factor, data can be written to multiple data centers. Data centers must never span physical locations.

• Cluster

A cluster contains one or more data centers. It can span physical locations.
• Commit log

All data is written first to the commit log for durability. After all its data has been flushed to SSTables, it
can be archived, deleted, or recycled.

• SSTable

A sorted string table (SSTable) is an immutable data file to which Cassandra writes memtables
periodically. SSTables are append only and stored on disk sequentially and maintained for each
Cassandra table.

• CQL Table

A collection of ordered columns fetched by table row. A table consists of columns and has a primary
key.

Key components for configuring Cassandra
• Gossip

A peer-to-peer communication protocol to discover and share location and state information about the
other nodes in a Cassandra cluster. Gossip information is also persisted locally by each node to use
immediately when a node restarts.

• Partitioner

A partitioner determines which node will receive the first replica of a piece of data, and how to distribute
other replicas across other nodes in the cluster. Each row of data is uniquely identified by a primary

/en/glossary/doc/glossary/gloss_gossip.html
/en/glossary/doc/glossary/gloss_commit_log.html
/en/glossary/doc/glossary/gloss_memtable.html
/en/glossary/doc/glossary/gloss_sstable.html
/en/cql/3.3/cql/cql_reference/tabProp.html?scroll=tabProp__moreCompaction
/en/glossary/doc/glossary/gloss_tombstone.html
/en/cql/3.1/cql/cql_reference/cqlshCommandsTOC.html
/en/developer/devcenter/doc/devcenter/features.html
/en/developer/driver-matrix/doc/common/driverMatrix.html?scroll=driverMatrix__driver-cmpt-matrix
/en/glossary/doc/glossary/gloss_keyspace.html
/en/glossary/doc/glossary/gloss_coordinator_node.html

Understanding the architecture

13

key, which may be the same as its partition key, but which may also include other clustering columns.
A partitioner is a hash function that derives a token from the primary key of a row. The partitioner
uses the token value to determine which nodes in the cluster receive the replicas of that row. The
Murmur3Partitioner is the default partitioning strategy for new Cassandra clusters and the right choice
for new clusters in almost all cases.

You must set the partitioner and assign the node a num_tokens value for each node. The number
of tokens you assign depends on the hardware capabilities of the system. If not using virtual nodes
(vnodes), use the initial_token setting instead.

• Replication factor

The total number of replicas across the cluster. A replication factor of 1 means that there is only one
copy of each row on one node. A replication factor of 2 means two copies of each row, where each
copy is on a different node. All replicas are equally important; there is no primary or master replica.
You define the replication factor for each data center. Generally you should set the replication strategy
greater than one, but no more than the number of nodes in the cluster.

• Replica placement strategy

Cassandra stores copies (replicas) of data on multiple nodes to ensure reliability and fault tolerance.
A replication strategy determines which nodes to place replicas on. The first replica of data is simply
the first copy; it is not unique in any sense. The NetworkTopologyStrategy is highly recommended for
most deployments because it is much easier to expand to multiple data centers when required by future
expansion.

When creating a keyspace, you must define the replica placement strategy and the number of replicas
you want.

• Snitch

A snitch defines groups of machines into data centers and racks (the topology) that the replication
strategy uses to place replicas.

You must configure a snitch when you create a cluster. All snitches use a dynamic snitch layer,
which monitors performance and chooses the best replica for reading. It is enabled by default and
recommended for use in most deployments. Configure dynamic snitch thresholds for each node in the
cassandra.yaml configuration file.

The default SimpleSnitch does not recognize data center or rack information. Use it for single-data
center deployments or single-zone in public clouds. The GossipingPropertyFileSnitch is recommended
for production. It defines a node's data center and rack and uses gossip for propagating this information
to other nodes.

• The cassandra.yaml configuration file

The main configuration file for setting the initialization properties for a cluster, caching parameters for
tables, properties for tuning and resource utilization, timeout settings, client connections, backups, and
security.

By default, a node is configured to store the data it manages in a directory set in the cassandra.yaml
file.

In a production cluster deployment, you can change the commitlog-directory to a different disk drive
from the data_file_directories.

• System keyspace table properties

You set storage configuration attributes on a per-keyspace or per-table basis programmatically or using
a client application, such as CQL.

Related reference
cassandra.yaml configuration file on page 78
The cassandra.yaml file is the main configuration file for Cassandra.

Related information
Install locations on page 75

/en/glossary/doc/glossary/gloss_gossip.html
/en/cql/3.3/cql/cql_reference/tabProp.html

Understanding the architecture

14

Install location topics.

Internode communications (gossip)
Cassandra uses a protocol called gossip to discover location and state information about the other nodes participating in a Cassandra cluster.

Gossip is a peer-to-peer communication protocol in which nodes periodically exchange state information
about themselves and about other nodes they know about. The gossip process runs every second and
exchanges state messages with up to three other nodes in the cluster. The nodes exchange information
about themselves and about the other nodes that they have gossiped about, so all nodes quickly learn
about all other nodes in the cluster. A gossip message has a version associated with it, so that during a
gossip exchange, older information is overwritten with the most current state for a particular node.

To prevent problems in gossip communications, use the same list of seed nodes for all nodes in a cluster.
This is most critical the first time a node starts up. By default, a node remembers other nodes it has
gossiped with between subsequent restarts. The seed node designation has no purpose other than
bootstrapping the gossip process for new nodes joining the cluster. Seed nodes are not a single point
of failure, nor do they have any other special purpose in cluster operations beyond the bootstrapping of
nodes.

Attention: In multiple data-center clusters, it is a good idea to include at least one node from each data
center (replication group) in the seed list. Designating more than a single seed node per data center
is recommended for fault tolerance. Otherwise, gossip has to communicate with another data center
when bootstrapping a node. Making every node a seed node is not recommended because of increased
maintenance and reduced gossip performance. Gossip optimization is not critical, but it is recommended to
use a small seed list (approximately three nodes per data center).

Failure detection and recovery
A method for locally determining from gossip state and history if another node in the system is down or has come back up.

Failure detection is a method for locally determining from gossip state and history if another node in the
system is down or has come back up. Cassandra uses this information to avoid routing client requests to
unreachable nodes whenever possible. (Cassandra can also avoid routing requests to nodes that are alive,
but performing poorly, through the dynamic snitch.)

The gossip process tracks state from other nodes both directly (nodes gossiping directly to it) and indirectly
(nodes communicated about secondhand, third-hand, and so on). Rather than have a fixed threshold
for marking failing nodes, Cassandra uses an accrual detection mechanism to calculate a per-node
threshold that takes into account network performance, workload, and historical conditions. During gossip
exchanges, every node maintains a sliding window of inter-arrival times of gossip messages from other
nodes in the cluster. Configuring the phi_convict_threshold property adjusts the sensitivity of the failure
detector. Lower values increase the likelihood that an unresponsive node will be marked as down, while
higher values decrease the likelihood that transient failures causing node failure. Use the default value
for most situations, but increase it to 10 or 12 for Amazon EC2 (due to frequently encountered network
congestion). In unstable network environments (such as EC2 at times), raising the value to 10 or 12 helps
prevent false failures. Values higher than 12 and lower than 5 are not recommended.

Node failures can result from various causes such as hardware failures and network outages. Node
outages are often transient but can last for extended periods. Because a node outage rarely signifies a
permanent departure from the cluster it does not automatically result in permanent removal of the node
from the ring. Other nodes will periodically try to re-establish contact with failed nodes to see if they are
back up. To permanently change a node's membership in a cluster, administrators must explicitly add or
remove nodes from a Cassandra cluster using the nodetool utility.

When a node comes back online after an outage, it may have missed writes for the replica data it
maintains. Repair mechanisms exist to recover missed data, such as hinted handoffs and manual repair
with nodetool repair. The length of the outage will determine which repair mechanism is used to make the
data consistent.

Understanding the architecture

15

Data distribution and replication
How data is distributed and factors influencing replication.

In Cassandra, data distribution and replication go together. Data is organized by table and identified by a
primary key, which determines which node the data is stored on. Replicas are copies of rows. When data is
first written, it is also referred to as a replica.

Factors influencing replication include:

• Virtual nodes: assigns data ownership to physical machines.
• Partitioner: partitions the data across the cluster.
• Replication strategy: determines the replicas for each row of data.
• Snitch: defines the topology information that the replication strategy uses to place replicas.

Consistent hashing
Consistent hashing allows distribution of data across a cluster to minimize reorganization when nodes are added or removed.

Consistent hashing allows distribution of data across a cluster to minimize reorganization when nodes are
added or removed. Consistent hashing partitions data based on the partition key. (For an explanation of
partition keys and primary keys, see the Data modeling example in CQL for Cassandra 2.2.)

For example, if you have the following data:

name age car gender

jim 36 camaro M

carol 37 bmw F

johnny 12 M

suzy 10 F

Cassandra assigns a hash value to each partition key:

Partition key Murmur3 hash value

jim -2245462676723223822

carol 7723358927203680754

johnny -6723372854036780875

suzy 1168604627387940318

Each node in the cluster is responsible for a range of data based on the hash value.

Figure: Hash values in a four node cluster

/en/cql/3.3/cql/ddl/dataModelingApproach.html

Understanding the architecture

16

Cassandra places the data on each node according to the value of the partition key and the range that
the node is responsible for. For example, in a four node cluster, the data in this example is distributed as
follows:

Node Start range End range Partition
key

Hash value

A -9223372036854775808 -4611686018427387904 johnny -6723372854036780875

B -4611686018427387903 -1 jim -2245462676723223822

C 0 4611686018427387903 suzy 1168604627387940318

D 4611686018427387904 9223372036854775807 carol 7723358927203680754

Virtual nodes
Overview of virtual nodes (vnodes).

Virtual nodes, known as Vnodes, distribute data across nodes at a finer granularity than can be easily
achieved if calculated tokens are used. Vnodes simplify many tasks in Cassandra:

• Tokens are automatically calculated and assigned to each node.
• Rebalancing a cluster is automatically accomplished when adding or removing nodes. When a node

joins the cluster, it assumes responsibility for an even portion of data from the other nodes in the
cluster. If a node fails, the load is spread evenly across other nodes in the cluster.

• Rebuilding a dead node is faster because it involves every other node in the cluster.
• The proportion of vnodes assigned to each machine in a cluster can be assigned, so smaller and larger

computers can be used in building a cluster.

For more information, see the article Virtual nodes in Cassandra 1.2. To convert an existing cluster to
vnodes, see Enabling virtual nodes on an existing production cluster on page 108.

http://www.datastax.com/dev/blog/virtual-nodes-in-cassandra-1-2

Understanding the architecture

17

How data is distributed across a cluster (using virtual nodes)
Vnodes use consistent hashing to distribute data without requiring new token generation and assignment.

Prior to Cassandra 1.2, you had to calculate and assign a single token to each node in a cluster. Each
token determined the node's position in the ring and its portion of data according to its hash value. In
Cassandra 1.2 and later, each node is allowed many tokens. The new paradigm is called virtual nodes
(vnodes). Vnodes allow each node to own a large number of small partition ranges distributed throughout
the cluster. Vnodes also use consistent hashing to distribute data but using them doesn't require token
generation and assignment.

Figure: Virtual vs single-token architecture

The top portion of the graphic shows a cluster without vnodes. In this paradigm, each node is assigned
a single token that represents a location in the ring. Each node stores data determined by mapping the
partition key to a token value within a range from the previous node to its assigned value. Each node also
contains copies of each row from other nodes in the cluster. For example, if the replication factor is 3,
range E replicates to nodes 5, 6, and 1. Notice that a node owns exactly one contiguous partition range in
the ring space.

/en/archived/cassandra/1.1/docs/initialize/token_generation
/en/glossary/doc/glossary/gloss_partition_range.html
/en/glossary/doc/glossary/gloss_partition_key.html

Understanding the architecture

18

The bottom portion of the graphic shows a ring with vnodes. Within a cluster, virtual nodes are randomly
selected and non-contiguous. The placement of a row is determined by the hash of the partition key within
many smaller partition ranges belonging to each node.

Data replication
Cassandra stores replicas on multiple nodes to ensure reliability and fault tolerance. A replication strategy determines the nodes where replicas are placed.

Cassandra stores replicas on multiple nodes to ensure reliability and fault tolerance. A replication strategy
determines the nodes where replicas are placed. The total number of replicas across the cluster is referred
to as the replication factor. A replication factor of 1 means that there is only one copy of each row in the
cluster. If the node containing the row goes down, the row cannot be retrieved. A replication factor of 2
means two copies of each row, where each copy is on a different node. All replicas are equally important;
there is no primary or master replica. As a general rule, the replication factor should not exceed the
number of nodes in the cluster. However, you can increase the replication factor and then add the desired
number of nodes later.

Two replication strategies are available:

• SimpleStrategy: Use only for a single data center and one rack. If you ever intend more than one
data center, use the NetworkTopologyStrategy.

• NetworkTopologyStrategy: Highly recommended for most deployments because it is much easier
to expand to multiple data centers when required by future expansion.

SimpleStrategy

Use only for a single data center and one rack. SimpleStrategy places the first replica on a node
determined by the partitioner. Additional replicas are placed on the next nodes clockwise in the ring without
considering topology (rack or data center location).

NetworkTopologyStrategy

Use NetworkTopologyStrategy when you have (or plan to have) your cluster deployed across multiple
data centers. This strategy specify how many replicas you want in each data center.

NetworkTopologyStrategy places replicas in the same data center by walking the ring clockwise until
reaching the first node in another rack. NetworkTopologyStrategy attempts to place replicas on distinct
racks because nodes in the same rack (or similar physical grouping) often fail at the same time due to
power, cooling, or network issues.

When deciding how many replicas to configure in each data center, the two primary considerations are (1)
being able to satisfy reads locally, without incurring cross data-center latency, and (2) failure scenarios. The
two most common ways to configure multiple data center clusters are:

• Two replicas in each data center: This configuration tolerates the failure of a single node per replication
group and still allows local reads at a consistency level of ONE.

• Three replicas in each data center: This configuration tolerates either the failure of one node per
replication group at a strong consistency level of LOCAL_QUORUM or multiple node failures per data
center using consistency level ONE.

Asymmetrical replication groupings are also possible. For example, you can have three replicas in one data
center to serve real-time application requests and use a single replica elsewhere for running analytics.

Replication strategy is defined per keyspace, and is set during keyspace creation. To set up a keyspace,
see creating a keyspace.

Partitioners
A partitioner determines how data is distributed across the nodes in the cluster (including replicas).

A partitioner determines how data is distributed across the nodes in the cluster (including replicas).
Basically, a partitioner is a function for deriving a token representing a row from its partition key, typically
by hashing. Each row of data is then distributed across the cluster by the value of the token.

/en/glossary/doc/glossary/gloss_data_center.html
/en/cql/3.3/cql/cql_using/useCreateKeyspace.html

Understanding the architecture

19

Both the Murmur3Partitioner and RandomPartitioner use tokens to help assign equal portions
of data to each node and evenly distribute data from all the tables throughout the ring or other grouping,
such as a keyspace. This is true even if the tables use different partition keys, such as usernames or
timestamps. Moreover, the read and write requests to the cluster are also evenly distributed and load
balancing is simplified because each part of the hash range receives an equal number of rows on average.
For more detailed information, see Consistent hashing on page 15.

The main difference between the two partitioners is how each generates the token hash values.
The RandomPartitioner uses a cryptographic hash that takes longer to generate than the
Murmur3Partitioner. Cassandra doesn't really need a cryptographic hash, so using the
Murmur3Partitioner results in a 3-5 times improvement in performance.

Cassandra offers the following partitioners that can be set in the cassandra.yaml file.

• Murmur3Partitioner (default): uniformly distributes data across the cluster based on MurmurHash
hash values.

• RandomPartitioner: uniformly distributes data across the cluster based on MD5 hash values.
• ByteOrderedPartitioner: keeps an ordered distribution of data lexically by key bytes

The Murmur3Partitioner is the default partitioning strategy for Cassandra 1.2 and later new clusters
and the right choice for new clusters in almost all cases. However, the partitioners are not compatible and
data partitioned with one partitioner cannot be easily converted to the other partitioner.

Note: If using virtual nodes (vnodes), you do not need to calculate the tokens. If not using vnodes,
you must calculate the tokens to assign to the initial_token parameter in the cassandra.yaml file. See
Generating tokens on page 113 and use the method for the type of partitioner you are using.

Related information
Install locations on page 75
Install location topics.

Murmur3Partitioner
The Murmur3Partitioner provides fast hashing and good performance.

The Murmur3Partitioner is the default partitioner. The Murmur3Partitioner provides faster hashing and
improved performance than the RandomPartitioner. The Murmur3Partitioner can be used with
vnodes. However, if you don't use vnodes, you must calculate the tokens, as described in Generating
tokens.

Use Murmur3Partitioner for new clusters; you cannot change the partitioner in existing clusters that
use a different partitioner. The Murmur3Partitioner uses the MurmurHash function. This hashing
function creates a 64-bit hash value of the partition key. The possible range of hash values is from -263 to
+263-1.

When using the Murmur3Partitioner, you can page through all rows using the token function in a CQL
query.

RandomPartitioner
The default partitioner prior to Cassandra 1.2.

The RandomPartitioner was the default partitioner prior to Cassandra 1.2. It is included for backwards
compatibility. The RandomPartitioner can be used with virtual nodes (vnodes). However, if you don't use
vnodes, you must calculate the tokens, as described in Generating tokens.The RandomPartitioner
distributes data evenly across the nodes using an MD5 hash value of the row key. The possible range of
hash values is from 0 to 2127 -1.

When using the RandomPartitioner, you can page through all rows using the token function in a CQL
query.

/en/glossary/doc/glossary/gloss_partition_key.html
/en/cql/3.3/cql/cql_using/usePaging.html
/en/cql/3.3/cql/cql_using/usePaging.html

Understanding the architecture

20

ByteOrderedPartitioner
Cassandra provides this partitioner for ordered partitioning. It is included for backwards compatibility.

Cassandra provides the ByteOrderedPartitioner for ordered partitioning. It is included for backwards
compatibility. This partitioner orders rows lexically by key bytes. You calculate tokens by looking at the
actual values of your partition key data and using a hexadecimal representation of the leading character(s)
in a key. For example, if you wanted to partition rows alphabetically, you could assign an A token using its
hexadecimal representation of 41.

Using the ordered partitioner allows ordered scans by primary key. This means you can scan rows as
though you were moving a cursor through a traditional index. For example, if your application has user
names as the partition key, you can scan rows for users whose names fall between Jake and Joe. This
type of query is not possible using randomly partitioned partition keys because the keys are stored in the
order of their MD5 hash (not sequentially).

Although having the capability to do range scans on rows sounds like a desirable feature of ordered
partitioners, there are ways to achieve the same functionality using table indexes.

Using an ordered partitioner is not recommended for the following reasons:

Difficult load balancing

More administrative overhead is required to load balance the cluster. An ordered partitioner requires
administrators to manually calculate partition ranges based on their estimates of the partition key distribution.
In practice, this requires actively moving node tokens around to accommodate the actual distribution of data
once it is loaded.

Sequential writes can cause hot spots

If your application tends to write or update a sequential block of rows at a time, then the writes are not be
distributed across the cluster; they all go to one node. This is frequently a problem for applications dealing
with timestamped data.

Uneven load balancing for multiple tables

If your application has multiple tables, chances are that those tables have different row keys and different
distributions of data. An ordered partitioner that is balanced for one table may cause hot spots and uneven
distribution for another table in the same cluster.

Snitches
A snitch determines which data centers and racks nodes belong to.

A snitch determines which data centers and racks nodes belong to. They inform Cassandra about the
network topology so that requests are routed efficiently and allows Cassandra to distribute replicas by
grouping machines into data centers and racks. Specifically, the replication strategy places the replicas
based on the information provided by the new snitch. All nodes must return to the same rack and data
center. Cassandra does its best not to have more than one replica on the same rack (which is not
necessarily a physical location).

Note: If you change snitches, you may need to perform additional steps because the snitch affects where
replicas are placed. See Switching snitches on page 130.

Dynamic snitching
Monitors the performance of reads from the various replicas and chooses the best replica based on this history.

By default, all snitches also use a dynamic snitch layer that monitors read latency and, when possible,
routes requests away from poorly-performing nodes. The dynamic snitch is enabled by default and is
recommended for use in most deployments. For information on how this works, see Dynamic snitching
in Cassandra: past, present, and future. Configure dynamic snitch thresholds for each node in the
cassandra.yaml configuration file.

For more information, see the properties listed under Failure detection and recovery on page 14.

/en/cql/3.3/cql/cql_using/useCreateTable.html
/en/glossary/doc/glossary/gloss_partition_range.html
http://www.datastax.com/dev/blog/dynamic-snitching-in-cassandra-past-present-and-future
http://www.datastax.com/dev/blog/dynamic-snitching-in-cassandra-past-present-and-future

Understanding the architecture

21

SimpleSnitch
The SimpleSnitch is used only for single-data center deployments.

The SimpleSnitch (default) is used only for single-data center deployments. It does not recognize data
center or rack information and can be used only for single-data center deployments or single-zone in public
clouds. It treats strategy order as proximity, which can improve cache locality when disabling read repair.

Using a SimpleSnitch, you define the keyspace to use SimpleStrategy and specify a replication factor.

RackInferringSnitch
Determines the location of nodes by rack and data center corresponding to the IP addresses.

The RackInferringSnitch determines the proximity of nodes by rack and data center, which are assumed to
correspond to the 3rd and 2nd octet of the node's IP address, respectively. This snitch is best used as an
example for writing a custom snitch class (unless this happens to match your deployment conventions).

PropertyFileSnitch
Determines the location of nodes by rack and data center.

This snitch determines proximity as determined by rack and data center. It uses the network details
located in the cassandra-topology.properties file. When using this snitch, you can define your data center
names to be whatever you want. Make sure that the data center names correlate to the name of your data
centers in the keyspace definition. Every node in the cluster should be described in the cassandra-
topology.properties file, and this file should be exactly the same on every node in the cluster.

Procedure
If you had non-uniform IPs and two physical data centers with two racks in each, and a third logical data
center for replicating analytics data, the cassandra-topology.properties file might look like this:

/en/cql/3.3/cql/cql_reference/cql_storage_options_c.html
/en/cql/3.3/cql/cql_reference/cql_storage_options_c.html

Understanding the architecture

22

Note: Data center and rack names are case-sensitive.

Data Center One

175.56.12.105=DC1:RAC1
175.50.13.200=DC1:RAC1
175.54.35.197=DC1:RAC1

120.53.24.101=DC1:RAC2
120.55.16.200=DC1:RAC2
120.57.102.103=DC1:RAC2

Data Center Two

110.56.12.120=DC2:RAC1
110.50.13.201=DC2:RAC1
110.54.35.184=DC2:RAC1

50.33.23.120=DC2:RAC2
50.45.14.220=DC2:RAC2
50.17.10.203=DC2:RAC2

Analytics Replication Group

172.106.12.120=DC3:RAC1
172.106.12.121=DC3:RAC1
172.106.12.122=DC3:RAC1

default for unknown nodes
default =DC3:RAC1

GossipingPropertyFileSnitch
Automatically updates all nodes using gossip when adding new nodes and is recommended for production.

This snitch is recommended for production. It uses rack and data center information for the local node
defined in the cassandra-rackdc.properties file and propagates this information to other nodes via gossip.

The cassandra-rackdc.properties file defines the default data center and rack used by this snitch:

dc=DC1
rack=RAC1

Note: Data center and rack names are case-sensitive.

To save bandwidth, add the prefer_local=true option. This option tells Cassandra to use the local IP
address when communication is not across different data centers.

To allow migration from the PropertyFileSnitch, the GossipingPropertyFileSnitch uses the cassandra-
topology.properties file when present.

The location of the cassandra-rackdc.properties file depends on the type of installation:

Package installations /etc/cassandra/cassandra-
rackdc.properties

Tarball installations install_location/conf/cassandra-
rackdc.properties

Understanding the architecture

23

Ec2Snitch
Use the Ec2Snitch with Amazon EC2 in a single region.

Use the Ec2Snitch for simple cluster deployments on Amazon EC2 where all nodes in the cluster are within
a single region.

In EC2 deployments , the region name is treated as the data center name and availability zones are
treated as racks within a data center. For example, if a node is in the us-east-1 region, us-east is the data
center name and 1 is the rack location. (Racks are important for distributing replicas, but not for data center
naming.) Because private IPs are used, this snitch does not work across multiple regions.

If you are using only a single data center, you do not need to specify any properties.

If you need multiple data centers, set the dc_suffix options in the cassandra-rackdc.properties file. Any
other lines are ignored.

For example, for each node within the us-east region, specify the data center in its cassandra-
rackdc.properties file:

Note: Data center names are case-sensitive.

• node0

dc_suffix=_1_cassandra

• node1

dc_suffix=_1_cassandra

• node2

dc_suffix=_1_cassandra

• node3

dc_suffix=_1_cassandra

• node4

dc_suffix=_1_analytics

• node5

dc_suffix=_1_search

This results in three data centers for the region:

us-east_1_cassandra
us-east_1_analytics
us-east_1_search

Note: The data center naming convention in this example is based on the workload. You can use other
conventions, such as DC1, DC2 or 100, 200.

Keyspace strategy options
When defining your keyspace strategy options, use the EC2 region name, such as ``us-east``, as your data
center name.

Ec2MultiRegionSnitch
Use the Ec2MultiRegionSnitch for deployments on Amazon EC2 where the cluster spans multiple regions.

Use the Ec2MultiRegionSnitch for deployments on Amazon EC2 where the cluster spans multiple regions.

You must configure settings in both the cassandra.yaml file and the property file (cassandra-
rackdc.properties) used by the Ec2MultiRegionSnitch.

/en/cql/3.3/cql/cql_reference/cql_storage_options_c.html

Understanding the architecture

24

Configuring cassandra.yaml for cross-region communication
The Ec2MultiRegionSnitch uses public IP designated in the broadcast_address to allow cross-region
connectivity. Configure each node as follows:

1. In the cassandra.yaml, set the listen_address to the private IP address of the node, and the
broadcast_address to the public IP address of the node.

This allows Cassandra nodes in one EC2 region to bind to nodes in another region, thus enabling
multiple data center support. For intra-region traffic, Cassandra switches to the private IP after
establishing a connection.

2. Set the addresses of the seed nodes in the cassandra.yaml file to that of the public IP. Private IP are
not routable between networks. For example:

seeds: 50.34.16.33, 60.247.70.52

To find the public IP address, from each of the seed nodes in EC2:

$ curl http://instance-data/latest/meta-data/public-ipv4

Note: Do not make all nodes seeds, see Internode communications (gossip) on page 14.
3. Be sure that the storage_port or ssl_storage_port is open on the public IP firewall.

Configuring the snitch for cross-region communication
In EC2 deployments, the region name is treated as the data center name and availability zones are treated
as racks within a data center. For example, if a node is in the us-east-1 region, us-east is the data center
name and 1 is the rack location. (Racks are important for distributing replicas, but not for data center
naming.)

For each node, specify its data center in the cassandra-rackdc.properties. The dc_suffix option defines the
data centers used by the snitch. Any other lines are ignored.

In the example below, there are two cassandra data centers and each data center is named for its
workload. The data center naming convention in this example is based on the workload. You can use other
conventions, such as DC1, DC2 or 100, 200. (Data center names are case-sensitive.)

Region: us-east Region: us-west

Node and data center:

• node0

dc_suffix=_1_cassandra

• node1

dc_suffix=_1_cassandra

• node2

dc_suffix=_2_cassandra

• node3

dc_suffix=_2_cassandra

• node4

dc_suffix=_1_analytics

• node5

dc_suffix=_1_search

This results in four us-east data centers:

us-east_1_cassandra

Node and data center:

• node0

dc_suffix=_1_cassandra

• node1

dc_suffix=_1_cassandra

• node2

dc_suffix=_2_cassandra

• node3

dc_suffix=_2_cassandra

• node4

dc_suffix=_1_analytics

• node5

dc_suffix=_1_search

This results in four us-west data centers:

us-west_1_cassandra

Understanding the architecture

25

Region: us-east Region: us-west

us-east_2_cassandra
us-east_1_analytics
us-east_1_search

us-west_2_cassandra
us-west_1_analytics
us-west_1_search

Keyspace strategy options
When defining your keyspace strategy options, use the EC2 region name, such as ``us-east``, as your data
center name.

Related information
Install locations on page 75
Install location topics.

GoogleCloudSnitch
Use the GoogleCloudSnitch for Cassandra deployments on Google Cloud Platform across one or more regions.

Use the GoogleCloudSnitch for Cassandra deployments on Google Cloud Platform across one or more
regions. The region is treated as a data center and the availability zones are treated as racks within the
data center. All communication occurs over private IP addresses within the same logical network.

The region name is treated as the data center name and zones are treated as racks within a data center.
For example, if a node is in the us-central1-a region, us-central1 is the data center name and a is the rack
location. (Racks are important for distributing replicas, but not for data center naming.) This snitch can
work across multiple regions without additional configuration.

If you are using only a single data center, you do not need to specify any properties.

If you need multiple data centers, set the dc_suffix options in the cassandra-rackdc.properties file. Any
other lines are ignored.

For example, for each node within the us-central1 region, specify the data center in its cassandra-
rackdc.properties file:

Note: Data center names are case-sensitive.

• node0

dc_suffix=_a_cassandra

• node1

dc_suffix=_a_cassandra

• node2

dc_suffix=_a_cassandra

• node3

dc_suffix=_a_cassandra

• node4

dc_suffix=_a_analytics

• node5

dc_suffix=_a_search

Note: Data center and rack names are case-sensitive.

CloudstackSnitch
Use the CloudstackSnitch for Apache Cloudstack environments.

Use the CloudstackSnitch for Apache Cloudstack environments. Because zone naming is free-form in
Apache Cloudstack, this snitch uses the widely-used <country> <location> <az> notation.

/en/cql/3.3/cql/cql_reference/cql_storage_options_c.html
https://cloud.google.com/
http://cloudstack.apache.org/

Database internals

26

Database internals
Topics about the Cassandra database.

Storage engine
A description about Cassandra's storage structure and engine.

Cassandra uses a storage structure similar to a Log-Structured Merge Tree, unlike a typical relational
database that uses a B-Tree. Cassandra avoids reading before writing. Read-before-write, especially
in a large distributed system, can produce stalls in read performance and other problems. For example,
two clients read at the same time, one overwrites the row to make update A, and the other overwrites the
row to make update B, removing update A. Reading before writing also corrupts caches and increases
IO requirements. To avoid a read-before-write condition, the storage engine groups inserts/updates to
be made, and sequentially writes only the updated parts of a row in append mode. After writing a row,
Cassandra never re-writes it in place, or searches for that particular row as part of a read.

A log-structured engine that avoids overwrites and uses sequential IO to update data is essential for writing
to solid-state disks (SSD) and hard disks (HDD) On HDD, writing randomly involves a higher number of
seek operations than sequential writing. The seek penalty incurred can be substantial. Using sequential IO
(thereby avoiding write amplification and disk failure), Cassandra accommodates inexpensive, consumer
SSDs extremely well.

How Cassandra reads and writes data
Understanding how Cassandra stores data.

To manage and access data in Cassandra, it is important to understand how Cassandra stores data. The
hinted handoff feature plus Cassandra conformance and non-conformance to the ACID (atomic, consistent,
isolated, durable) database properties are key concepts to understand reads and writes. In Cassandra,
consistency refers to how up-to-date and synchronized a row of data is on all of its replicas.

Client utilities and application programming interfaces (APIs) for developing applications for data storage
and retrieval are available.

How is data written?
Understand how Cassandra writes and stores data.

Cassandra processes data at several stages on the write path, starting with the immediate logging of a
write and ending in with a write of data to disk:

• Logging data in the commit log
• Writing data to the memtable
• Flushing data from the memtable
• Storing data on disk in SSTables

Logging writes and memtable storage
When a write occurs, Cassandra stores the data in a memory structure called memtable, and to provide
configurable durability, it also appends writes to the commit log on disk. The commit log receives every
write made to a Cassandra node, and these durable writes survive permanently even if power fails on
a node. The memtable is a write-back cache of data partitions that Cassandra looks up by key. The
memtable stores writes until reaching a configurable limit, and then is flushed.

https://en.wikipedia.org/wiki/Log-structured_merge-tree
https://en.wikipedia.org/wiki/B-tree
http://en.wikipedia.org/wiki/Write_amplification
/en/developer/driver-matrix/doc/common/driverMatrix.html

Database internals

27

Flushing data from the memtable
To flush the data, Cassandra writes the data to disk sequentially. A partition index is also created on the
disk that maps the tokens to a location on disk. When the memtable content exceeds the configurable
threshold or the commitlog space exceeds the commitlog_total_space_in_mb, the memtable is put in a
queue that is flushed to disk. The queue can be configured with the memtable_heap_space_in_mb or
memtable_offheap_space_in_mb setting in the cassandra.yaml file. If the data to be flushed exceeds the
memtable_cleanup_threshold, Cassandra blocks writes until the next flush succeeds. You can manually
flush a table using nodetool flush. To reduce the commit log replay time, the recommended best practice
is to flush the memtable before you restart the nodes. If a node stops working, replaying the commit log
restores to the memtable the writes that were there before it stopped.

Data in the commit log is purged after its corresponding data in the memtable is flushed to an SSTable on
disk.

Storing data on disk in SSTables
Memtables and SSTables are maintained per table. The commit log is shared among tables. SSTables are
immutable, not written to again after the memtable is flushed. Consequently, a partition is typically stored
across multiple SSTable files. A number of other SSTable structures exist to assist read operations:

For each SSTable, Cassandra creates these structures:

• Partition index

A list of partition keys and the start position of rows in the data file written on disk
• Partition summary

A sample of the partition index stored in memory
• Bloom filter

A structure stored in memory that checks if row data exists in the memtable before accessing SSTables
on disk

The SSTables are files stored on disk. The naming convention for SSTable files has changed with
Cassandra 2.2 and later to shorten the file path. The data files are stored in a data directory that varies
with installation. For each keyspace, a directory within the data directory stores each table. For example,
/data/data/ks1/cf1-5be396077b811e3a3ab9dc4b9ac088d/la-1-big-Data.db represents a
data file. ks1 represents the keyspace name to distinguish the keyspace for streaming or bulk loading data.
A hexadecimal string, 5be396077b811e3a3ab9dc4b9ac088d in this example, is appended to table names
to represent unique table IDs.

/en/glossary/doc/glossary/gloss_primary_index.html
/en/glossary/doc/glossary/gloss_index_summary.html
/en/glossary/doc/glossary/gloss_bloom_filter.html

Database internals

28

Cassandra creates a subdirectory for each table, which allows you to symlink a table to a chosen physical
drive or data volume. This provides the capability to move very active tables to faster media, such as SSDs
for better performance, and also divides tables across all attached storage devices for better I/O balance at
the storage layer.

How is data maintained?
Cassandra processes data at several stages on the write path. Compaction to maintain healthy SSTables is the last step in the write path process.

Cassandra maintains data on disk by consolidating SSTables. SSTables are immutable and accumulate on
disk and must periodically be merged using compaction.

Compaction
Periodic compaction is essential to a healthy Cassandra database because Cassandra does not insert/
update in place. As inserts/updates occur, instead of overwriting the rows, Cassandra writes a new
timestamped version of the inserted or updated data in another SSTable. Cassandra also does not
delete in place because SSTables are immutable. Instead, Cassandra marks data to be deleted using a
tombstone. Tombstones exist for a configured time period defined by the gc_grace_seconds value set on
the table.

Over time, many versions of a row might exist in different SSTables. Each version has a different set of
columns stored. As SSTables accumulate, more and more SSTables must be read in order to retrieve an
entire row of data.

Compaction merges the data in each SSTable by partition key, selecting the latest data for storage based
on its timestamp. Because rows are sorted by partition key within each SSTable, the merge process does
not use random I/O and is performant. After evicting tombstones and removing deleted data, columns, and
rows, the compaction process consolidates SSTables into a new single SSTable file. The old SSTable files
are deleted as soon as any pending reads finish using the files.

/en/glossary/doc/glossary/gloss_tombstone.html
/en/cql/3.3/cql/cql_reference/tabProp.html?scroll=tabProp__tabProp-gc_grace_sec

Database internals

29

During compaction, there is a temporary spike in disk space usage and disk I/O because the old and
new SSTables co-exist. Disk space occupied by old SSTables becomes available for reuse when the
new SSTable is ready. Cassandra 2.1 and later improves read performance after compaction because of
incremental replacement of compacted SSTables. Instead of waiting for the entire compaction to finish and
then throwing away the old SSTable, Cassandra can read data directly from the new SSTable even before
it finishes writing.

As data is written to the new SSTable and reads are directed to it, the corresponding data in the old
SSTables is no longer accessed and is evicted from the page cache. Thus begins an incremental process
of caching the new SSTable, while directing reads away from the old one, thus avoiding the dramatic
cache miss. Cassandra provides predictable high performance even under heavy load.

Types of compaction
Different compaction strategies have strengths and weaknesses. Understanding how each type works is
vital to making the right choice for your application workload. SizeTieredCompactionStrategy (STCS) is
recommended for write-intensive workloads. LeveledCompactionStrategy (LCS) is recommended for read-
intensive workloads. DateTieredCompactionStrategy (DTCS) is recommended for time series data and
expiring TTL data.

SizeTieredCompactionStrategy (STCS)

Recommended for write-intensive workloads.

Pros: Compacts write-intensive workload very well.

Cons: Might hold onto stale data too long. Amount of memory needed increases over time.

The SizeTieredCompactionStrategy (STCS) initiates compaction when a set number (default is 4) of similar-
sized SSTables have accumulated. Compaction merges the SSTables to create one larger SSTable. As
larger SSTables accumulate, the same process occurs, merging the larger SSTables into an even larger
SSTable. At any given time, several SSTables of varying sizes are present. While this strategy works quite
well to compact a write-intensive workload, when reads are needed, several SSTables still must be retrieved
to find all the data for a row. There is no guarantee that a row's data will be restricted to a small number
of SSTables. Also, predicting the eviction of deleted data is uneven, because SSTable size is the trigger
for compaction, and SSTables might not grow quickly enough to merge and evict old data. As the largest
SSTables grow in size, the amount of disk space needed for compaction to hold both the new and old
SSTables simultaneously can outstrip a typical amount of disk space on a node.

LeveledCompactionStrategy (LCS)

Recommended for read-intensive workloads.

Pros: Disk requirements are simple to predict. Read operations more predictable in latency. Stale data is
evicted more frequently.

Cons: Much higher I/O utilization that can impact operation latency.

The LeveledCompactionStrategy (LCS) is intended to alleviate some of the read operation issues with the
SizeTieredCompactionStrategy (STCS). As SSTables reach a certain small fixed size (default is 5MB),
they are written into the first level, L0, and also merged into the first level, L1. In each level starting
with L1, all SSTables are guaranteed to have non-overlapping data. Because no data is overlapping, the
LeveledCompactionStrategy sometimes splits SSTables as well as merging them, to keep the files similarly
sized – that is, using the table setting sstable_size_in_mb (unless there is a partition that is larger than that).
Each level is 10X the size of the last level, so level L1 has 10X as many SSTables as L0, and level L2 has
100X. Level L2 will start filling when L1 has been filled. Because a level contains no overlapping data, a
read can be accomplished quite efficiently with very few SSTables retrieved. For many read operations, only
one or two SSTables are read. In fact, 90% of all reads are satisfied from reading one SSTable. The worst
case: many SSTables at L0 that must all be read. Less disk space is required for compacting using this
strategy, with 10X the fixed size of the SSTable required. Obsolete data is evicted more often, so deleted
data occupies a much smaller portion of the SSTables on disk. However, the compaction operations for
the LeveledCompactionStrategy (LCS) take place more often and place more I/O burden on the node. For

/en/cql/3.3/cql/cql_reference/compactSubprop.html?scroll=compactSubprop__compactionSubpropertiesLCS

Database internals

30

write-intensive workloads, the payoff using this strategy is generally not worth the performance loss to I/O
operations. In Cassandra 2.2 and later, performance improvements have been implemented that bypass
compaction operations when bootstrapping a new node using LCS into a cluster. The original data is directly
moved to the correct level because there is no existing data, so no partition overlap per level is present.
For more information, see Apache Cassandra 2.2 - Bootstrapping Performance Improvements for Leveled
Compaction.

DateTieredCompactionStrategy (DTCS)

Recommended for time series and expiring TTL workloads.

Pros: Specifically designed for time series data.

Cons: Out of order data injections can cause errors. Read repair must be turned off for DTCS, and the
TIMESTAMP options must not be used with the BATCH, DELETE, INSERT and UPDATE CQL commands.

The DateTieredCompactionStrategy (DTCS) acts similarly to STCS, but instead of compacting based on
SSTable size, DTCS compacts based on SSTable age. Making the time window configurable ensures that
new and old data will not be mixed in merged SSTables. In fact, using Time-To-Live (TTL) timestamps,
DateTieredCompactionStrategy (DTCS) often ejects whole SSTables for old data that has expired. This
strategy often results in similar-sized SSTables, too, if time series data is ingested at a steady rate. SSTables
are merged when a certain minimum threshold of number of SSTables is reached within a configurable
time interval. SSTables will still be merged into larger tables, like in size tiered compaction, if the required
number of SSTables falls within the time interval. However, SSTables are not compacted after reaching
a configurable age, reducing the number of times data will be rewritten. SSTables compacted using this
strategy can be read, especially for queries that ask for the "last hour's worth of data", very efficiently.
One issue that can cause difficulty with this strategy is out-of-order writing, where a timestamped record
is written for a past timestamp, for example. Read repairs can inject an out-of-order timestamping, so turn
off read repairs when using the DateTieredCompactionStrategy. For more information about compaction
strategies, see When to Use Leveled Compaction and Leveled Compaction in Apache Cassandra. For
DateTieredCompactionStrategy, see DateTieredCompactionStrategy: Notes from the Field, Date-Tiered
Compaction in Cassandra or DateTieredCompactionStrategy: Compaction for Time Series Data.

Starting compaction
You can configure these types of compaction to run periodically:

• SizeTieredCompactionStrategy

For write-intensive workloads
• LeveledCompactionStrategy

For read-intensive workloads
• DateTieredCompactionStrategy

For time series data and expiring (TTL) data

You can manually start compaction using the nodetool compact command.

How is data updated?
A brief description of the write path of an update.

Inserting a duplicate primary key is treated as an upsert. An upsert writes a new record to the database
if the data didn't exist before. If the data for that primary key already exists, a new record is written with
a more recent timestamp. If the data is retrieved during a read, only the most recent is retrieved; older
timestamped data will be marked for deletion. The net effect is similar to swapping overwriting the old value
with the new value, even though Cassandra does not overwrite data. Eventually, the updates are streamed
to disk using sequential I/O and stored in a new SSTable. During an update, Cassandra timestamps and
writes columns to disk using the write path. If a user writes the same data several times, only the latest
version is stored in the memtable and flushed to disk, as described in the Compaction section.

http://www.datastax.com/dev/blog/bootstrapping-performance-improvements-for-leveled-compaction
http://www.datastax.com/dev/blog/bootstrapping-performance-improvements-for-leveled-compaction
http://www.datastax.com/dev/blog/when-to-use-leveled-compaction
http://www.datastax.com/dev/blog/leveled-compaction-in-apache-cassandra
http://www.datastax.com/dev/blog/dtcs-notes-from-the-field
https://labs.spotify.com/2014/12/18/date-tiered-compaction/
https://labs.spotify.com/2014/12/18/date-tiered-compaction/
http://www.datastax.com/dev/blog/datetieredcompactionstrategy
/en/cql/3.3/cql/cql_reference/tabProp.html?scroll=tabProp__moreCompaction
/en/cql/3.3/cql/cql_reference/tabProp.html?scroll=tabProp__moreCompaction
/en/cql/3.3/cql/cql_reference/tabProp.html?scroll=tabProp__moreCompaction
http://planetcassandra.org/blog/getting-started-with-time-series-data-modeling/
/en/cql/3.3/cql/cql_using/useTTL.html
/en/glossary/doc/glossary/gloss_upsert.html

Database internals

31

Inserting a duplicate primary key is treated as an upsert. An upsert writes a new record to the database
if the data didn't exist before. If the data for that primary key already exists, a new record is written with
a more recent timestamp. If the data is retrieved during a read, only the most recent is retrieved; older
timestamped data will be marked for deletion. The net effect is similar to swapping overwriting the old value
with the new value, even though Cassandra does not overwrite data. Eventually, the updates are streamed
to disk using sequential I/O and stored in a new SSTable. During an update, Cassandra timestamps
and writes columns to disk using the write path. If multiple versions of the column exist in the memtable,
Cassandra flushes only the newer version of the column to disk, as described in the Compaction section.

How is data deleted?
How Cassandra deletes data and why deleted data can reappear.

Cassandra deletes data differently than a relational database does. A relational database might spend
time scanning through data looking for expired data and throwing it away or an administrator might have
to partition expired data by month. Data in a Cassandra column can have an optional expiration date
called TTL (time to live). Use CQL to set the TTL in seconds for data. Cassandra marks TTL data with a
tombstone after the requested amount of time has expired. A tombstone exists for gc_grace_seconds.
After data is marked with a tombstone, the data is automatically removed during normal compaction.

Facts about deleted data to consider are:

• Cassandra does not immediately remove data marked for deletion from disk. The deletion occurs during
compaction.

• If you use the SizeTieredCompactionStrategy or DateTieredCompactionStrategy, you can drop
data immediately by manually starting the compaction process. Before doing so, understand the
disadvantages of the process. If you force compaction, one potentially very large SSTable is created
from all the data. Another compaction will not be triggered for a long time. The data in the SSTable
created during the forced compaction can grow very stale during this long period of non-compaction.

• Deleted data can reappear if you do not do repair routinely.

Marking data with a tombstone signals Cassandra to retry sending a delete request to a replica that was
down at the time of delete. If the replica comes back up within the grace period of time, it eventually
receives the delete request. However, if a node is down longer than the grace period, the node can
miss the delete because the tombstone disappears after gc_grace_seconds. Cassandra always
attempts to replay missed updates when the node comes back up again. After a failure, it is a best
practice to run node repair to repair inconsistencies across all of the replicas when bringing a node back
into the cluster. If the node doesn't come back within gc_grace_seconds, remove the node, delete the
node's data, and bootstrap it again.

How are indexes stored and updated?
A brief description of how Cassandra stores and distributes indexes.

Secondary indexes are used to filter a table for data stored in non-primary key columns. For example, a
table storing user IDs, names, and ages using the user ID as the primary key might have a secondary
index on the age to allow queries by age. Querying to match a non-primary key column is an anti-pattern,
as querying should always result in a continuous slice of data retrieved from the table. Non-primary keys
play no role in ordering the data in storage, subsequently querying for a particular value of a non-primary
key column results in scanning all partitions. Scanning all partitions generally results in a prohibitive read
latency, and is not allowed.

Secondary indexes can be built for a column in a table. These indexes are stored locally on each node in a
hidden table and built in a background process. If a secondary index is used in a query that is not restricted
to a particular partition key, the query will have prohibitive read latency because all nodes will be queried.
A query with these parameters is only allowed if the query option ALLOW FILTERING is used. This option
is not appropriate for production environments. If a query includes both a partition key condition and a
secondary index column condition, the query will be successful because the query can be directed to a
single node partition.

This technique, however, does not guarantee trouble-free indexing, so know when and when not to use an
index.

/en/glossary/doc/glossary/gloss_upsert.html
/en/cql/3.3/cql/cql_using/useTTL.html
/en/glossary/doc/glossary/gloss_tombstone.html
/en/cql/3.3/cql/cql_reference/tabProp.html
/en/cql/3.3/cql/cql_using/useWhenIndex.html
/en/cql/3.3/cql/cql_using/useWhenIndex.html

Database internals

32

As with relational databases, keeping indexes up to date uses processing time and resources, so
unnecessary indexes should be avoided. When a column is updated, the index is updated as well. If the
old column value still exists in the memtable, which typically occurs when updating a small set of rows
repeatedly, Cassandra removes the corresponding obsolete index entry; otherwise, the old entry remains
to be purged by compaction. If a read sees a stale index entry before compaction purges it, the reader
thread invalidates it.

How is data read?
How Cassandra combines results from the active memtable and potentially multiple SSTables to satisfy a read.

To satisfy a read, Cassandra must combine results from the active memtable and potentially multiple
SSTables.

Cassandra processes data at several stages on the read path to discover where the data is stored, starting
with the data in the memtable and finishing with SSTables:

• Check the memtable
• Check row cache, if enabled
• Checks Bloom filter
• Checks partition key cache, if enabled
• Goes directly to the compression offset map if a partition key is found in the partition key cache, or

checks the partition summary if not

If the partition summary is checked, then the partition index is accessed
• Locates the data on disk using the compression offset map
• Fetches the data from the SSTable on disk

Figure: Read request flow

Figure: Row cache and Key cache request flow

Database internals

33

Memtable
If the memtable has the desired partition data, then the data is read and then merged with the data from
the SSTables. The SSTable data is accessed as shown in the following steps.

Row Cache
Typical of any database, reads are fastest when the most in-demand data fits into memory. The row cache,
if enabled, stores a subset of the partition data stored on disk in the SSTables in memory. In Cassandra
2.2 and later, it is stored in fully off-heap memory using a new implementation that relieves garbage
collection pressure in the JVM. The subset stored in the row cache use a configurable amount of memory
for a specified period of time. A useful feature is that the number of rows to be stored in row cache can be
configured, making a "Last 10 Items" query very fast to read. If row cache is enabled, desired partition data
is read from the row cache, potentially saving two seeks to disk for the data. The rows stored in row cache
are frequently accessed rows that are merged and saved to the row cache from the SSTables as they are
accessed. After storage, the data is available to later queries. The row cache is not write-through. If a write
comes in for the row, the cache for that row is invalidated and is not cached again until the row is read. If
the desired partition data is not found in the row cache, then the Bloom filter is checked.

Note: The row cache must store an entire internal row of data in memory, so if the partition data is larger
than the memory allocated for row cache, the row will not cache. The row cache uses LRU (least-recently-
used) eviction to reclaim memory when the cache has filled up.

Note: One disadvantage of the row cache: if a partition is updated, the entire partition is evicted from the
cache.

The row cache size is configurable, as is the number of rows to store.

Bloom Filter
First, Cassandra checks the Bloom filter to discover which SSTables are likely to have the request partition
data. The Bloom filter is stored in off-heap memory. Each SSTable has a Bloom filter associated with it.
A Bloom filter can establish that a SSTable does not contain certain partition data. A Bloom filter can also
find the likelihood that partition data is stored in a SSTable. It speeds up the process of partition key lookup
by narrowing the pool of keys. However, because the Bloom filter is a probabilistic function, it can result in

/en/glossary/doc/glossary/gloss_bloom_filter.html

Database internals

34

false positives. Not all SSTables identified by the Bloom filter will have data. If the Bloom filter does not rule
out an SSTable, Cassandra checks the partition key cache

The Bloom filter grows to approximately 1-2 GB per billion partitions. In the extreme case, you can have
one partition per row, so you can easily have billions of these entries on a single machine. The Bloom filter
is tunable if you want to trade memory for performance.

Partition Key Cache
The partition key cache, if enabled, stores a cache of the partition index in off-heap memory. The key
cache uses a small, configurable amount of memory, and each "hit" saves one seek during the read
operation. If a partition key is found in the key cache can go directly to the compression offset map to find
the compressed block on disk that has the data. The partition key cache functions better once warmed,
and can greatly improve over the performance of cold-start reads, where the key cache doesn't yet have
or has purged the keys stored in the key cache. It is possible to limit the number of partition keys saved in
the key cache, if memory is very limited on a node. If a partition key is not found in the key cache, then the
partition summary is searched.

The partition key cache size is configurable, as are the number of partition keys to store in the key cache.

Partition Summary
The partition summary is an off-heap in-memory structure that stores a sampling of the partition index. A
partition index contains all partition keys, whereas a partition summary samples every X keys, and maps
the location of every Xth key's location in the index file. For example, if the partition summary is set to
sample every 20 keys, it will store the location of the first key as the beginning of the SSTable file, the 20th
key and its location in the file, and so on. While not as exact as knowing the location of the partition key,
the partition summary can shorten the scan to find the partition data location. After finding the range of
possible partition key values, the partition index is searched.

By configuring the sample frequency, you can trade memory for performance, as the more granularity the
partition summary has, the more memory it will use. The sample frequency is changed using the index
interval property in the table definition.

Partition Index
The partition index resides on disk and stores an index of all partition keys mapped to their offset. If the
partition summary has been checked for a range of partition keys, now the search passes to the partition
index to seek the location of the desired partition key. A single seek and sequential read of the columns
over the passed-in range is performed. Using the information found, the partition index now goes to the
compression offset map to find the compressed block on disk that has the data. If the partition index must
be searched, two seeks to disk will be required to find the desired data.

Compression offset map
The compression offset map stores pointers to the exact location on disk that the desired partition data will
be found. It is stored in off-heap memory and is accessed by either the partition key cache or the partition
index. The desired compressed partition data is fetched from the correct SSTable(s) once the compression
offset map identifies the disk location. The query receives the result set.

Note: Within a partition, all rows are not equally expensive to query. The very beginning of the partition
(the first rows, clustered by your key definition) is slightly less expensive to query because there is no need
to consult the partition-level index.

The compression offset map grows to 1-3 GB per terabyte compressed. The more you compress data, the
greater number of compressed blocks you have and the larger the compression offset table. Compression
is enabled by default even though going through the compression offset map consumes CPU resources.
Having compression enabled makes the page cache more effective, and typically, almost always pays off.

/en/glossary/doc/glossary/gloss_index_summary.html
/en/glossary/doc/glossary/gloss_primary_index.html
http://docs.datastax.com/en/cql/3.3/cql/cql_reference/tabProp.html
http://docs.datastax.com/en/cql/3.3/cql/cql_reference/tabProp.html

Database internals

35

How do write patterns affect reads?
A brief description about how write patterns affect reads.

It is important to consider how the write operations will affect the read operations in the cluster. The type
of compaction strategy Cassandra performs on your data is configurable and can significantly affect
read performance. Using the SizeTieredCompactionStrategy or DateTieredCompactionStrategy tends to
cause data fragmentation when rows are frequently updated. The LeveledCompactionStrategy (LCS) was
designed to prevent fragmentation under this condition.

Data consistency
Topics about how up-to-date and synchronized a row of data is on all replicas.

How are consistent read and write operations handled?
An introduction to how Cassandra extends eventual consistency with tunable consistency to vary the consistency of data read and written.

Consistency refers to how up-to-date and synchronized all replicas of a row of Cassandra data are at any
given moment. Ongoing repair operations in Cassandra ensure that all replicas of a row will eventually
be consistent. Repairs work to decrease the variability in replica data, but constant data traffic through
a widely distributed system can lead to inconsistency (stale data) at any given time. Cassandra is a AP
system according to the CAP theorem, providing high availability and partition tolerance. Cassandra
does have flexibility in its configuration, though, and can perform more like a CP (consistent and partition
tolerant) system according to the CAP theorem, depending on the application requirements. Two
consistency features are tunable consistency and linearizable consistency.

Tunable consistency
To ensure that Cassandra can provide the proper levels of consistency for its reads and writes, Cassandra
extends the concept of eventual consistency by offering tunable consistency. You can tune Cassandra's
consistency level per-operation, or set it globally for a cluster or data center. You can vary the consistency
for individual read or write operations so that the data returned is more or less consistent, as required by
the client application. This allows you to make Cassandra act more like a CP (consistent and partition
tolerant) or AP (highly available and partition tolerant) system according to the CAP theorem, depending on
the application requirements.

Note: It is not possible to "tune" Cassandra into a completely CA system. See You Can't Sacrifice
Partition Tolerance for a more detailed discussion.

There is a tradeoff between operation latency and consistency: higher consistency incurs higher latency,
lower consistency permits lower latency. You can control latency by tuning consistency.

The consistency level determines the number of replicas that need to acknowledge the read or write
operation success to the client application. For read operations, the read consistency level specifies
how many replicas must respond to a read request before returning data to the client application. If a
read operation reveals inconsistency among replicas, Cassandra initiates a read repair to update the
inconsistent data.

For write operations, the write consistency level specified how many replicas must respond to a write
request before the write is considered successful. Even at low consistency levels, Cassandra writes to
all replicas of the partition key, including replicas in other data centers. The write consistency level just
specifies when the coordinator can report to the client application that the write operation is considered
completed. Write operations will use hinted handoffs to ensure the writes are completed when replicas are
down or otherwise not responsive to the write request.

Typically, a client specifies a consistency level that is less than the replication factor specified by
the keyspace. Another common practice is to write at a consistency level of QUORUM and read at
a consistency level of QUORUM. The choices made depend on the client application's needs, and
Cassandra provides maximum flexibility for application design.

https://en.wikipedia.org/wiki/CAP_theorem
http://en.wikipedia.org/wiki/Eventual_consistency
https://codahale.com/you-cant-sacrifice-partition-tolerance/
https://codahale.com/you-cant-sacrifice-partition-tolerance/

Database internals

36

Linearizable consistency
In ACID terms, linearizable consistency (or serial consistency) is a serial (immediate) isolation level
for lightweight transactions. Cassandra does not use employ traditional mechanisms like locking or
transactional dependencies when concurrently updating multiple rows or tables.

However, some operations must be performed in sequence and not interrupted by other operations. For
example, duplications or overwrites in user account creation can have serious consequences. Situations
like race conditions (two clients updating the same record) can introduce inconsistency across replicas.
Writing with high consistency does nothing to reduce this. You can apply linearizable consistency to a
unique identifier, like the userID or email address, although is not required for all aspects of the user's
account. Serial operations for these elements can be implemented in Cassandra with the Paxos consensus
protocol, which uses a quorum-based algorithm. Lightweight transactions can be implemented without the
need for a master database or two-phase commit process.

Lightweight transaction write operations use the serial consistency level for Paxos consensus and the
regular consistency level for the write to the table. For more information, see Lightweight Transactions.

Calculating consistency
Reliability of read and write operations depends on the consistency used to verify the operation. Strong
consistency can be guaranteed when the following condition is true:

R + W > N

where

• R is the consistency level of read operations
• W is the consistency level of write operations
• N is the number of replicas

If the replication factor is 3, then the consistency level of the reads and writes combined must be at least
4. For example, read operations using 2 out of 3 replicas to verify the value, and write operations using 2
out of 3 replicas to verify the value will result in strong consistency. If fast write operations are required, but
strong consistency is still desired, the write consistency level is lowered to 1, but now read operations have
to verify a matched value on all 3 replicas. Writes will be fast, but reads will be slower.

Eventual consistency occurs if the following condition is true:

R + W =< N

where

• R is the consistency level of read operations
• W is the consistency level of write operations
• N is the number of replicas

If the replication factor is 3, then the consistency level of the reads and writes combined are 3 or less. For
example, read operations using QUORUM (2 out of 3 replicas) to verify the value, and write operations
using ONE (1 out of 3 replicas) to do fast writes will result in eventual consistency. All replicas will receive
the data, but read operations are more vulnerable to selecting data before all replicas write the data.

Additional consistency examples:
• You do a write at ONE, the replica crashes one second later. The other messages are not delivered.

The data is lost.
• You do a write at ONE, and the operation times out. Future reads can return the old or the new value.

You will not know the data is incorrect.
• You do a write at ONE, and one of the other replicas is down. The node comes back online. The

application will get old data from that node until the node gets the correct data or a read repair occurs.

Database internals

37

• You do a write at QUORUM, and then a read at QUORUM. One of the replicas dies. You will always get
the correct data.

How are Cassandra transactions different from RDBMS
transactions?

Cassandra does not use RDBMS ACID transactions with rollback or locking mechanisms, but instead
offers atomic, isolated, and durable transactions with eventual/tunable consistency that lets the user decide
how strong or eventual they want each transaction’s consistency to be.

As a non-relational database, Cassandra does not support joins or foreign keys, and consequently does
not offer consistency in the ACID sense. For example, when moving money from account A to B the total
in the accounts does not change. Cassandra supports atomicity and isolation at the row-level, but trades
transactional isolation and atomicity for high availability and fast write performance. Cassandra writes are
durable.

Atomicity
In Cassandra, a write operation is atomic at the partition level, meaning the insertions or updates of two or
more rows in the same partition are treated as one write operation. A delete operation is also atomic at the
partition level.

For example, if using a write consistency level of QUORUM with a replication factor of 3, Cassandra will
replicate the write to all nodes in the cluster and wait for acknowledgement from two nodes. If the write fails
on one of the nodes but succeeds on the other, Cassandra reports a failure to replicate the write on that
node. However, the replicated write that succeeds on the other node is not automatically rolled back.

Cassandra uses client-side timestamps to determine the most recent update to a column. The latest
timestamp always wins when requesting data, so if multiple client sessions update the same columns in a
row concurrently, the most recent update is the one seen by readers.

Isolation
Cassandra write and delete operations are performed with full row-level isolation. This means that a write
to a row within a single partition on a single node is only visible to the client performing the operation –
the operation is restricted to this scope until it is complete. All updates in a batch operation belonging to
a given partition key have the same restriction. However, a Batch operation is not isolated if it includes
changes to more than one partition.

Durability
Writes in Cassandra are durable. All writes to a replica node are recorded both in memory and in a commit
log on disk before they are acknowledged as a success. If a crash or server failure occurs before the
memtables are flushed to disk, the commit log is replayed on restart to recover any lost writes. In addition
to the local durability (data immediately written to disk), the replication of data on other nodes strengthens
durability.

You can manage the local durability to suit your needs for consistency using the commitlog_sync option in
the cassandra.yaml file. Set the option to either periodic or batch.

The location of the cassandra.yaml file depends on the type of installation:

Package installations /etc/cassandra/cassandra.yaml

Tarball installations install_location/resources/cassandra/
conf/cassandra.yaml

/en/cassandra/3.x/cassandra/configuration/configCassandra_yaml.html

Database internals

38

How do I accomplish lightweight transactions with linearizable
consistency?

A description about lightweight transactions and when to use them.

Distributed databases present a unique challenge when data must be strictly read and written in sequential
order. In transactions for creating user accounts or transferring money, race conditions between two
potential writes must be regulated to ensure that one write precedes the other. In Cassandra, the Paxos
consensus protocol is used to implement lightweight transactions that can handle concurrent operations.

The Paxos protocol is implemented in Cassandra with linearizable consistency, that is sequential
consistency with real-time constraints. Linearizable consistency ensures transaction isolation at a level
similar to the serializable level offered by RDBMSs. This type of transaction is known as compare and set
(CAS); replica data is compared and any data found to be out of date is set to the most consistent value. In
Cassandra, the process combines the Paxos protocol with normal read and write operations to accomplish
the compare and set operation.

The Paxos protocol is implemented as a series of phases:

1. Prepare/Promise
2. Read/Results
3. Propose/Accept
4. Commit/Acknowledge

These phases are actions that take place between a proposer and acceptors. Any node can be a proposer,
and multiple proposers can be operating at the same time. For simplicity, this description will use only one
proposer. A proposer prepares by sending a message to a quorum of acceptors that includes a proposal
number. Each acceptor promises to accept the proposal if the proposal number is the highest they have
received. Once the proposer receives a quorum of acceptors who promise, the value for the proposal
is read from each acceptor and sent back to the proposer. The proposer figures out which value to use
and proposes the value to a quorum of the acceptors along with the proposal number. Each acceptor
accepts the proposal with a certain number if and only if the acceptor is not already promised to a proposal
with a high number. The value is committed and acknowledged as a Cassandra write operation if all the
conditions are met.

These four phases require four round trips between a node proposing a lightweight transaction and any
cluster replicas involved in the transaction. Performance will be affected. Consequently, reserve lightweight
transactions for situations where concurrency must be considered.

Lightweight transactions will block other lightweight transactions from occurring, but will not stop normal
read and write operations from occurring. Lightweight transactions use a timestamping mechanism
different than for normal operations and mixing LWTs and normal operations can result in errors. If
lightweight transactions are used to write to a row within a partition, only lightweight transactions for both
read and write operations should be used. This caution applies to all operations, whether individual or
batched. For example, the following series of operations can fail:

DELETE ...
INSERT IF NOT EXISTS
SELECT

The following series of operations will work:

DELETE ... IF EXISTS
INSERT IF NOT EXISTS
SELECT

Database internals

39

Reads with linearizable consistency
A SERIAL consistency level allows reading the current (and possibly uncommitted) state of data without
proposing a new addition or update. If a SERIAL read finds an uncommitted transaction in progress,
Cassandra performs a read repair as part of the commit.

How do I discover consistency level performance?
Use tracing to discover what the consistency level is currently set to, and how it affects performance.

Before changing the consistency level on read and write operations, discover how your CQL commands
are performing using the TRACING command in CQL. Using cqlsh, you can vary the consistency level
and trace read and write operations. The tracing output includes latency times for the operations.

The CQL documentation includes a tutorial comparing consistency levels.

How is the consistency level configured?
Consistency levels in Cassandra can be configured to manage availability versus data accuracy.

Consistency levels in Cassandra can be configured to manage availability versus data accuracy. You
can configure consistency on a cluster, data center, or per individual read or write operation. Consistency
among participating nodes can be set globally and also controlled on a per-operation basis. Within
cqlsh, use CONSISTENCY, to set the consistency level for all queries in the current cqlsh session. For
programming client applications, set the consistency level using an appropriate driver. For example, using
the Java driver, call QueryBuilder.insertInto with setConsistencyLevel to set a per-insert
consistency level.

The consistency level defaults to ONE for all write and read operations.

Write consistency levels
This table describes the write consistency levels in strongest-to-weakest order.

Table: Write Consistency Levels

Level Description Usage

ALL A write must be written to the commit log
and memtable on all replica nodes in the
cluster for that partition.

Provides the highest consistency and the
lowest availability of any other level.

EACH_QUORUMStrong consistency. A write must be
written to the commit log and memtable
on a quorum of replica nodes in
eachdatacenters.

Used in multiple data center clusters to
strictly maintain consistency at the same
level in each data center. For example,
choose this level if you want a read to
fail when a data center is down and the
QUORUM cannot be reached on that data
center.

QUORUM A write must be written to the commit log
and memtable on a quorum of replica nodes
across all data centers.

Used in either single or multiple data center
clusters to maintain strong consistency
across the cluster. Use if you can tolerate
some level of failure.

LOCAL_QUORUMStrong consistency. A write must be written
to the commit log and memtable on a
quorum of replica nodes in the same data
center as the coordinator. Avoids latency of
inter-data center communication.

Used in multiple data center clusters with
a rack-aware replica placement strategy,
such as NetworkTopologyStrategy, and a
properly configured snitch. Use to maintain
consistency locally (within the single data
center). Can be used with SimpleStrategy.

/en/glossary/doc/glossary/gloss_read_repair.html
/en/cql/3.3/cql/cql_using/useTracingTrace.html
/en/cql/3.3/cql/cql_reference/consistency_r.html
/en/glossary/doc/glossary/gloss_data_center.html
/en/glossary/doc/glossary/gloss_coordinator_node.html

Database internals

40

Level Description Usage

ONE A write must be written to the commit log
and memtable of at least one replica node.

Satisfies the needs of most users because
consistency requirements are not stringent.

TWO A write must be written to the commit log
and memtable of at least two replica nodes.

Similar to ONE.

THREE A write must be written to the commit log
and memtable of at least three replica
nodes.

Similar to TWO.

LOCAL_ONE A write must be sent to, and successfully
acknowledged by, at least one replica node
in the local data center.

In a multiple data center clusters, a
consistency level of ONE is often desirable,
but cross-DC traffic is not. LOCAL_ONE
accomplishes this. For security and quality
reasons, you can use this consistency
level in an offline data center to prevent
automatic connection to online nodes in
other data centers if an offline node goes
down.

ANY A write must be written to at least one node.
If all replica nodes for the given partition key
are down, the write can still succeed after a
hinted handoff has been written. If all replica
nodes are down at write time, an ANY write
is not readable until the replica nodes for
that partition have recovered.

Provides low latency and a guarantee that
a write never fails. Delivers the lowest
consistency and highest availability.

Read consistency levels
This table describes read consistency levels in strongest-to-weakest order.

Table: Read Consistency Levels

Level Description Usage

ALL Returns the record after all replicas have
responded. The read operation will fail if a
replica does not respond.

Provides the highest consistency of all
levels and the lowest availability of all
levels.

EACH_QUORUMStrong consistency. A read must be
read on a quorum of replica nodes in
eachdatacenters.

Used in multiple data center clusters to
strictly maintain consistency at the same
level in each data center. For example,
choose this level if you want a read to
fail when a data center is down and the
QUORUM cannot be reached on that data
center.

QUORUM Returns the record after a quorum
of replicas from all datacenters has
responded.

Used in either single or multiple data center
clusters to maintain strong consistency
across the cluster. Ensures strong
consistency if you can tolerate some level of
failure.

LOCAL_QUORUMReturns the record after a quorum of
replicas in the current data center as the

Used in multiple data center clusters with
a rack-aware replica placement strategy
(NetworkTopologyStrategy) and a

/en/glossary/doc/glossary/gloss_data_center.html
/en/glossary/doc/glossary/gloss_data_center.html

Database internals

41

Level Description Usage

coordinator has reported. Avoids latency of
inter-data center communication.

properly configured snitch. Fails when using
SimpleStrategy.

ONE Returns a response from the closest replica,
as determined by the snitch. By default, a
read repair runs in the background to make
the other replicas consistent.

Provides the highest availability of all the
levels if you can tolerate a comparatively
high probability of stale data being read.
The replicas contacted for reads may not
always have the most recent write.

TWO Returns the most recent data from two of
the closest replicas.

Similar to ONE.

THREE Returns the most recent data from three of
the closest replicas.

Similar to TWO.

LOCAL_ONE Returns a response from the closest replica
in the local data center.

Same usage as described in the table about
write consistency levels.

SERIAL Allows reading the current (and possibly
uncommitted) state of data without
proposing a new addition or update. If
a SERIAL read finds an uncommitted
transaction in progress, it will commit the
transaction as part of the read. Similar to
QUORUM.

To read the latest value of a column
after a user has invoked a lightweight
transaction to write to the column, use
SERIAL. Cassandra then checks the inflight
lightweight transaction for updates and, if
found, returns the latest data.

LOCAL_SERIALSame as SERIAL, but confined to the data
center. Similar to LOCAL_QUORUM.

Used to achieve linearizable consistency for
lightweight transactions.

How QUORUM is calculated
The QUORUM level writes to the number of nodes that make up a quorum. A quorum is calculated, and then
rounded down to a whole number, as follows:

quorum = (sum_of_replication_factors / 2) + 1

The sum of all the replication_factor settings for each data center is the
sum_of_replication_factors.

sum_of_replication_factors = datacenter1_RF + datacenter2_RF + . . . +
 datacentern_RF

Examples:

• Using a replication factor of 3, a quorum is 2 nodes. The cluster can tolerate 1 replica down.
• Using a replication factor of 6, a quorum is 4. The cluster can tolerate 2 replicas down.
• In a two data center cluster where each data center has a replication factor of 3, a quorum is 4 nodes.

The cluster can tolerate 2 replica nodes down.
• In a five data center cluster where two data centers have a replication factor of 3 and three data centers

have a replication factor of 2, a quorum is 6 nodes.

The more data centers, the higher number of replica nodes need to respond for a successful operation.

Similar to QUORUM, the LOCAL_QUORUM level is calculated based on the replication factor of the same data
center as the coordinator node. That is, even if the cluster has more than one data center, the quorum is
calculated only with local replica nodes.

In EACH_QUORUM, every data center in the cluster must reach a quorum based on that data center's
replication factor in order for the read or write request to succeed. That is, for every data center in the

/en/glossary/doc/glossary/gloss_coordinator_node.html
/en/glossary/doc/glossary/gloss_read_repair.html

Database internals

42

cluster a quorum of replica nodes must respond to the coordinator node in order for the read or write
request to succeed.

Configuring client consistency levels
You can use a cqlsh command, CONSISTENCY, to set the consistency level for queries in the current
cqlsh session. For programming client applications, set the consistency level using an appropriate driver.
For example, call QueryBuilder.insertInto with a setConsistencyLevel argument using the
Java driver.

How is the serial consistency level configured?
Serial consistency levels in Cassandra can be configured to manage lightweight transaction isolation.

Serial consistency levels in Cassandra can be configured to manage lightweight transaction isolation.
Lightweight transactions have two consistency levels defined. The serial consistency level defines the
consistency level of the serial phase, or Paxos phase, of lightweight transactions. The learn phase,
which defines what read operations will be guaranteed to complete immediately if lightweight writes are
occurring uses a normal consistency level. The serial consistency level is ignored for any query that is not
a conditional update.

Serial consistency levels

Table: Serial Consistency Levels

Level Description Usage

SERIAL Achieves linearizable consistency for
lightweight transactions by preventing
unconditional updates.

This consistency level is only for use with
lightweight transaction. Equivalent to
QUORUM.

LOCAL_SERIALSame as SERIAL but confined to the data
center. A conditional write must be written
to the commit log and memtable on a
quorum of replica nodes in the same data
center.

Same as SERIAL but used to maintain
consistency locally (within the single data
center). Equivalent to LOCAL_QUORUM.

How are read requests accomplished?
The three types of read requests that a coordinator node can send to a replica.

There are three types of read requests that a coordinator can send to a replica:

• A direct read request
• A digest request
• A background read repair request

The coordinator node contacts one replica node with a direct read request. Then the coordinator sends
a digest request to a number of replicas determined by the consistency level specified by the client. The
digest request checks the data in the replica node to make sure it is up to date. Then the coordinator
sends a digest request to all remaining replicas. If any replica nodes have out of date data, a background
read repair request is sent. Read repair requests ensure that the requested row is made consistent on all
replicas.

For a digest request the coordinator first contacts the replicas specified by the consistency level. The
coordinator sends these requests to the replicas that are currently responding the fastest. The nodes
contacted respond with a digest of the requested data; if multiple nodes are contacted, the rows from each
replica are compared in memory to see if they are consistent. If they are not, then the replica that has the
most recent data (based on the timestamp) is used by the coordinator to forward the result back to the
client. To ensure that all replicas have the most recent version of the data, read repair is carried out to
update out-of-date replicas.

/en/cql/3.3/cql/cql_reference/consistency_r.html
/en/glossary/doc/glossary/gloss_coordinator_node.html

Database internals

43

For illustrated examples of read requests, see the examples of read consistency levels.

Rapid read protection using speculative_retry
Rapid read protection allows Cassandra to still deliver read requests when the originally selected
replica nodes are either down or taking too long to respond. If the table has been configured with the
speculative_retry property, the coordinator node for the read request will retry the request with
another replica node if the original replica node exceeds a configurable timeout value to complete the read
request.

Figure: Recovering from replica node failure with rapid read protection

Client

R2

R3

1

2

3

4

5

6

7

8

9

10

11

12

R1 replica node failed

coodinator node
resends after

t imeout

Chosen node

Coordinator node

Examples of read consistency levels
Read request examples with different consistency levels.

The following diagrams show examples of read requests using these consistency levels:

• QUORUM in a single data center
• ONE in a single data center
• QUORUM in two data centers
• LOCAL_QUORUM in two data centers
• ONE in two data centers
• LOCAL_ONE in two data centers

Rapid read protection diagram shows how the speculative retry table property affects consistency.

/en/cql/3.3/cql/cql_reference/tabProp.html?scroll=tabProp__morespeculativeRetry

Database internals

44

A single data center cluster with a consistency level of
QUORUM
In a single data center cluster with a replication factor of 3, and a read consistency level of QUORUM, 2
of the 3 replicas for the given row must respond to fulfill the read request. If the contacted replicas have
different versions of the row, the replica with the most recent version will return the requested data. In the
background, the third replica is checked for consistency with the first two, and if needed, a read repair is
initiated for the out-of-date replicas.

Figure: Single data center cluster with 3 replica nodes and consistency set to QUORUM

Client

R2

R3

1

2

3

4

5

6

7

8

9

10

11

12

R1

Read response

Read repair

Chosen node

Coordinator node

A single data center cluster with a consistency level of ONE
In a single data center cluster with a replication factor of 3, and a read consistency level of ONE, the
closest replica for the given row is contacted to fulfill the read request. In the background a read repair is
potentially initiated, based on the read_repair_chance setting of the table, for the other replicas.

Figure: Single data center cluster with 3 replica nodes and consistency set to ONE

Database internals

45

Client

R2

R3

1

2

3

4

5

6

7

8

9

10

11

12

R1

Read response

Read repair

Chosen node

Coordinator node

A two data center cluster with a consistency level of QUORUM
In a two data center cluster with a replication factor of 3, and a read consistency of QUORUM, 4 replicas for
the given row must respond to fulfill the read request. The 4 replicas can be from any data center. In the
background, the remaining replicas are checked for consistency with the first four, and if needed, a read
repair is initiated for the out-of-date replicas.

Figure: Multiple data center cluster with 3 replica nodes and consistency level set to QUORUM

Database internals

46

Client

R2

R3

1

2

3

4

5

6

7

8

9

10

11

12

R1

1

2

3

4

5

6

7

8

9

10

11

12

R1

Data Center Alpha

Data Center Beta
R2

R3

Read response

Read repair

Chosen node

Coordinator node

Database internals

47

A two data center cluster with a consistency level of
LOCAL_QUORUM
In a multiple data center cluster with a replication factor of 3, and a read consistency of LOCAL_QUORUM,
2 replicas in the same data center as the coordinator node for the given row must respond to fulfill the
read request. In the background, the remaining replicas are checked for consistency with the first 2, and if
needed, a read repair is initiated for the out-of-date replicas.

Figure: Multiple data center cluster with 3 replica nodes and consistency set to LOCAL_QUORUM

Database internals

48

Client

R2

R3

1

2

3

4

5

6

7

8

9

10

11

12

R1

1

2

3

4

5

6

7

8

9

10

11

12

R1

Data Center Alpha

Data Center Beta
R2

R3

Read response

Read repair

Chosen node

Coordinator node

Database internals

49

A two data center cluster with a consistency level of ONE
In a multiple data center cluster with a replication factor of 3, and a read consistency of ONE, the
closest replica for the given row, regardless of data center, is contacted to fulfill the read request. In the
background a read repair is potentially initiated, based on the read_repair_chance setting of the table,
for the other replicas.

Figure: Multiple data center cluster with 3 replica nodes and consistency set to ONE

Database internals

50

Client

R2

R3

1

2

3

4

5

6

7

8

9

10

11

12

R1

1

2

3

4

5

6

7

8

9

10

11

12

R1

Data Center Alpha

Data Center Beta
R3

R2

Read response

Read repair

Chosen node

Coordinator node

A two data center cluster with a consistency level of
LOCAL_ONE
In a multiple data center cluster with a replication factor of 3, and a read consistency of LOCAL_ONE, the
closest replica for the given row in the same data center as the coordinator node is contacted to fulfill the

Database internals

51

read request. In the background a read repair is potentially initiated, based on the read_repair_chance
setting of the table, for the other replicas.

Figure: Multiple data center cluster with 3 replica nodes and consistency set to LOCAL_ONE

Client

R2

R3

1

2

3

4

5

6

7

8

9

10

11

12

R1

1

2

3

4

5

6

7

8

9

10

11

12

R1

Data Center Alpha

Data Center Beta
R3

R2

Read response

Read repair

Chosen node

Coordinator node

Database internals

52

How are write requests accomplished?
How write requests work.

The coordinator sends a write request to all replicas that own the row being written. As long as all replica
nodes are up and available, they will get the write regardless of the consistency level specified by the
client. The write consistency level determines how many replica nodes must respond with a success
acknowledgment in order for the write to be considered successful. Success means that the data was
written to the commit log and the memtable as described in how data is written.

For example, in a single data center 10 node cluster with a replication factor of 3, an incoming write will
go to all 3 nodes that own the requested row. If the write consistency level specified by the client is ONE,
the first node to complete the write responds back to the coordinator, which then proxies the success
message back to the client. A consistency level of ONE means that it is possible that 2 of the 3 replicas
could miss the write if they happened to be down at the time the request was made. If a replica misses
a write, Cassandra will make the row consistent later using one of its built-in repair mechanisms: hinted
handoff, read repair, or anti-entropy node repair.

That node forwards the write to all replicas of that row. It responds to the client once it receives write
acknowledgments from the number of nodes specified by the consistency level. Exceptions:

• If the coordinator cannot write to enough replicas to meet the requested Consistency level, it throws an
Unavailable Exception and does not perform any writes.

• If there are enough replicas available but the required writes don't finish within the timeout window, the
coordinator throws a Timeout Exception.

Figure: Single data center cluster with 3 replica nodes and consistency set to ONE

Database internals

53

Multiple data center write requests
How write requests work when using multiple data centers.

In multiple data center deployments, Cassandra optimizes write performance by choosing one coordinator
node. The coordinator node contacted by the client application forwards the write request to one replica in
each of the other DCs, with a special tag to forward the write to the other local replicas.

If the consistency level is LOCAL_ONE or LOCAL_QUORUM, only the nodes in the same data center as
the coordinator node must respond to the client request in order for the request to succeed. This way,
geographical latency does not impact client request response times.

Figure: Multiple data center cluster with 3 replica nodes and consistency set to QUORUM

Database internals

54

Client

R2

R3

1

2

3

4

5

6

7

8

9

10

11

12

R1

1

2

3

4

5

6

7

8

9

10

11

12

R1

Data Center Alpha

Data Center Beta
R2

R3

Write response

Nodes that m ake up a quorum

Coordinator node

Planning a cluster deployment

55

Planning a cluster deployment
Vital information about successfully deploying a Cassandra cluster.

When planning a Cassandra cluster deployment, you should have a good idea of the initial volume of data
you plan to store and a good estimate of your typical application workload. The following topics provide
information for planning your cluster:

Selecting hardware for enterprise implementations
Choosing appropriate hardware depends on selecting the right balance of the following resources: memory, CPU, disks, number of nodes, and network.

Choosing appropriate hardware depends on selecting the right balance of the following resources:
memory, CPU, disks, number of nodes, and network. Anti-patterns in Cassandra on page 60 also
contains important information about hardware, particularly SAN storage, NAS devices, and NFS.

CAUTION: Do not use a machine suited for development for load testing or production. Failure may result.

Memory
The more memory a Cassandra node has, the better read performance. More RAM also allows memory
tables (memtables) to hold more recently written data. Larger memtables lead to a fewer number of
SSTables being flushed to disk and fewer files to scan during a read. The ideal amount of RAM depends
on the anticipated size of your hot data.

For both dedicated hardware and virtual environments:

• Production: 16GB to 64GB; the minimum is 8GB.
• Development in non-loading testing environments: no less than 4GB.
• For setting Java heap space, see Tuning Java resources.

CPU
Insert-heavy workloads are CPU-bound in Cassandra before becoming memory-bound. (All writes go to
the commit log, but Cassandra is so efficient in writing that the CPU is the limiting factor.) Cassandra is
highly concurrent and uses as many CPU cores as available:

• Production environments:

• For dedicated hardware, 16-core CPU processors are the current price-performance sweet spot.
• For virtual environments, 4 to 8-core CPU processors.

• Development in non-loading testing environments:

• For dedicated hardware, 2-core CPU processors.
• For virtual environments, 2-core CPU processors.

Spinning disks versus Solid State Drives
SSDs are recommended for Cassandra. The NAND Flash chips that power SSDs provide extremely
low-latency response times for random reads while supplying ample sequential write performance for
compaction operations. In recent years, drive manufacturers have improved overall endurance, usually in
conjunction with spare (unexposed) capacity. Additionally, because PBW/DWPD ratings are probabilistic
estimates based on worst case scenarios, such as random write workloads, and Cassandra does only
large sequential writes, drives significantly exceed their endurance ratings. However, it is important to
plan for drive failures and have spares available. A large variety of SSDs are available on the market from
server vendors and third-party drive manufacturers.

Planning a cluster deployment

56

For purchasing SSDs, the best recommendation is to make SSD endurance decisions not based on
workload, but on how difficult it is to change drives when they fail. Remember, your data is protected
because Cassandra replicates data across the cluster. Buying strategies include:

• If drives are quickly available, buy the cheapest drives that provide the performance you want.
• If it is more challenging to swap the drives, consider higher endurance models, possibly starting in the

mid range, and then choose replacements of higher or lower endurance based on the failure rates of
the initial model chosen.

• Always buy cheap SSDs and keep several spares online and unused in the servers until the initial
drives fail. This way you can replace the drives without touching the server.

DataStax customers that need help in determining the most cost-effective option for a given deployment
and workload, should contact their Solutions Engineer or Architect.

Disk space
Disk space depends on usage, so it's important to understand the mechanism. Cassandra writes data
to disk when appending data to the commitlog for durability and when flushing memtables to SSTable
data files for persistent storage. The commit log has a different access pattern (read/writes ratio) than the
pattern for accessing data from SSTables. This is more important for spinning disks than for SSDs (solid
state drives).

SSTables are periodically compacted. Compaction improves performance by merging and rewriting data
and discarding old data. However, depending on the type of compaction and size of the compactions,
during compaction disk utilization and data directory volume temporarily increases. For this reason, you
should leave an adequate amount of free disk space available on a node. For large compactions:

Compaction strategy Requires:

SizeTieredCompactionStrategy 50% overhead (worst case)

LeveledCompactionStrategy 10% overhead

DateTieredCompactionStrategy amount equal to the amount of data that the system
writes during the time period specified by the
max_window_size_seconds property you can set
for the table

• Compaction
• The Apache Cassandra storage engine
• Leveled Compaction in Apache Cassandra
• When to Use Leveled Compaction
• DateTieredCompactionStrategy: Compaction for Time Series Data and Getting Started with Time

Series Data Modeling

For information on calculating disk size, see Calculating usable disk capacity.

Recommendations:

Capacity per node

Most workloads work best with a capacity under 500GB to 1TB per node depending on I/O. Maximum
recommended capacity for Cassandra 1.2 and later is 3 to 5TB per node for uncompressed data. For
Cassandra 1.1, it is 500 to 800GB per node. Be sure to account for replication.

Capabilities of recent Cassandra releases, such as JBOD support, virtual nodes (vnodes), off-heap Bloom
filters, and parallel leveled compaction (SSD nodes only), allow you to use few machines with multiple
terabytes of disk space.

Capacity and I/O

/en/glossary/doc/glossary/gloss_commit_log.html
/en/glossary/doc/glossary/memtable.html
/en/glossary/doc/glossary/gloss_sstable.html
/en/cql/3.1/cql/cql_reference/compactSubprop.html/compactionSubpropertiesDTCS
http://2012.nosql-matters.org/cgn/wp-content/uploads/2012/06/Sylvain_Lebresne-Cassandra_Storage_Engine.pdf
http://www.datastax.com/dev/blog/leveled-compaction-in-apache-cassandra
http://www.datastax.com/dev/blog/when-to-use-leveled-compaction
http://www.datastax.com/dev/blog/datetieredcompactionstrategy
http://planetcassandra.org/blog/getting-started-with-time-series-data-modeling/
http://planetcassandra.org/blog/getting-started-with-time-series-data-modeling/

Planning a cluster deployment

57

When choosing disks, consider both capacity (how much data you plan to store) and I/O (the write/read
throughput rate). Some workloads are best served by using less expensive SATA disks and scaling disk
capacity and I/O by adding more nodes (with more RAM).

Number of disks - SATA

Ideally Cassandra needs at least two disks, one for the commit log and the other for the data directories.
At a minimum the commit log should be on its own partition.

Commit log disk - SATA

The disk need not be large, but it should be fast enough to receive all of your writes as appends (sequential
I/O).

Commit log disk - SSD

Unlike spinning disks, it's all right to store both commit logs and SSTables are on the same mount point.

Data disks

Use one or more disks and make sure they are large enough for the data volume and fast enough to both
satisfy reads that are not cached in memory and to keep up with compaction.

RAID on data disks

It is generally not necessary to use RAID for the following reasons:

• Data is replicated across the cluster based on the replication factor you've chosen.
• Starting in version 1.2, Cassandra includes a JBOD (Just a bunch of disks) feature to take care of disk

management. Because Cassandra properly reacts to a disk failure either by stopping the affected node
or by blacklisting the failed drive, you can deploy Cassandra nodes with large disk arrays without the
overhead of RAID 10. You can configure Cassandra to stop the affected node or blacklist the drive
according to your availability/consistency requirements. Also see Recovering from a single disk failure
using JBOD on page 139.

RAID on the commit log disk

Generally RAID is not needed for the commit log disk. Replication adequately prevents data loss. If you
need extra redundancy, use RAID 1.

Extended file systems

DataStax recommends deploying Cassandra on XFS or ext4. On ext2 or ext3, the maximum file size is 2TB
even using a 64-bit kernel. On ext4 it is 16TB.

Because Cassandra can use almost half your disk space for a single file when using
SizeTieredCompactionStrategy, use XFS when using large disks, particularly if using a 32-bit kernel. XFS
file size limits are 16TB max on a 32-bit kernel, and essentially unlimited on 64-bit.

Number of nodes
Prior to version 1.2, the recommended size of disk space per node was 300 to 500GB.

Network
Since Cassandra is a distributed data store, it puts load on the network to handle read/write requests and
replication of data across nodes. Be sure that your network can handle traffic between nodes without
bottlenecks. You should bind your interfaces to separate Network Interface Cards (NIC). You can use
public or private depending on your requirements.

• Recommended bandwidth is 1000 Mbit/s (gigabit) or greater.
• Thrift/native protocols use the rpc_address.
• Cassandra's internal storage protocol uses the listen_address.

Cassandra efficiently routes requests to replicas that are geographically closest to the coordinator node
and chooses a replica in the same rack if possible; it always chooses replicas located in the same data
center over replicas in a remote data center.

Planning a cluster deployment

58

Firewall
If using a firewall, make sure that nodes within a cluster can reach each other. See Configuring firewall port
access on page 104.

Planning an Amazon EC2 cluster
Important information for deploying a production Cassandra cluster on Amazon EC2.

Before planning an Amazon EC2 cluster, please see the Amazon Web Services EC2 Management
Console.

DataStax AMI deployments
The DataStax AMI is available only for Cassandra 2.1 and earlier. It is intended only for a single region and
availability zone. For an EC2 cluster that spans multiple regions and availability zones, see EC2 clusters
spanning multiple regions and availability zones.

Use AMIs from trusted sources
Use only AMIs from a trusted source. Random AMIs pose a security risk and may perform slower than
expected due to the way the EC2 install is configured. The following are examples of trusted AMIs:

• Ubuntu Amazon EC2 AMI Locator
• Debian AmazonEC2Image
• CentOS-6 images on Amazon's EC2 Cloud

EC2 clusters spanning multiple regions and availability zones
When creating an EC2 cluster that spans multiple regions and availability zones, use any of the supported
platforms and install Cassandra on each node. It is best practice to use the same platform on all nodes. If
your cluster was instantiated using the DataStax AMI, use Ubuntu for the additional nodes. Configure the
cluster as a multiple data center cluster using the Ec2MultiRegionSnitch on page 23.

Production Cassandra clusters on EC2
For production Cassandra clusters on EC2, use these guidelines for choosing the instance types:

• Development and light production: m3.large
• Moderate production: m3.xlarge
• SSD production with light data: c3.2xlarge
• Largest heavy production: m3.2xlarge (PV) or i2.2xlarge (HVM)
• Micro, small, and medium types are not supported.

Note: The main difference between m1 and m3 instance types for use with Cassandra is that m3 instance
types have faster, smaller SSD drives and m1 instance types have slower, larger rotational drives. Use m1
instance types when you have higher tolerance for latency SLAs and you require smaller cluster sizes, or
both. For more aggressive workloads use m3 instance types with appropriately sized clusters.

EBS volumes recommended for production
SSD-backed general purpose volumes (GP2) or provisioned IOPS volumes (PIOPS) are suitable for
production workloads. These volume types are designed to deliver consistent, low latency performance:

GP2 PIOPS

• The best choice for most workloads and have
the advantage of guaranteeing 10,000 IOPS

• Designed to deliver single-digit millisecond
latencies.

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
/en/cassandra/2.1/cassandra/install/installAMI.html
http://cloud-images.ubuntu.com/locator/ec2/
https://wiki.debian.org/Cloud/AmazonEC2Image
http://wiki.centos.org/Cloud/AWS
http://planetcassandra.org/cassandra/
http://planetcassandra.org/cassandra/

Planning a cluster deployment

59

GP2 PIOPS

when volumes larger than 3.5TB are attached to
instances.

• Designed to deliver single-digit millisecond
latencies.

• Designed to deliver the provisioned performance
99.0% of the time.

• Designed to deliver the provisioned performance
99.9% of the time.

EBS magnetic volumes not recommended
EBS magnetic volumes are not recommended for Cassandra data storage volumes for the following
reasons:

• EBS magnetic volumes contend directly for network throughput with standard packets. This contention
means that EBS throughput is likely to fail if you saturate a network link.

• EBS magnetic volumes have unreliable performance. I/O performance can be exceptionally slow,
causing the system to back load reads and writes until the entire cluster becomes unresponsive.

• Adding capacity by increasing the number of EBS volumes per host does not scale. You can easily
surpass the ability of the system to keep effective buffer caches and concurrently serve requests for all
of the data it is responsible for managing.

Note: Use only ephemeral instance-store or the recommended EBS volume types for Cassandra data
storage.

For more information and graphs related to ephemeral versus EBS performance, see the blog article
Systematic Look at EC2 I/O.

Disk Performance Optimization
To ensure high disk performance to mounted drives, it is recommended that you pre-warm your drives
by writing once to every drive location before production use. Depending on EC2 conditions, you can get
moderate to enormous increases in throughput. See Optimizing Disk Performance in the Amazon Elastic
Compute Cloud Documentation.

Storage recommendations for Cassandra 1.2 and later
Cassandra 1.2 and later supports JBOD (just a bunch of disks). JBOD excels at tolerating partial failures
in a disk array. Configure using the disk_failure_policy in the cassandra.yaml file. Addition information is
available in the Handling Disk Failures In Cassandra 1.2 blog and Recovering from a single disk failure
using JBOD on page 139.

Note: Cassandra JBOD support allows you to use standard disks. However, RAID0 may provide better
throughput because it splits every block to be on another device. This means that writes are written in
parallel fashion instead of written serially on disk.

The location of the cassandra.yaml file depends on the type of installation:

Package installations /etc/cassandra/cassandra.yaml

Tarball installations install_location/resources/cassandra/
conf/cassandra.yaml

Estimating partition size
Determining how much data your Cassandra partitions can hold.

For efficient operation, partitions must be sized within certain limits. Two measures of partition size are
the number of values in a partition and the partition size on disk. The practical limit of cells per partition

http://blog.scalyr.com/2012/10/16/a-systematic-look-at-ec2-io/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#disk-performance
http://www.datastax.com/dev/blog/handling-disk-failures-in-cassandra-1-2
/en/cassandra/3.x/cassandra/configuration/configCassandra_yaml.html

Planning a cluster deployment

60

is two billion. Sizing the disk space is more complex, and involves the number of rows and the number
of columns, primary key columns and static columns in each table. Each application will have different
efficiency parameters, but a good rule of thumb is to keep the maximum number of rows below 100,000
items and the disk size under 100MB.

Estimating usable disk capacity
Determining how much data your Cassandra nodes can hold.

To estimate how much data your Cassandra nodes can hold, calculate the usable disk capacity per node
and then multiply that by the number of nodes in your cluster. Remember that in a production cluster, you
will typically have your commit log and data directories on different disks.

Procedure
1. Start with the raw capacity of the physical disks:

raw_capacity = disk_size * number_of_data_disks

2. Calculate the usable disk space accounting for file system formatting overhead (roughly 10 percent):

formatted_disk_space = (raw_capacity * 0.9)

3. Calculate the recommended working disk capacity:

During normal operations, Cassandra routinely requires disk capacity for compaction and repair
operations. For optimal performance and cluster health, DataStax recommends not filling your disks
to capacity, but running at 50% to 80% capacity depending on the compaction strategy and size of the
compactions.

usable_disk_space = formatted_disk_space * (0.5 to 0.8)

Anti-patterns in Cassandra
Implementation or design patterns that are ineffective and/or counterproductive in Cassandra production installations. Correct patterns are suggested in most cases.

Implementation or design patterns that are ineffective and/or counterproductive in Cassandra production
installations. Correct patterns are suggested in most cases.

Storage area network
SAN storage is not recommended for on-premises deployments.

Note: Storage in clouds works very differently. Customers should contact DataStax for questions.

Although used frequently in Enterprise IT environments, SAN storage has proven to be a difficult and
expensive architecture to use with distributed databases for a variety of reasons, including:

• SAN ROI (return on investment) does not scale along with that of Cassandra, in terms of capital
expenses and engineering resources.

• In distributed architectures, SAN generally introduces a bottleneck and single point of failure because
Cassandra's IO frequently surpasses the array controller's ability to keep up.

• External storage, even when used with a high-speed network and SSD, adds latency for all operations.
• Heap pressure is increased because pending I/O operations take longer.
• When the SAN transport shares operations with internal and external Cassandra traffic, it can saturate

the network and lead to network availability problems.

/en/cql/3.3/cql/cql_reference/tabProp.html

Planning a cluster deployment

61

Taken together these factors can create problems that are difficult to resolve in production. In particular,
new users deploying Cassandra with SAN must first develop adequate methods and allocate sufficient
engineering resources to identify these issues before they become a problem in production. For example,
methods are needed for all key scaling factors, such as operational rates and SAN fiber saturation.

Impact of Shared Storage on Cassandra details metrics on how severely performance can be affected.

Network attached storage
Storing SSTables on a network attached storage (NAS) device is not recommended. Using a NAS device
often results in network related bottlenecks resulting from high levels of I/O wait time on both reads and
writes. The causes of these bottlenecks include:

• Router latency.
• The Network Interface Card (NIC) in the node.
• The NIC in the NAS device.

If you are required to use NAS for your environment, please contact a technical resource from DataStax for
assistance.

Shared network file systems
Shared network file systems (NFS) has exhibited inconsistent behavior with its abilities to delete and move
files. This configuration is not supported in Cassandra and it is not recommend to use.

Excessive heap space size
DataStax recommends using the default heap space size for most use cases. Exceeding this size can
impair the Java virtual machine's (JVM) ability to perform fluid garbage collections (GC). The following
table shows a comparison of heap space performances reported by a Cassandra user:

Heap CPU utilization Queries per second Latency

40 GB 50% 750 1 second

8 GB 5% 8500 (not maxed out) 10 ms

For information on heap sizing, see Tuning Java resources on page 153.

Cassandra's rack feature
This information applies only to single-token architecture, not to virtual nodes.

Defining one rack for the entire cluster is the simplest and most common implementation. Multiple racks
should be avoided for the following reasons:

• Most users tend to ignore or forget rack requirements that racks should be organized in an alternating
order. This order allows the data to get distributed safely and appropriately.

• Many users are not using the rack information effectively. For example, setting up with as many racks
as nodes (or similar non-beneficial scenarios).

• Expanding a cluster when using racks can be tedious. The procedure typically involves several node
moves and must ensure that racks are distributing data correctly and evenly. When clusters need
immediate expansion, racks should be the last concern.

To use racks correctly:

• Use the same number of nodes in each rack.
• Use one rack and place the nodes in different racks in an alternating pattern. The rack feature of

Cassandra benefits from quick and fully functional cluster expansions. Once the cluster is stable, you
can swap nodes and make the appropriate moves to ensure that nodes are placed in the ring in an
alternating fashion with respect to the racks.

http://www.planetcassandra.org/blog/impact-of-shared-storage-on-cassandra/

Planning a cluster deployment

62

Also see About Replication in Cassandra in the Cassandra 1.1 documentation.

SELECT ... IN or index lookups
SELECT ... IN and index lookups (formerly secondary indexes) should be avoided except for specific
scenarios. See When not to use IN in SELECT and When not to use an index in Indexing in CQL for
Cassandra 2.2.

Using the Byte Ordered Partitioner
The Byte Ordered Partitioner (BOP) is not recommended.

Use virtual nodes (vnodes) and use either the Murmur3Partitioner (default) or the RandomPartitioner.
Vnodes allow each node to own a large number of small ranges distributed throughout the cluster. Using
vnodes saves you the effort of generating tokens and assigning tokens to your nodes. If not using vnodes,
these partitioners are recommended because all writes occur on the hash of the key and are therefore
spread out throughout the ring amongst tokens range. These partitioners ensure that your cluster evenly
distributes data by placing the key at the correct token using the key's hash value.

Reading before writing
Reads take time for every request, as they typically have multiple disk hits for uncached reads. In work
flows requiring reads before writes, this small amount of latency can affect overall throughput. All write I/
O in Cassandra is sequential so there is very little performance difference regardless of data size or key
distribution.

Load balancers
Cassandra was designed to avoid the need for load balancers. Putting load balancers between Cassandra
and Cassandra clients is harmful to performance, cost, availability, debugging, testing, and scaling. All
high-level clients, such as the Java and Python drivers for Cassandra, implement load balancing directly.

Insufficient testing
Be sure to test at scale and production loads. This the best way to ensure your system will function
properly when your application goes live. The information you gather from testing is the best indicator of
what throughput per node is needed for future expansion calculations.

To properly test, set up a small cluster with production loads. There will be a maximum throughput
associated with each node count before the cluster can no longer increase performance. Take the
maximum throughput at this cluster size and apply it linearly to a cluster size of a different size. Next
extrapolate (graph) your results to predict the correct cluster sizes for required throughputs for your
production cluster. This allows you to predict the correct cluster sizes for required throughputs in the future.
The Netflix case study shows an excellent example for testing.

Too many keyspaces or tables
Each Cassandra keyspace has a certain amount of overhead space that uses JVM memory. Each table
uses approximately 1MB of memory. For example, 3,500 tables would use about 3.5GB of JVM memory.
Using too many tables, or by extension, too many keyspaces will bloat the memory requirements. A good
rule of thumb is to keep the number of tables within a cluster to 1,000 at most, and aim for 500 or less.

Lack of familiarity with Linux
Linux has a great collection of tools. Become familiar with the Linux built-in tools. It will help you greatly
and ease operation and management costs in normal, routine functions. The essential list of tools and
techniques to learn are:

/en/archived/cassandra/1.1/docs/cluster_architecture/replication
/en/cql/3.3/cql/cql_reference/select_r.html
/en/cql/3.3/cql/cql_using/useCreateTable.html
/en/developer/java-driver/2.0/java-driver/whatsNew2.html
/en/developer/python-driver/2.0/common/drivers/introduction/introArchOverview_c.html
http://www.datastax.com/1-million-writes

Installing DataStax Distribution of Apache Cassandra 3.x

63

• Parallel SSH and Cluster SSH: The pssh and cssh tools allow SSH access to multiple nodes. This is
useful for inspections and cluster wide changes.

• Passwordless SSH: SSH authentication is carried out by using public and private keys. This allows SSH
connections to easily hop from node to node without password access. In cases where more security is
required, you can implement a bastion host and/or VPN.

• Useful common command-line tools include:

• dstat: Shows all system resources instantly. For example, you can compare disk usage in
combination with interrupts from your IDE controller, or compare the network bandwidth numbers
directly with the disk throughput (in the same interval).

• top: Provides an ongoing look at CPU processor activity in real time.
• System performance tools: Tools such as iostat, mpstat, iftop, sar, lsof, netstat, htop, vmstat, and

similar can collect and report a variety of metrics about the operation of the system.
• vmstat: Reports information about processes, memory, paging, block I/O, traps, and CPU activity.
• iftop: Shows a list of network connections. Connections are ordered by bandwidth usage, with the

pair of hosts responsible for the most traffic at the top of list. This tool makes it easier to identify the
hosts causing network congestion.

Running without the recommended settings
Be sure to use the recommended settings in the Cassandra documentation.

Also be sure to consult the Planning a Cassandra cluster deployment documentation, which discusses
hardware and other recommendations before making your final hardware purchases.

Installing DataStax Distribution of Apache
Cassandra 3.x

Various installation methods.

Installing the DataStax Distribution of Apache Cassandra 3.x on
RHEL-based systems

Install using Yum repositories on RHEL, CentOS, and Oracle Linux.

Attention: OpsCenter is not supported or installed with Cassandra 2.2 and later.

Use these steps to install Cassandra using Yum repositories on RHEL, CentOS, and Oracle Linux.

Note: To install on SUSE, use the Cassandra binary tarball distribution.

Prerequisites
• Ensure that your platform is supported.
• Yum Package Management application installed.
• Root or sudo access to the install machine.
• Latest version of Oracle Java Platform, Standard Edition 8 (JDK) or OpenJDK 8.

Note: The JDK is recommended for development and production systems. It provides tools that are not
in the JRE, such as jstack, jmap, jps, and jstat, that are useful for troubleshooting.

• Python 2.7.

http://www.planetcassandra.org/cassandra/
http://openjdk.java.net/

Installing DataStax Distribution of Apache Cassandra 3.x

64

The packaged releases create a cassandra user. When starting Cassandra as a service, the service runs
as this user. The following utilities are included in a separate package: sstable2json, sstablelevelreset,
sstablemetadata, json2sstable, sstablerepairedset, sstablesplit, and token-generator.

Procedure
In a terminal window:

1. Check which version of Java is installed by running the following command:

$ java -version

It is recommended to use the latest version of Oracle Java 8 or OpenJDK 8 on all nodes.

2. Add the DataStax Distribution of Apache Cassandra 3.x repository to the /etc/yum.repos.d/
datastax.repo:

[datastax-ddc]
name = DataStax Repo for Apache Cassandra
baseurl = http://rpm.datastax.com/datastax-ddc/3.version_number
enabled = 1
gpgcheck = 0

Note: Be sure to specify the version number. For example: 3.2.

3. Install the latest packages:

$ sudo yum install datastax-ddc

This command automatically installs the Cassandra utilities such as sstablelevelreset, sstablemetadata,
sstableofflinerelevel, sstablerepairedset, sstablesplit, token-generator. Each utility provides usage/help
information; type help after entering the command.

4. Optional: Single-node cluster installations only.

a) Start Cassandra:

$ sudo service cassandra start

Note: On some Linux distributions, you many need to use:

$ sudo /etc/init.d/cassandra start
b) Verify that DataStax Distribution of Apache Cassandra is running:

$ nodetool status

Datacenter: datacenter1
=======================
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address Load Tokens Owns Host ID
 Rack
UN 127.0.0.147.66 KB 47.66 KB 256 100% aaa1b7c1-6049-4a08-
ad3e-3697a0e30e10 rack1

What to do next
• Configure DataStax Community
• Initializing a multiple node cluster (single data center) on page 116
• Initializing a multiple node cluster (multiple data centers) on page 119
• Recommended production settings

Installing DataStax Distribution of Apache Cassandra 3.x

65

• Key components for configuring Cassandra
• Starting Cassandra as a service on page 121
• Package installation directories on page 76

Installing DataStax Distribution of Apache Cassandra 3.x on
Debian-based systems

Install using APT repositories on Debian and Ubuntu.

Attention: OpsCenter is not supported or installed with Cassandra 2.2 and later.

Use these steps to install Cassandra using APT repositories on Debian and Ubuntu Linux.

Prerequisites
• Ensure that your platform is supported.
• Advanced Package Tool is installed.
• Root or sudo access to the install machine.
• Latest version of Oracle Java Platform, Standard Edition 8 (JDK) or OpenJDK 8.

Note: The JDK is recommended for development and production systems. It provides tools that are not
in the JRE, such as jstack, jmap, jps, and jstat, that are useful for troubleshooting.

• Python 2.7.

The packaged releases create a cassandra user. When starting Cassandra as a service, the service runs
as this user. The following utilities are included in a separate package: sstable2json, sstablelevelreset,
sstablemetadata, json2sstable, sstablerepairedset, sstablesplit, and token-generator.

Procedure
In a terminal window:

1. Check which version of Java is installed by running the following command:

$ java -version

It is recommended to use the latest version of Oracle Java 8 or OpenJDK 8 on all nodes.

2. Add the DataStax Distribution of Apache Cassandra 3.x repository to the /etc/apt/
sources.list.d/cassandra.sources.list

$ echo "deb http://debian.datastax.com/datastax-ddc 3.version_number main" |
 sudo tee -a /etc/apt/sources.list.d/cassandra.sources.list

Note: Be sure to specify the version number. For example: 3.2.

3. Optional: On Debian systems, to allow installation of the Oracle JVM instead of the OpenJDK JVM:

a) In /etc/apt/sources.list, find the line that describes your source repository for Debian and
add contrib non-free to the end of the line. For example:

deb http://some.debian.mirror/debian/ $distro main contrib non-free

b) Save and close the file when you are done.

4. Add the DataStax repository key to your aptitude trusted keys.

$ curl -L https://debian.datastax.com/debian/repo_key | sudo apt-key add -

5. Install the latest package:

http://www.planetcassandra.org/cassandra/
http://openjdk.java.net/

Installing DataStax Distribution of Apache Cassandra 3.x

66

$ sudo apt-get update
$ sudo apt-get install datastax-ddc

This command automatically installs the Cassandra utilities such as sstablelevelreset, sstablemetadata,
sstableofflinerelevel, sstablerepairedset, sstablesplit, token-generator. Each utility provides usage/help
information; type help after entering the command.

6. Optional: Single-node cluster installations only.

a) Because the Debian packages start the Cassandra service automatically, you do not need to start
the service.

b) Verify that DataStax Distribution of Apache Cassandra is running:

$ nodetool status

Datacenter: datacenter1
=======================
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address Load Tokens Owns Host ID
 Rack
UN 127.0.0.147.66 KB 47.66 KB 256 100% aaa1b7c1-6049-4a08-
ad3e-3697a0e30e10 rack1

7. Because the Debian packages start the Cassandra service automatically, you must stop the server and
clear the data:

Doing this removes the default cluster_name (Test Cluster) from the system table. All nodes must use
the same cluster name.

$ sudo service cassandra stop
$ sudo rm -rf /var/lib/cassandra/data/system/*

What to do next
• Configure DataStax Community
• Initializing a multiple node cluster (single data center) on page 116
• Initializing a multiple node cluster (multiple data centers) on page 119
• Recommended production settings
• Key components for configuring Cassandra
• Starting Cassandra as a service on page 121
• Package installation directories on page 76

Related tasks
Starting Cassandra as a service on page 121
Start the Cassandra Java server process for packaged installations.

Related reference
Package installation directories on page 76
Configuration files directory locations.

Installing DataStax Distribution of Apache Cassandra 3.x on any
Linux-based platform

Install on all Linux-based platforms using a binary tarball.

Attention: OpsCenter is not supported or installed with Cassandra 2.2 and later.

Use these steps to install Cassandra on all Linux-based platforms using a binary tarball.

Installing DataStax Distribution of Apache Cassandra 3.x

67

Use this install for Mac OS X and platforms without package support, or if you do not have or want a root
installation.

Prerequisites
• Ensure that your platform is supported.
• Latest version of Oracle Java Platform, Standard Edition 8 (JDK) or OpenJDK 8.

Note: The JDK is recommended for development and production systems. It provides tools that are not
in the JRE, such as jstack, jmap, jps, and jstat, that are useful for troubleshooting.

• Python 2.7.

The binary tarball runs as a stand-alone process.

Procedure
In a terminal window:

1. Check which version of Java is installed by running the following command:

$ java -version

It is recommended to use the latest version of Oracle Java 8 or OpenJDK 8 on all nodes.

2. Download the DataStax Distribution of Apache Cassandra 3.x:

$ curl -L http://downloads.datastax.com/datastax-ddc/datastax-
ddc-version_number-bin.tar.gz | tar xz

You can also download from Planet Cassandra. To untar:

$ tar -xvzf datastax-ddc-version_number-bin.tar.gz

Note: Cassandra utilities, such as sstablelevelreset, sstablemetadata, sstableofflinerelevel,
sstablerepairedset, sstablesplit, and token-generator, are automatically installed. Each utility provides
usage/help information; type help after entering the command.

3. For instructions about configuring Cassandra for use without root permissions, click here.

4. To configure Cassandra, go to the install/conf directory:

$ cd datastax-ddc-version_number/conf

5. Optional: Single-node cluster installations only.

a) Start Cassandra:

$ cd install_location
$ bin/cassandra ## use -f to start Cassandra in the foreground

b) Verify that DataStax Distribution of Apache Cassandra is running:

$ install_location
/bin/nodetool status

Datacenter: datacenter1
=======================
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address Load Tokens Owns Host ID
 Rack
UN 127.0.0.147.66 KB 47.66 KB 256 100% aaa1b7c1-6049-4a08-
ad3e-3697a0e30e10 rack1

http://www.planetcassandra.org/cassandra/
http://openjdk.java.net/
http://planetcassandra.org/

Installing DataStax Distribution of Apache Cassandra 3.x

68

What to do next
• Key components for configuring Cassandra
• Tarball installation directories on page 75
• Starting Cassandra as a stand-alone process on page 122

Configuring Cassandra without root permissions
Steps to configure Cassandra when you don't have or want to use sudo or root permissions.

Before performing this steps, you must have completed steps 1 and 2 in Installing from the binary tarball.

Procedure
1. In the install directory, create the data and log directories:

$ mkdir cassandra-data; cd cassandra-data
$ mkdir data saved_caches commitlog

2. Edit the cassandra.yaml file:

a) cd path_to_install/conf/

b) Edit these settings:

data_file_directories: path_to_install/cassandra-data/data
commitlog_directory: path_to_install/cassandra-data/commitlog
saved_caches_directory: path_to_install/cassandra-data/saved_caches

3. Go back to the tarball installation instructions.

Installing earlier releases of DataStax Distribution of Apache
Cassandra 3.x

Steps for installing the same version as other nodes in your cluster.

To install the same version as other nodes in your cluster, follow the install instructions in the relevant
documentation and specify the specific version in the install command.

Installing the packages for earlier releases on RHEL-based platforms
Cassandra 3.0.1 example:

$ sudo yum install dsc30-3.0.1.1 cassandra30-3.0.1.1
$ sudo yum install dsc30-3.0.1.1 cassandra30-3.0.1.1 cassandra30-tools-3.0.1.1
 ## Optional

Cassandra 2.1.2 example:

$ sudo yum install dsc21-2.1.2.1 cassandra21-2.1.2-1
$ sudo yum install dsc21-2.1.2.1 cassandra21-2.1.2-1 cassandra21-tools-2.1.2-1
 ## Optional

Installing the packages for earlier releases on Debian-based platforms
Cassandra 3.0.1 example:

$ sudo apt-get install dsc30=3.0.1-1 cassandra=3.0.1
$ sudo apt-get install dsc30=3.0.1-1 cassandra=3.0.1 cassandra-tools=3.0.1 ##
 Optional

Installing DataStax Distribution of Apache Cassandra 3.x

69

Cassandra 2.1.2 example:

$ sudo apt-get install dsc21=2.1.2-1 cassandra=2.1.2
$ sudo apt-get install dsc21=2.1.2-1 cassandra=2.1.2 cassandra-tools=2.1.2 ##
 Optional

Installing earlier releases using the binary tarball
1. Download the tarball using the URL for the prior version.

Cassandra 3.0.1 example:

http://downloads.datastax.com/community/dsc-cassandra-3.0.1-bin.tar.gz

Cassandra 2.1.2 example:

http://downloads.datastax.com/community/dsc-cassandra-2.1.2-bin.tar.gz

2. Unpack the distribution. For example:

$ tar -xzvf dsc-cassandra-2.1.2-bin.tar.gz

The files are extracted into the dsc-cassandra-2.1.2 directory.

Uninstalling the DataStax Distribution of Apache Cassandra 3.x
Steps for uninstalling Cassandra by installation type.

Select the uninstall method for your type of installation:

• Debian- and RHEL-based packages
• Binary tarball

Uninstalling Debian- and RHEL-based packages
Use this method when you have installed Apache Cassandra 3.0 using APT or Yum.

1. Stop the Cassandra and DataStax Agent services:

$ sudo service cassandra stop
2. Make sure all services are stopped:

$ ps auwx | grep cassandra
$ ps auwx | grep datastax-agent ## If the DataStax Agent was installed.

3. If services are still running, use the PID to kill the service:

$ sudo kill cassandra_pid
$ sudo kill datastax_agent_pid ## If the DataStax Agent was installed.

4. Remove the library and log directories:

$ sudo rm -r /var/lib/cassandra
$ sudo rm -r /var/log/cassandra

5. Remove the installation directories:

RHEL-based packages:

$ sudo yum remove "cassandra-*" "datastax-*" ## datastax-* required if the
 DataStax Agent was installed.

Debian-based packages:

Installing DataStax Distribution of Apache Cassandra 3.x

70

$ sudo apt-get purge "cassandra-*" "datastax-*" ## datastax-* required if
 the DataStax Agent was installed.

Uninstalling the binary tarball
Use this method when you have installed Apache Cassandra 3.0 using the binary tarball.

1. Stop the node:

$ ps auwx | grep cassandra
$ sudo kill cassandra_pid

2. Stop the DataStax Agent if installed:

$ ps auwx | grep datastax-agent
$ sudo kill datastax_agent_pid

3. Remove the installation directory.

Installing on cloud providers
Installing Cassandra on cloud providers.

You can install Cassandra on cloud providers that supply any of the supported platforms.

You can install Cassandra 2.1 and earlier versions on Amazon EC2 using the DataStax AMI (Amazon
Machine Image) as described in the AMI documentation for Cassandra 2.1.

To install Cassandra 2.2 and later on Amazon EC2, use a trusted AMI for your platform and the
appropriate install method for that platform.

Installing the JDK
Instructions for various platforms.

Installing Oracle JDK on RHEL-based Systems
Steps for installing the Oracle JDK on RHEL-based Systems.

Configure your operating system to use the latest version of Oracle Java Platform, Standard Edition 8.

Procedure
1. Check which version of the JDK your system is using:

$ java -version

If Oracle Java is used, the results should look like:

java version "1.8.0_65"
Java(TM) SE Runtime Environment (build 1.8.0_65-b17)
Java HotSpot(TM) 64-Bit Server VM (build 25.65-b01, mixed mode)

2. If necessary, go to Oracle Java SE Downloads, accept the license agreement, and download the
installer for your distribution.

Note: If installing the Oracle JDK in a cloud environment, accept the license agreement, download the
installer to your local client, and then use scp (secure copy) to transfer the file to your cloud machines.

3. From the directory where you downloaded the package, run the install:

$ sudo rpm -ivh jdk-8uversion-linux-x64.rpm

http://planetcassandra.org/Download/DataStaxCommunityEdition
/en/latest-dsc-ami
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Installing DataStax Distribution of Apache Cassandra 3.x

71

The RPM installs the JDK into the /usr/java/ directory.

4. Set your system to use the Oracle JDK:

$ sudo alternatives --install /usr/bin/java java /usr/java/jdk1.8.0_version/
bin/java 200000

5. Use the alternatives command to switch to the Oracle JDK.

$ sudo alternatives --config jav

Note: If you have trouble, you may need to set JAVA_HOME and PATH in your profile, such as
.bash_profile.

The following examples assume that the JDK is in /usr/java and which java shows /usr/bin/
java:

• Shell or bash:

$ export JAVA_HOME=/usr/java/latest
$ export PATH=$JAVA_HOME/bin:$PATH

• C shell (csh):

$ setenv JAVA_HOME "/usr/java/latest"
$ setenv PATH $JAVA_HOME/bin:$PATH

6. Make sure your system is using the correct JDK:

$ java -version

java version "1.8.0_65"
Java(TM) SE Runtime Environment (build 1.8.0_65-b17)
Java HotSpot(TM) 64-Bit Server VM (build 25.65-b01, mixed mode)

Installing Oracle JDK on Debian or Ubuntu Systems
Steps for installing the Oracle JDK on Debian-based systems.

Configure your operating system to use the latest version of Oracle Java Platform, Standard Edition 8.

The Oracle Java Platform, Standard Edition (JDK) has been removed from the official software repositories
of Ubuntu and only provides a binary (.bin) version. You can get the JDK from the Java SE Downloads.

Procedure
1. Check which version of the JDK your system is using:

$ java -version

If Oracle Java is used, the results should look like:

java version "1.8.0_65"
Java(TM) SE Runtime Environment (build 1.8.0_65-b17)
Java HotSpot(TM) 64-Bit Server VM (build 25.65-b01, mixed mode)

2. If necessary, go to Oracle Java SE Downloads, accept the license agreement, and download the
installer for your distribution.

Note: If installing the Oracle JDK in a cloud environment, accept the license agreement, download the
installer to your local client, and then use scp (secure copy) to transfer the file to your cloud machines.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Installing DataStax Distribution of Apache Cassandra 3.x

72

3. Make a directory for the JDK:

$ sudo mkdir -p /usr/lib/jvm

4. Unpack the tarball and install the JDK:

$ sudo tar zxvf jdk-8u65-linux-x64.tar.gz -C /usr/lib/jvm

The JDK files are installed into a directory called /usr/lib/jvm/jdk-8u_version.

5. Tell the system that there's a new Java version available:

$ sudo update-alternatives --install "/usr/bin/java" "java" "/usr/lib/jvm/
jdk1.8.0_version/bin/java" 1

If updating from a previous version that was removed manually, you many need to execute the above
command twice, because you'll get an error message the first time.

6. Set the new JDK as the default using the following command:

$ sudo update-alternatives --config java

7. Make sure your system is using the correct JDK:

$ java -version

java version "1.8.0_65"
Java(TM) SE Runtime Environment (build 1.8.0_65-b17)
Java HotSpot(TM) 64-Bit Server VM (build 25.65-b01, mixed mode)

Installing OpenJDK on RHEL-based Systems
Steps for installing OpenJDK 8 on RHEL-based Systems.

Configure your operating system to use the OpenJDK 8.

Procedure
In a terminal:

1. Install the OpenJDK 8:

$ su -c "yum install java-1.8.0-openjdk"

2. If you have more than one Java version installed on your system use the following command to switch
versions:

$ sudo alternatives --config java

3. Make sure your system is using the correct JDK:

$ java -version

openjdk version "1.8.0_71"
OpenJDK Runtime Environment (build 1.8.0_71-b15)
OpenJDK 64-Bit Server VM (build 25.71-b15, mixed mode)

Installing OpenJDK on Debian-based Systems
Steps for installing OpenJDK 8 on Debian-based systems.

Configure your operating system to use the OpenJDK 8.

http://openjdk.java.net/
http://openjdk.java.net/

Installing DataStax Distribution of Apache Cassandra 3.x

73

Procedure
In a terminal:

1. Install the OpenJDK 8 from a PPA repository:

$ sudo add-apt-repository ppa:openjdk-r/ppa

2. Update the system package cache and install:

$ sudo apt-get update
$ sudo apt-get install openjdk-8-jdk

3. If you have more than one Java version installed on your system use the following command to switch
versions:

$ sudo update-alternatives --config java

4. Make sure your system is using the correct JDK:

$ java -version

openjdk version "1.8.0_72-internal"
OpenJDK Runtime Environment (build 1.8.0_72-internal-b05)
OpenJDK 64-Bit Server VM (build 25.72-b05, mixed mode)

Recommended production settings for Linux
Recommendations for production environments.

Recommendations for production environments; adjust them accordingly for your implementation.

Java Virtual Machine
The latest 64-bit version of Oracle Java Platform, Standard Edition 8 (JDK) or OpenJDK 7.

Synchronize clocks
The clocks on all nodes should be synchronized. You can use NTP (Network Time Protocol) or other
methods.

This is required because columns are only overwritten if the timestamp in the new version of the column is
more recent than the existing column.

Optimizing SSDs
For the majority of Linux distributions, SSDs are not configured optimally by default. The following steps
ensures best practice settings for SSDs:

1. Ensure that the SysFS rotational flag is set to false (zero).

This overrides any detection by the operating system to ensure the drive is considered an SSD.
2. Repeat for any block devices created from SSD storage, such as mdarrays.
3. Set the IO scheduler to either deadline or noop:

• The noop scheduler is the right choice when the target block device is an array of SSDs behind a
high-end IO controller that performs IO optimization.

• The deadline scheduler optimizes requests to minimize IO latency. If in doubt, use the deadline
scheduler.

4. Set the read-ahead value for the block device to 8KB.

This setting tells the operating system not to read extra bytes, which can increase IO time and pollute
the cache with bytes that weren’t requested by the user.

https://launchpad.net/~openjdk-r/+archive/ubuntu/ppa
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://openjdk.java.net/

Installing DataStax Distribution of Apache Cassandra 3.x

74

For example, if the SSD is /dev/sda, in /etc/rc.local:

echo deadline > /sys/block/sda/queue/scheduler
#OR...
#echo noop > /sys/block/sda/queue/scheduler
echo 0 > /sys/class/block/sda/queue/rotational
echo 8 > /sys/class/block/sda/queue/read_ahead_kb

Disable zone_reclaim_mode on NUMA systems
The Linux kernel can be inconsistent in enabling/disabling zone_reclaim_mode. This can result in odd
performance problems.

To ensure that zone_reclaim_mode is disabled:

$ echo 0 > /proc/sys/vm/zone_reclaim_mode

For more information, see Peculiar Linux kernel performance problem on NUMA systems on page 263.

User resource limits
You can view the current limits using the ulimit -a command. Although limits can also be temporarily
set using this command, DataStax recommends making the changes permanent:

Packaged installs: Ensure that the following settings are included in the /etc/security/limits.d/
cassandra.conf file:

<cassandra_user> - memlock unlimited
<cassandra_user> - nofile 100000
<cassandra_user> - nproc 32768
<cassandra_user> - as unlimited

Tarball installs: In RHEL version 6.x, ensure that the following settings are included in the /etc/
security/limits.conf file:

<cassandra_user> - memlock unlimited
<cassandra_user> - nofile 100000
<cassandra_user> - nproc 32768
<cassandra_user> - as unlimited

If you run Cassandra as root, some Linux distributions such as Ubuntu, require setting the limits for root
explicitly instead of using <cassandra_user>:

root - memlock unlimited
root - nofile 100000
root - nproc 32768
root - as unlimited

For RHEL 6.x-based systems, also set the nproc limits in /etc/security/limits.d/90-nproc.conf:

<cassandra_user> - nproc 32768

For all installations, add the following line to /etc/sysctl.conf:

vm.max_map_count = 131072

To make the changes take effect, reboot the server or run the following command:

$ sudo sysctl -p

Installing DataStax Distribution of Apache Cassandra 3.x

75

To confirm the limits are applied to the Cassandra process, run the following command where pid is the
process ID of the currently running Cassandra process:

$ cat /proc/<pid>/limits

For more information, see Insufficient user resource limits errors.

Disable swap
You must disable swap entirely. Failure to do so can severely lower performance. Because Cassandra
has multiple replicas and transparent failover, it is preferable for a replica to be killed immediately when
memory is low rather than go into swap. This allows traffic to be immediately redirected to a functioning
replica instead of continuing to hit the replica that has high latency due to swapping. If your system has a
lot of DRAM, swapping still lowers performance significantly because the OS swaps out executable code
so that more DRAM is available for caching disks.

If you insist on using swap, you can set vm.swappiness=1. This allows the kernel swap out the absolute
least used parts.

$ sudo swapoff --all

To make this change permanent, remove all swap file entries from /etc/fstab.

For more information, see Nodes seem to freeze after some period of time.

Optimum blockdev --setra settings for RAID on spinning disks
Typically, a readahead of 128 is recommended.

Check to ensure setra is not set to 65536:

$ sudo blockdev --report /dev/<device>

To set setra:

$ sudo blockdev --setra 128 /dev/<device>

Install locations
Install location topics.

Tarball installation directories
Configuration files directory locations.

The configuration files are located in the following directories:

Configuration and sample files Locations Description

cassandra.yaml install_location/
conf

Main configuration file.

cassandra-env.sh install_location/
conf

Linux settings for Java, some JVM, and
JMX.

jvm.options install_location/
conf

Static JVM settings for heap, garbage
collection, and Cassandra startup
parameters.

cassandra.in.sh install_location/
bin

Sets environment variables.

Installing DataStax Distribution of Apache Cassandra 3.x

76

Configuration and sample files Locations Description

cassandra-
rackdc.properties

install_location/
conf

Defines the default data center and rack
used by the GossipingPropertyFileSnitch,
Ec2Snitch, Ec2MultiRegionSnitch, and
GoogleCloudSnitch.

cassandra-
topology.properties

install_location/
conf

Defines the default data center and rack
used by the PropertyFileSnitch.

commit_archiving.propertiesinstall_location/
conf

Configures commitlog archiving.

cqlshrc.sample install_location/
conf

Example file for using cqlsh with SSL
encryption.

metrics-reporter-config-
sample.yaml

install_location/
conf

Example file for configuring metrics in
Cassandra.

logback.xmlcat install_location/
conf

Configuration file for logback.

triggers install_location/
conf

The default location for the trigger JARs.

The binary tarball releases install into the installation directory.

Directories Description

bin Utilities and start scripts.

conf Configuration files and environment settings.

data Directory containing the files for commitlog, data, and saved_caches (unless
set in cassandra.yaml.)

interface Thrift legacy API.

javadoc Cassandra Java API documentation.

lib JAR and license files.

tools Cassandra tools and sample cassandra.yaml files for stress testing.

For DataStax Enterprise installs, see the documentation for your DataStax Enterprise version.

Package installation directories
Configuration files directory locations.

The configuration files are located in the following directories:

Configuration Files Locations Description

cassandra.yaml /etc/cassandra Main configuration file.

cassandra-env.sh /etc/cassandra Linux settings for Java, some JVM, and JMX.

jvm.options /etc/cassandra Static JVM settings for heap, garbage
collection, and Cassandra startup parameters.

cassandra.in.sh /usr/share/cassandra Sets environment variables.

cassandra-
rackdc.properties

/etc/cassandra Defines the default data center and rack
used by the GossipingPropertyFileSnitch,

http://wiki.apache.org/cassandra/Metrics

Configuration

77

Configuration Files Locations Description

Ec2Snitch, Ec2MultiRegionSnitch, and
GoogleCloudSnitch.

cassandra-
topology.properties

/etc/cassandra Defines the default data center and rack used
by the PropertyFileSnitch.

commit_archiving.properties/etc/cassandra Configures commitlog archiving.

cqlshrc.sample /etc/cassandra Example file for using cqlsh with SSL
encryption.

logback.xml /etc/cassandra Configuration file for logback.

triggers /etc/cassandra The default location for the trigger JARs.

The packaged releases install into these directories:

Directories Description

/etc/default

/etc/init.d/
cassandra

Service startup script.

/etc/security/
limits.d

Cassandra user limits.

/etc/cassandra Configuration files.

/usr/bin Binary files.

/usr/sbin

/usr/share/
doc/cassandra/
examples

Sample yaml files for stress testing.

/usr/share/
cassandra

JAR files and environment settings (cassandra.in.sh).

/usr/share/
cassandra/lib

JAR files.

/var/lib/
cassandra

Data, commitlog, and saved_caches directories.

/var/log/
cassandra

Log directory.

/var/run/
cassandra

Runtime files.

For DataStax Enterprise installs, see the documentation for your DataStax Enterprise version.

Configuration
Configuration topics.

Configuration

78

The cassandra.yaml configuration file
The cassandra.yaml file is the main configuration file for Cassandra.

The cassandra.yaml file is the main configuration file for Cassandra.

Important: After changing properties in the cassandra.yaml file, you must restart the node for the
changes to take effect. It is located in the following directories:

• Cassandra package installations: /etc/cassandra
• Cassandra tarball installations: install_location/conf
• DataStax Enterprise package installations: /etc/dse/cassandra
• DataStax Enterprise tarball installations: install_location/resources/cassandra/conf

The configuration properties are grouped into the following sections:

• Quick start

The minimal properties needed for configuring a cluster.
• Commonly used

Properties most frequently used when configuring Cassandra.
• Performance tuning

Tuning performance and system resource utilization, including commit log, compaction, memory, disk I/
O, CPU, reads, and writes.

• Advanced

Properties for advanced users or properties that are less commonly used.
• Security

Server and client security settings.

Note: Values with note indicate default values that are defined internally, missing, commented out, or
implementation depends on other properties in the cassandra.yaml file. Additionally, some commented
out values may not match the actual default value; these values are recommended when changing from
the default.

Quick start properties
The minimal properties needed for configuring a cluster.

Related information: Initializing a multiple node cluster (single data center) on page 116 and Initializing a
multiple node cluster (multiple data centers) on page 119.

cluster_name

(Default: Test Cluster) The name of the cluster. This setting prevents nodes in one logical cluster from joining
another. All nodes in a cluster must have the same value.

listen_address

(Default: localhost) The IP address or hostname that Cassandra binds to for connecting to other Cassandra
nodes. Set this parameter or listen_interface, not both. You must change the default setting for multiple
nodes to communicate:

• Generally set to empty. If the node is properly configured (host name, name resolution, and so on),
Cassandra uses InetAddress.getLocalHost() to get the local address from the system.

• For a single node cluster, you can use the default setting (localhost).
• If Cassandra can't find the correct address, you must specify the IP address or host name.
• Never specify 0.0.0.0; it is always wrong.

listen_interface

Configuration

79

(Default: eth0)note The interface that Cassandra binds to for connecting to other Cassandra nodes. Interfaces
must correspond to a single address, IP aliasing is not supported. See listen_address.

listen_interface_prefer_ipv6

(Default: false) By default, if an interface has an ipv4 and an ipv6 address, the first ipv4 address will be
used. If set to true, the first ipv6 address will be used.

Default directories

If you have changed any of the default directories during installation, make sure you have root access and
set these properties:

commitlog_directory

The directory where the commit log is stored. Default locations:

For optimal write performance, place the commit log be on a separate disk partition, or (ideally) a separate
physical device from the data file directories. Because the commit log is append only, an HDD is acceptable
for this purpose.

data_file_directories

The directory location where table data is stored (in SSTables). Cassandra distributes data evenly across
the location, subject to the granularity of the configured compaction strategy. Default locations:

• Package installations: /var/lib/cassandra/data
• Tarball installations: install_location/data/data

As a production best practice, use RAID 0 and SSDs.

saved_caches_directory

The directory location where table key and row caches are stored. Default location:

• Package installations: /var/lib/cassandra/saved_caches
• Tarball installations: install_location/data/saved_caches

Commonly used properties
Properties most frequently used when configuring Cassandra.

Before starting a node for the first time, you should carefully evaluate your requirements.

Common initialization properties

Note: Be sure to set the properties in the Quick start section as well.

commit_failure_policy

(Default: stop) Policy for commit disk failures:

• die

Shut down gossip and Thrift and kill the JVM, so the node can be replaced.
• stop

Shut down gossip and Thrift, leaving the node effectively dead, but can be inspected using JMX.
• stop_commit

Shut down the commit log, letting writes collect but continuing to service reads (as in pre-2.0.5
Cassandra).

• ignore

Ignore fatal errors and let the batches fail.

disk_optimization_strategy

(Default: ssd) The strategy for optimizing disk reads can be set to either ssd or spinning.

disk_failure_policy

Configuration

80

(Default: stop) Sets how Cassandra responds to disk failure. Recommend settings are stop or best_effort.

• die

Shut down gossip and Thrift and kill the JVM for any file system errors or single SSTable errors, so the
node can be replaced.

• stop_paranoid

Shut down gossip and Thrift even for single SSTable errors.
• stop

Shut down gossip and Thrift, leaving the node effectively dead, but available for inspection using JMX.
• best_effort

Stop using the failed disk and respond to requests based on the remaining available SSTables. This
means you will see obsolete data at consistency level of ONE.

• ignore

Ignores fatal errors and lets the requests fail; all file system errors are logged but otherwise ignored.
Cassandra acts as in versions prior to 1.2.

Related information: Handling Disk Failures In Cassandra 1.2 blog and Recovering from a single disk failure
using JBOD on page 139.

endpoint_snitch

(Default: org.apache.cassandra.locator.SimpleSnitch) Set to a class that implements the
IEndpointSnitch interface. Cassandra uses snitches for locating nodes and routing requests.

• SimpleSnitch

Use for single-data center deployments or single-zone in public clouds. Does not recognize data center
or rack information. It treats strategy order as proximity, which can improve cache locality when disabling
read repair.

• GossipingPropertyFileSnitch

Recommended for production. The rack and data center for the local node are defined in the
cassandra-rackdc.properties file and propagated to other nodes via gossip. To allow migration from the
PropertyFileSnitch, it uses the cassandra-topology.properties file if it is present.

The location of the cassandra-rackdc.properties file depends on the type of installation:

Package installations /etc/cassandra/cassandra-
rackdc.properties

Tarball installations install_location/conf/cassandra-
rackdc.properties

The location of the cassandra-topology.properties file depends on the type of installation:

Package installations /etc/cassandra/cassandra-
topology.properties

Tarball installations install_location/conf/cassandra-
topology.properties

• PropertyFileSnitch

Determines proximity by rack and data center, which are explicitly configured in the cassandra-
topology.properties file.

• Ec2Snitch

http://www.datastax.com/dev/blog/handling-disk-failures-in-cassandra-1-2

Configuration

81

For EC2 deployments in a single region. Loads region and availability zone information from the EC2
API. The region is treated as the data center and the availability zone as the rack. Uses only private IPs.
Subsequently it does not work across multiple regions.

• Ec2MultiRegionSnitch

Uses public IPs as the broadcast_address to allow cross-region connectivity. This means you must also
set seed addresses to the public IP and open the storage_port or ssl_storage_port on the public IP
firewall. For intra-region traffic, Cassandra switches to the private IP after establishing a connection.

• RackInferringSnitch:

Proximity is determined by rack and data center, which are assumed to correspond to the 3rd and 2nd
octet of each node's IP address, respectively. This snitch is best used as an example for writing a custom
snitch class (unless this happens to match your deployment conventions).

• GoogleCloudSnitch:

Use the GoogleCloudSnitch for Cassandra deployments on Google Cloud Platform across one or more
regions. The region is treated as a data center and the availability zones are treated as racks within the
data center. All communication occurs over private IP addresses within the same logical network.

• CloudstackSnitch

Use the CloudstackSnitch for Apache Cloudstack environments.

Related information: Snitches on page 20

rpc_address

(Default: localhost) The listen address for client connections (Thrift RPC service and native transport).Valid
values are:

• unset:

Resolves the address using the hostname configuration of the node. If left unset, the hostname must
resolve to the IP address of this node using /etc/hostname, /etc/hosts, or DNS.

• 0.0.0.0:

Listens on all configured interfaces, but you must set the broadcast_rpc_address to a value other than
0.0.0.0.

• IP address
• hostname

Related information: Network

rpc_interface

(Default: eth1)note The listen address for client connections. Interfaces must correspond to a single address,
IP aliasing is not supported. See rpc_address.

rpc_interface_prefer_ipv6

(Default: false) By default, if an interface has an ipv4 and an ipv6 address, the first ipv4 address will be
used. If set to true, the first ipv6 address will be used.

seed_provider

The addresses of hosts deemed contact points. Cassandra nodes use the -seeds list to find each other and
learn the topology of the ring.

• class_name (Default: org.apache.cassandra.locator.SimpleSeedProvider)

The class within Cassandra that handles the seed logic. It can be customized, but this is typically not
required.

• - seeds (Default: 127.0.0.1)

A comma-delimited list of IP addresses used by gossip for bootstrapping new nodes joining a cluster.
When running multiple nodes, you must change the list from the default value. In multiple data-center
clusters, it is a good idea to include at least one node from each data center (replication group) in

https://cloud.google.com/
http://cloudstack.apache.org/

Configuration

82

the seed list. Designating more than a single seed node per data center is recommended for fault
tolerance. Otherwise, gossip has to communicate with another data center when bootstrapping a node.
Making every node a seed node is not recommended because of increased maintenance and reduced
gossip performance. Gossip optimization is not critical, but it is recommended to use a small seed list
(approximately three nodes per data center).

Related information: Initializing a multiple node cluster (single data center) on page 116 and Initializing a
multiple node cluster (multiple data centers) on page 119.

enable_user_defined_functions

(Default: false) User defined functions (UDFs) present a security risk, since they are executed on the server
side. In Cassandra 3.0 and later, UDFs are executed in a sandbox to contain the execution of malicious
code. They are disabled by default.

enable_scripted_user_defined_functions

(Default: false) Java UDFs are always enabled, if enable_user_defined_functions is true. Enable
this option to use UDFs with language javascript or any custom JSR-223 provider. This option has no
effect, if enable_user_defined_functions is false.

Common compaction settings

compaction_throughput_mb_per_sec

(Default: 16) Throttles compaction to the specified total throughput across the instance. The faster you insert
data, the faster you need to compact in order to keep the SSTable count down. The recommended value
is 16 to 32 times the rate of write throughput (in MB/second). Setting the value to 0 disables compaction
throttling.

Related information: Configuring compaction on page 158

compaction_large_partition_warning_threshold_mb

(Default: 100) Logs a warning when compacting partitions larger than the set value.

Common disk settings

concurrent_reads

(Default: 32)note For workloads with more data than can fit in memory, the bottleneck is reads fetching data
from disk. Setting to (16 × number_of_drives) allows operations to queue low enough in the stack so that
the OS and drives can reorder them. The default setting applies to both logical volume managed (LVM)
and RAID drives.

concurrent_writes

(Default: 32)note Writes in Cassandra are rarely I/O bound, so the ideal number of concurrent writes depends
on the number of CPU cores in your system. The recommended value is 8 × number_of_cpu_cores.

concurrent_counter_writes

(Default: 32)note Counter writes read the current values before incrementing and writing them back. The
recommended value is (16 × number_of_drives) .

concurrent_batchlog_writes

(Default: 32) Limit the concurrent batchlog writes, similar to concurrent_writes.

concurrent_materialized_view_writes

(Default: 32) Limit the concurrent materialize view writes to the lesser of concurrent reads or concurrent
writes, because there is a read involved in materialized view writes.

Common automatic backup settings

incremental_backups

(Default: false) Backs up data updated since the last snapshot was taken. When enabled, Cassandra creates
a hard link to each SSTable flushed or streamed locally in a backups/ subdirectory of the keyspace data.
Removing these links is the operator's responsibility.

Configuration

83

Related information: Enabling incremental backups on page 136

snapshot_before_compaction

(Default: false) Enable or disable taking a snapshot before each compaction. This option is useful to back
up data when there is a data format change. Be careful using this option because Cassandra does not clean
up older snapshots automatically.

Related information: Configuring compaction on page 158

Common fault detection setting

phi_convict_threshold

(Default: 8)note Adjusts the sensitivity of the failure detector on an exponential scale. Generally this setting
never needs adjusting.

Related information: Failure detection and recovery on page 14

Performance tuning properties
Tuning performance and system resource utilization, including commit log, compaction, memory, disk I/O,
CPU, reads, and writes.

Commit log settings

commitlog_sync

(Default: periodic) The method that Cassandra uses to acknowledge writes in milliseconds:

• periodic: (Default: 10000 milliseconds [10 seconds])

Used with commitlog_sync_period_in_ms to control how often the commit log is synchronized to disk.
Periodic syncs are acknowledged immediately.

• batch: (Default: disabled)note

Used with commitlog_sync_batch_window_in_ms (Default: 2 ms) to control how long Cassandra waits
for other writes before performing a sync. When using this method, writes are not acknowledged until
fsynced to disk.

commitlog_segment_size_in_mb

(Default: 32MB) Sets the size of the individual commitlog file segments. A commitlog segment may be
archived, deleted, or recycled after all its data has been flushed to SSTables. This amount of data can
potentially include commitlog segments from every table in the system. The default size is usually suitable
for most commitlog archiving, but if you want a finer granularity, 8 or 16 MB is reasonable.

This property determines the maximum mutation size, defined as half the segment size. If a mutation's size
exceeds the maximum mutation size, the mutation is rejected. Before increasing the commitlog segment
size of the commitlog segments, investigate why the mutations are larger than expected. Look for underlying
issues with access patterns and data model, because increasing the commitlog segment size is a limited fix.

Related information: Commit log archive configuration on page 113

commitlog_compression

(Default: not enabled) Sets the compressor to use if commit log is compressed. Options are: LZ4, Snappy
or Deflate. The commit log is written uncompressed if a compressor option is not set.

commitlog_total_space_in_mb

(Default: 32MB for 32-bit JVMs, 8192MB for 64-bit JVMs)note Total space used for commit logs. If the
used space goes above this value, Cassandra rounds up to the next nearest segment multiple and flushes
memtables to disk for the oldest commitlog segments, removing those log segments. This reduces the
amount of data to replay on start-up, and prevents infrequently-updated tables from indefinitely keeping
commitlog segments. A small total commitlog space tends to cause more flush activity on less-active tables.

Related information: Configuring memtable throughput on page 157

Configuration

84

Compaction settings

Related information: Configuring compaction on page 158

concurrent_compactors

(Default: Smaller of number of disks or number of cores, with a minimum of 2 and a maximum of 8
per CPU core)note Sets the number of concurrent compaction processes allowed to run simultaneously
on a node, not including validation compactions for anti-entropy repair. Simultaneous compactions
help preserve read performance in a mixed read-write workload by mitigating the tendency of small
SSTables to accumulate during a single long-running compaction. If your data directories are backed by
SSD, increase this value to the number of cores. If compaction running too slowly or too fast, adjust
compaction_throughput_mb_per_sec first.

Note: Increasing concurrent compactors impacts the available disk storage because concurrent
compactions happen in parallel, especially for STCS. Ensure that adequate disk space is available when
increasing this configuration.

sstable_preemptive_open_interval_in_mb

(Default: 50MB) When compacting, the replacement opens SSTables before they are completely written
and uses in place of the prior SSTables for any range previously written. This setting helps to smoothly
transfer reads between the SSTables by reducing page cache churn and keeps hot rows hot.

Memtable settings

memtable_allocation_type

(Default: heap_buffers) Specifies the way Cassandra allocates and manages memtable memory. See Off-
heap memtables in Cassandra 2.1. In releases 3.2.0 and 3.2.1, the only option that works is: heap-buffers
(On heap NIO (non-blocking I/O) buffers).

memtable_cleanup_threshold

(Default: 0.11 1/(memtable_flush_writers + 1))note Ratio of occupied non-flushing memtable size to total
permitted size for triggering a flush of the largest memtable. Larger values mean larger flushes and less
compaction, but also less concurrent flush activity, which can make it difficult to keep your disks saturated
under heavy write load.

file_cache_size_in_mb

(Default: Smaller of 1/4 heap or 512) Total memory to use for SSTable-reading buffers.

buffer_pool_use_heap_if_exhausted

(Default: true, but commented out) Indicates whether to allocate on or off heap when the sstable buffer pool
is exhausted (when the buffer pool has exceeded the maximum memory file_cache_size_in_mb), beyond
which it will not cache buffers but allocate on request.

memtable_flush_writers

(Default: Smaller of number of disks or number of cores with a minimum of 2 and a maximum of 8)note Sets
the number of memtable flush writer threads. These threads are blocked by disk I/O, and each one holds
a memtable in memory while blocked. If your data directories are backed by SSD, increase this setting to
the number of cores.

memtable_heap_space_in_mb

(Default: 1/4 heap)note Total permitted memory to use for memtables. Triggers a flush based on
memtable_cleanup_threshold. Cassandra stops accepting writes when the limit is exceeded until a flush
completes. If unset, sets to default.

Related information: Flushing data from the memtable

memtable_offheap_space_in_mb

(Default: 1/4 heap)note See memtable_heap_space_in_mb.

Related information: Flushing data from the memtable

Cache and index settings

/en/glossary/doc/glossary/gloss_compaction.html
/en/glossary/doc/glossary/gloss_anti_entropy.html
http://www.datastax.com/dev/blog/off-heap-memtables-in-Cassandra-2-1
http://www.datastax.com/dev/blog/off-heap-memtables-in-Cassandra-2-1

Configuration

85

column_index_size_in_kb

(Default: 64) Granularity of the index of rows within a partition. For huge rows, decrease this setting to
improve seek time. If you use key cache, be careful not to make this setting too large because key cache
will be overwhelmed. If you're unsure of the size of the rows, it's best to use the default setting.

index_summary_capacity_in_mb

(Default: 5% of the heap size [empty])note Fixed memory pool size in MB for SSTable index summaries. If
the memory usage of all index summaries exceeds this limit, any SSTables with low read rates shrink their
index summaries to meet this limit. This is a best-effort process. In extreme conditions, Cassandra may
need to use more than this amount of memory.

index_summary_resize_interval_in_minutes

(Default: 60 minutes) How frequently index summaries should be re-sampled. This is done periodically to
redistribute memory from the fixed-size pool to SSTables proportional their recent read rates. To disable,
set to -1. This leaves existing index summaries at their current sampling level.

Disks settings

stream_throughput_outbound_megabits_per_sec

(Default: 200 seconds)note Throttles all outbound streaming file transfers on a node to the specified
throughput. Cassandra does mostly sequential I/O when streaming data during bootstrap or repair, which
can lead to saturating the network connection and degrading client (RPC) performance.

inter_dc_stream_throughput_outbound_megabits_per_sec

(Default: unset)note Throttles all streaming file transfer between the data centers. This setting allows throttles
streaming throughput betweens data centers in addition to throttling all network stream traffic as configured
with stream_throughput_outbound_megabits_per_sec.

trickle_fsync

(Default: false) When doing sequential writing, enabling this option tells fsync to force the operating system
to flush the dirty buffers at a set interval trickle_fsync_interval_in_kb. Enable this parameter to avoid sudden
dirty buffer flushing from impacting read latencies. Recommended to use on SSDs, but not on HDDs.

trickle_fsync_interval_in_kb

(Default: 10240). Sets the size of the fsync in kilobytes.

windows_timer_interval

(Default: 1) The default Windows kernel timer and scheduling resolution is 15.6ms for power conservation.
Lowering this value on Windows can provide much tighter latency and better throughput. However, some
virtualized environments may see a negative performance impact from changing this setting below the
system default. The sysinternals 'clockres' tool can confirm your system's default setting.

Advanced properties
Properties for advanced users or properties that are less commonly used.

Advanced initialization properties

auto_bootstrap

(Default: true) This setting has been removed from default configuration. It makes new (non-seed) nodes
automatically migrate the right data to themselves. When initializing a fresh cluster without data, add
auto_bootstrap: false.

Related information: Initializing a multiple node cluster (single data center) on page 116 and Initializing a
multiple node cluster (multiple data centers) on page 119.

batch_size_warn_threshold_in_kb

(Default: 5KB per batch) Log WARN on any batch size exceeding this value in kilobytes. Caution should be
taken on increasing the size of this threshold as it can lead to node instability.

batch_size_fail_threshold_in_kb

Configuration

86

(Default: 50KB per batch) Fail any batch exceeding this setting. The default value is 10X the value of
batch_size_warn_threshold_in_kb.

broadcast_address

(Default: listen_address)note The IP address a node tells other nodes in the cluster to contact it by. It allows
public and private address to be different. For example, use the broadcast_address parameter in topologies
where not all nodes have access to other nodes by their private IP addresses.

If your Cassandra cluster is deployed across multiple Amazon EC2 regions and you use the
Ec2MultiRegionSnitch, set the broadcast_address to public IP address of the node and the
listen_address to the private IP.

initial_token

(Default: disabled) Used in the single-node-per-token architecture, where a node owns exactly one
contiguous range in the ring space. Setting this property overrides num_tokens.

If you not using vnodes or have num_tokens set it to 1 or unspecified (#num_tokens), you should always
specify this parameter when setting up a production cluster for the first time and when adding capacity. For
more information, see this parameter in the Cassandra 1.1 Node and Cluster Configuration documentation.

This parameter can be used with num_tokens (vnodes) in special cases such as Restoring from a snapshot
on page 136.

num_tokens

(Default: 256) note Defines the number of tokens randomly assigned to this node on the ring when using
virtual nodes (vnodes). The more tokens, relative to other nodes, the larger the proportion of data that
the node stores. Generally all nodes should have the same number of tokens assuming equal hardware
capability. The recommended value is 256. If unspecified (#num_tokens), Cassandra uses 1 (equivalent
to #num_tokens : 1) for legacy compatibility and uses the initial_token setting.

If not using vnodes, comment #num_tokens : 256 or set num_tokens : 1 and use initial_token. If
you already have an existing cluster with one token per node and wish to migrate to vnodes, see Enabling
virtual nodes on an existing production cluster.

Note: If using DataStax Enterprise, the default setting of this property depends on the type of node and
type of install.

allocate_tokens_keyspace

(Default: KEYSPACE) Automatic allocation of num_tokens tokens for this node is triggered. The allocation
algorithm attempts to choose tokens in a way that optimizes replicated load over the nodes in the datacenter
for the replication strategy used by the specified KEYSPACE. The load assigned to each node will be close
to proportional to its number of vnodes.

partitioner

(Default: org.apache.cassandra.dht.Murmur3Partitioner) Distributes rows (by partition key)
across all nodes in the cluster. Any IPartitioner may be used, including your own as long as it is in the
class path. For new clusters use the default partitioner.

Cassandra provides the following partitioners for backwards compatibility:

• RandomPartitioner

• ByteOrderedPartitioner (deprecated)
• OrderPreservingPartitioner (deprecated)

Related information: Partitioners on page 18

storage_port

(Default: 7000) The port for inter-node communication.

tracetype_query_ttl

(Default: 86400) TTL for different trace types used during logging of the query process

tracetype_repair_ttl

/en/archived/cassandra/1.1/docs/configuration/node_configuration#initial-token

Configuration

87

(Default: 604800) TTL for different trace types used during logging of the repair process.

Advanced automatic backup setting

auto_snapshot

(Default: true) Enable or disable whether a snapshot is taken of the data before keyspace truncation or
dropping of tables. To prevent data loss, using the default setting is strongly advised. If you set to false,
you will lose data on truncation or drop.

Key caches and global row properties

When creating or modifying tables, you enable or disable the key cache (partition key cache) or row cache
for that table by setting the caching parameter. Other row and key cache tuning and configuration options
are set at the global (node) level. Cassandra uses these settings to automatically distribute memory for
each table on the node based on the overall workload and specific table usage. You can also configure the
save periods for these caches globally.

Related information: Configuring caches

key_cache_keys_to_save

(Default: disabled - all keys are saved)note Number of keys from the key cache to save.

key_cache_save_period

(Default: 14400 seconds [4 hours]) Duration in seconds that keys are saved in cache. Caches are saved
to saved_caches_directory. Saved caches greatly improve cold-start speeds and has relatively little effect
on I/O.

key_cache_size_in_mb

(Default: empty) A global cache setting for tables. It is the maximum size of the key cache in memory. When
no value is set, the cache is set to the smaller of 5% of the available heap, or 100MB. To disable set to 0.

Related information: setcachecapacity.

row_cache_class_name

(Default: disabled - row cache is not enabled)note Specify which row cache provider to use, OHCProvider
or SerializingCacheProvider. OHCProvider is fully off-heap, SerializingCacheProvider is partially off-heap.

row_cache_keys_to_save

(Default: disabled - all keys are saved)note Number of keys from the row cache to save.

row_cache_size_in_mb

(Default: 0- disabled) Maximum size of the row cache in memory. Row cache can save more time than
key_cache_size_in_mb, but is space-intensive because it contains the entire row. Use the row cache only
for hot rows or static rows. If you reduce the size, you may not get you hottest keys loaded on start up.

row_cache_save_period

(Default: 0- disabled) Duration in seconds that rows are saved in cache. Caches are saved to
saved_caches_directory. This setting has limited use as described in row_cache_size_in_mb.

memory_allocator

(Default: NativeAllocator) The off-heap memory allocator. In addition to caches, this property affects storage
engine meta data. Supported values:

• NativeAllocator
• JEMallocAllocator

Experiments show that jemalloc saves some memory compared to the native allocator because it is more
fragmentation resistant. To use, install jemalloc as a library and modify cassandra-env.sh.

CAUTION: JEMalloc version 3.6.0 or later should be used with option. Known errors occur with earlier
versions.

Counter caches properties

Configuration

88

Counter cache helps to reduce counter locks' contention for hot counter cells. In case of RF = 1 a counter
cache hit will cause Cassandra to skip the read before write entirely. With RF > 1 a counter cache hit will
still help to reduce the duration of the lock hold, helping with hot counter cell updates, but will not allow
skipping the read entirely. Only the local (clock, count) tuple of a counter cell is kept in memory, not the
whole counter, so it's relatively cheap.

Note: Reducing the size counter cache may result in not getting the hottest keys loaded on start-up.

counter_cache_size_in_mb

(Default value: empty)note When no value is specified a minimum of 2.5% of Heap or 50MB. If you perform
counter deletes and rely on low gc_grace_seconds, you should disable the counter cache. To disable, set
to 0.

counter_cache_save_period

(Default: 7200 seconds [2 hours]) Duration after which Cassandra should save the counter cache (keys
only). Caches are saved to saved_caches_directory.

counter_cache_keys_to_save

(Default value: disabled)note Number of keys from the counter cache to save. When disabled all keys are
saved.

Tombstone settings

When executing a scan, within or across a partition, tombstones must be kept in memory to allow returning
them to the coordinator. The coordinator uses them to ensure other replicas know about the deleted rows.
Workloads that generate numerous tombstones may cause performance problems and exhaust the server
heap. See Cassandra anti-patterns: Queues and queue-like datasets. Adjust these thresholds only if you
understand the impact and want to scan more tombstones. Additionally, you can adjust these thresholds at
runtime using the StorageServiceMBean.

Related information: Cassandra anti-patterns: Queues and queue-like datasets

tombstone_warn_threshold

(Default: 1000) The maximum number of tombstones a query can scan before warning.

tombstone_failure_threshold

(Default: 100000) The maximum number of tombstones a query can scan before aborting.

Network timeout settings

range_request_timeout_in_ms

(Default: 10000 milliseconds) The time that the coordinator waits for sequential or index scans to complete.

read_request_timeout_in_ms

(Default: 5000 milliseconds) The time that the coordinator waits for read operations to complete.

counter_write_request_timeout_in_ms

(Default: 5000 milliseconds) The time that the coordinator waits for counter writes to complete.

cas_contention_timeout_in_ms

(Default: 1000 milliseconds) The time that the coordinator continues to retry a CAS (compare and set)
operation that contends with other proposals for the same row.

truncate_request_timeout_in_ms

(Default: 60000 milliseconds) The time that the coordinator waits for truncates (remove all data from a
table) to complete. The long default value allows for a snapshot to be taken before removing the data. If
auto_snapshot is disabled (not recommended), you can reduce this time.

write_request_timeout_in_ms

(Default: 2000 milliseconds) The time that the coordinator waits for write operations to complete.

Related information: Hinted Handoff: repair during write path on page 140

request_timeout_in_ms

/en/cql/3.3/cql/cql_reference/tabProp.html?scroll=tabProp__tabProp_gc_grace
http://www.datastax.com/dev/blog/cassandra-anti-patterns-queues-and-queue-like-datasets
http://www.datastax.com/dev/blog/cassandra-anti-patterns-queues-and-queue-like-datasets

Configuration

89

(Default: 10000 milliseconds) The default time for other, miscellaneous operations.

Related information: Hinted Handoff: repair during write path on page 140

Inter-node settings

cross_node_timeout

(Default: false) Enable or disable operation timeout information exchange between nodes (to accurately
measure request timeouts). If disabled Cassandra assumes the request are forwarded to the replica instantly
by the coordinator, which means that under overload conditions extra time is required for processing already-
timed-out requests..

CAUTION: Before enabling this property make sure NTP (network time protocol) is installed and the times
are synchronized between the nodes.

internode_send_buff_size_in_bytes

(Default: N/A)note Sets the sending socket buffer size in bytes for inter-node calls.

When setting this parameter and internode_recv_buff_size_in_bytes, the buffer size is limited by
net.core.wmem_max. When unset, buffer size is defined by net.ipv4.tcp_wmem. See man tcp and:

• /proc/sys/net/core/wmem_max

• /proc/sys/net/core/rmem_max

• /proc/sys/net/ipv4/tcp_wmem

• /proc/sys/net/ipv4/tcp_wmem

internode_recv_buff_size_in_bytes

(Default: N/A)note Sets the receiving socket buffer size in bytes for inter-node calls.

internode_compression

(Default: all) Controls whether traffic between nodes is compressed. The valid values are:

• all

All traffic is compressed.
• dc

Traffic between data centers is compressed.
• none

No compression.

inter_dc_tcp_nodelay

(Default: false) Enable or disable tcp_nodelay for inter-data center communication. When disabled larger,
but fewer, network packets are sent. This reduces overhead from the TCP protocol itself. However, if cross
data-center responses are blocked, it will increase latency.

streaming_socket_timeout_in_ms

(Default: 3600000 - 1 hour)note Enable or disable socket timeout for streaming operations. When a timeout
occurs during streaming, streaming is retried from the start of the current file. Avoid setting this value too
low, as it can result in a significant amount of data re-streaming.

Native transport (CQL Binary Protocol)

start_native_transport

(Default: true) Enable or disable the native transport server. Uses the same address as the rpc_address,
but the port is different from the rpc_port. See native_transport_port.

native_transport_port

(Default: 9042) Port on which the CQL native transport listens for clients.

native_transport_max_threads

Configuration

90

(Default: 128)note The maximum number of thread handling requests. Similar to rpc_max_threads and differs
as follows:

• Default is different (128 versus unlimited).
• No corresponding native_transport_min_threads.
• Idle threads are stopped after 30 seconds.

native_transport_max_frame_size_in_mb

(Default: 256MB) The maximum size of allowed frame. Frame (requests) larger than this are rejected as
invalid.

native_transport_max_concurrent_connections

(Default: -1) Specifies the maximum number of concurrent client connections. The default value of -1 means
unlimited.

native_transport_max_concurrent_connections_per_ip

(Default: -1) Specifies the maximum number of concurrent client connections per source IP address. The
default value of -1 means unlimited.

RPC (remote procedure call) settings

Settings for configuring and tuning client connections.

broadcast_rpc_address

(Default: unset)note RPC address to broadcast to drivers and other Cassandra nodes. This cannot be set to
0.0.0.0. If blank, it is set to the value of the rpc_address or rpc_interface. If rpc_address or rpc_interfaceis
set to 0.0.0.0, this property must be set.

rpc_port

(Default: 9160) Thrift port for client connections.

start_rpc

(Default: true) Starts the Thrift RPC server.

rpc_keepalive

(Default: true) Enable or disable keepalive on client connections (RPC or native).

rpc_max_threads

(Default: unlimited)note Regardless of your choice of RPC server (rpc_server_type), the number of maximum
requests in the RPC thread pool dictates how many concurrent requests are possible. However, if you are
using the parameter sync in the rpc_server_type, it also dictates the number of clients that can be connected.
For a large number of client connections, this could cause excessive memory usage for the thread stack.
Connection pooling on the client side is highly recommended. Setting a maximum thread pool size acts as a
safeguard against misbehaved clients. If the maximum is reached, Cassandra blocks additional connections
until a client disconnects.

rpc_min_threads

(Default: 16)note Sets the minimum thread pool size for remote procedure calls.

rpc_recv_buff_size_in_bytes

(Default: N/A)note Sets the receiving socket buffer size for remote procedure calls.

rpc_send_buff_size_in_bytes

(Default: N/A)note Sets the sending socket buffer size in bytes for remote procedure calls.

rpc_server_type

(Default: sync) Cassandra provides three options for the RPC server. On Windows, sync is about 30%
slower than hsha. On Linux, sync and hsha performance is about the same, but hsha uses less memory.

• sync: (Default One thread per Thrift connection.)

For a very large number of clients, memory is the limiting factor. On a 64-bit JVM, 180KB is the minimum
stack size per thread and corresponds to your use of virtual memory. Physical memory may be limited
depending on use of stack space.

Configuration

91

• hsha:

Half synchronous, half asynchronous. All Thrift clients are handled asynchronously using a small number
of threads that does not vary with the number of clients and thus scales well to many clients. The RPC
requests are synchronous (one thread per active request).

Note: When selecting this option, you must change the default value (unlimited) of rpc_max_threads.
• Your own RPC server

You must provide a fully-qualified class name of an o.a.c.t.TServerFactory that can create a
server instance.

Advanced fault detection settings

Settings to handle poorly performing or failing nodes.

dynamic_snitch_badness_threshold

(Default: 0.1) Sets the performance threshold for dynamically routing client requests away from a poorly
performing node. Specifically, it controls how much worse a poorly performing node has to be before the
dynamic snitch prefers other replicas over it. A value of 0.2 means Cassandra continues to prefer the static
snitch values until the node response time is 20% worse than the best performing node. Until the threshold
is reached, incoming requests are statically routed to the closest replica (as determined by the snitch). If
the value of this parameter is greater than zero and read_repair_chance is less than 1.0, cache capacity
is maximized across the nodes.

dynamic_snitch_reset_interval_in_ms

(Default: 600000 milliseconds) Time interval to reset all node scores, which allows a bad node to recover.

dynamic_snitch_update_interval_in_ms

(Default: 100 milliseconds) The time interval for how often the snitch calculates node scores. Because score
calculation is CPU intensive, be careful when reducing this interval.

hints_flush_period_in_ms

(Default: 10000) Set how often hints are flushed from internal buffers to disk.

hints_directory

(Default: $CASSANDRA_HOME/data/hints) Set directory where hints are stored.

hinted_handoff_enabled

(Default: true) Enable or disable hinted handoff. To enable per data center, add data center list. For
example: hinted_handoff_enabled: DC1,DC2. A hint indicates that the write needs to be replayed to
an unavailable node. Where Cassandra writes the hint to a hints file on the coordinator node.

Related information: Hinted Handoff: repair during write path on page 140

hinted_handoff_disabled_datacenters

(Default: none) Specify blacklist of data centers that will not perform hinted handoffs. To enable per data
center, add data center list. For example: hinted_handoff_disabled_datacenters: - DC1 - DC2.

Related information: Hinted Handoff: repair during write path on page 140

hinted_handoff_throttle_in_kb

(Default: 1024) Maximum throttle per delivery thread in kilobytes per second. This rate reduces proportionally
to the number of nodes in the cluster. For example, if there are two nodes in the cluster, each delivery thread
will use the maximum rate. If there are three, each node will throttle to half of the maximum, since the two
nodes are expected to deliver hints simultaneously.

max_hint_window_in_ms

(Default: 10800000 milliseconds [3 hours]) Maximum amount of time that hints are generates hints for an
unresponsive node. After this interval, new hints are no longer generated until the node is back up and
responsive. If the node goes down again, a new interval begins. This setting can prevent a sudden demand
for resources when a node is brought back online and the rest of the cluster attempts to replay a large
volume of hinted writes.

/en/cql/3.3/cql/cql_reference/tabProp.html

Configuration

92

Related information: Failure detection and recovery on page 14

max_hints_delivery_threads

(Default: 2) Number of threads with which to deliver hints. In multiple data-center deployments, consider
increasing this number because cross data-center handoff is generally slower.

max_hints_file_size_in_mb

(Default: 128) The maximum size for a single hints file, in megabytes.

batchlog_replay_throttle_in_kb

(Default: 1024KB per second) Total maximum throttle. Throttling is reduced proportionally to the number
of nodes in the cluster.

Request scheduler properties

Settings to handle incoming client requests according to a defined policy. If you need to use these
properties, your nodes are overloaded and dropping requests. It is recommended that you add more nodes
and not try to prioritize requests.

request_scheduler

(Default: org.apache.cassandra.scheduler.NoScheduler) Defines a scheduler to handle incoming
client requests according to a defined policy. This scheduler is useful for throttling client requests in single
clusters containing multiple keyspaces. This parameter is specifically for requests from the client and does
not affect inter-node communication. Valid values are:

• org.apache.cassandra.scheduler.NoScheduler

No scheduling takes place.
• org.apache.cassandra.scheduler.RoundRobinScheduler

Round robin of client requests to a node with a separate queue for each request_scheduler_id property.
• A Java class that implements the RequestScheduler interface.

request_scheduler_id

(Default: keyspace)note An identifier on which to perform request scheduling. Currently the only valid value
is keyspace. See weights.

request_scheduler_options

(Default: disabled) Contains a list of properties that define configuration options for request_scheduler:

• throttle_limit

The number of in-flight requests per client. Requests beyond this limit are queued up until running
requests complete. Recommended value is ((concurrent_reads + concurrent_writes) × 2).

• default_weight: (Default: 1)note

How many requests are handled during each turn of the RoundRobin.
• weights: (Default: Keyspace: 1)

Takes a list of keyspaces. It sets how many requests are handled during each turn of the RoundRobin,
based on the request_scheduler_id.

Thrift interface properties

Legacy API for older clients. CQL is a simpler and better API for Cassandra.

thrift_framed_transport_size_in_mb

(Default: 15) Frame size (maximum field length) for Thrift. The frame is the row or part of the row that the
application is inserting.

thrift_max_message_length_in_mb

(Default: 16) The maximum length of a Thrift message in megabytes, including all fields and internal Thrift
overhead (1 byte of overhead for each frame). Message length is usually used in conjunction with batches.

/en/cql/3.3/cql/cqlIntro.html

Configuration

93

A frame length greater than or equal to 24 accommodates a batch with four inserts, each of which is 24
bytes. The required message length is greater than or equal to 24+24+24+24+4 (number of frames).

Security properties
Server and client security settings.

authenticator

(Default: AllowAllAuthenticator) The authentication backend. It implements IAuthenticator for
identifying users. The available authenticators are:

• AllowAllAuthenticator:

Disables authentication; no checks are performed.
• PasswordAuthenticator

Authenticates users with user names and hashed passwords stored in the system_auth.credentials table.
If you use the default, 1, and the node with the lone replica goes down, you will not be able to log into
the cluster because the system_auth keyspace was not replicated.

Related information: Internal authentication on page 101

internode_authenticator

(Default: enabled)note Internode authentication backend. It implements
org.apache.cassandra.auth.AllowAllInternodeAuthenticator to allows or disallow
connections from peer nodes.

authorizer

(Default: AllowAllAuthorizer) The authorization backend. It implements IAuthenticator to limit access
and provide permissions. The available authorizers are:

• AllowAllAuthorizer

Disables authorization; allows any action to any user.
• CassandraAuthorizer

Stores permissions in system_auth.permissions table. If you use the default, 1, and the node with the
lone replica goes down, you will not be able to log into the cluster because the system_auth keyspace
was not replicated.

Related information: Object permissions on page 103

role_manager

(Default: CassandraRoleManager) Part of the Authentication & Authorization backend that implements
IRoleManager to maintain grants and memberships between roles. Out of the box, Cassandra
provides org.apache.cassandra.auth.CassandraRoleManager, which stores role information in
the system_auth keyspace. Most functions of the IRoleManager require an authenticated login, so unless
the configured IAuthenticator actually implements authentication, most of this functionality will be
unavailable. CassandraRoleManager stores role data in the system_auth keyspace. Please increase
system_auth keyspace replication factor if you use the role manager.

roles_validity_in_ms

(Default: 2000) Fetching permissions can be an expensive operation depending on the authorizer, so this
setting allows flexibility. Validity period for roles cache; set to 0 to disable. Granted roles are cached for
authenticated sessions in AuthenticatedUser and after the period specified here, become eligible for
(async) reload. Will be disabled automatically for AllowAllAuthenticator.

roles_update_interval_in_ms

(Default: 2000) Refresh interval for roles cache, if enabled. Defaults to the same value as
roles_validity_in_ms. After this interval, cache entries become eligible for refresh. Upon next access,
an async reload is scheduled and the old value returned until it completes. If roles_validity_in_ms
is non-zero, then this must be also.

Configuration

94

permissions_validity_in_ms

(Default: 2000) How long permissions in cache remain valid. Depending on the authorizer, such as
CassandraAuthorizer, fetching permissions can be resource intensive. This setting disabled when set
to 0 or when AllowAllAuthorizer is set.

Related information: Object permissions on page 103

permissions_update_interval_in_ms

(Default: same value as permissions_validity_in_ms)note Refresh interval for permissions cache (if enabled).
After this interval, cache entries become eligible for refresh. On next access, an async reload is scheduled
and the old value is returned until it completes. If permissions_validity_in_ms , then this property must be
non-zero.

server_encryption_options

Enable or disable inter-node encryption. You must also generate keys and provide the appropriate key and
trust store locations and passwords. No custom encryption options are currently enabled. The available
options are:

• internode_encryption: (Default: none) Enable or disable encryption of inter-node communication
using the TLS_RSA_WITH_AES_128_CBC_SHA cipher suite for authentication, key exchange, and
encryption of data transfers. Use the DHE/ECDHE ciphers if running in (Federal Information Processing
Standard) FIPS 140 compliant mode. The available inter-node options are:

• all

Encrypt all inter-node communications.
• none

No encryption.
• dc

Encrypt the traffic between the data centers (server only).
• rack

Encrypt the traffic between the racks (server only).
• keystore: (Default: conf/.keystore)

The location of a Java keystore (JKS) suitable for use with Java Secure Socket Extension (JSSE), which
is the Java version of the Secure Sockets Layer (SSL), and Transport Layer Security (TLS) protocols.
The keystore contains the private key used to encrypt outgoing messages.

• keystore_password: (Default: cassandra)

Password for the keystore.
• truststore: (Default: conf/.truststore)

Location of the truststore containing the trusted certificate for authenticating remote servers.
• truststore_password: (Default: cassandra)

Password for the truststore.

The passwords used in these options must match the passwords used when generating the keystore and
truststore. For instructions on generating these files, see Creating a Keystore to Use with JSSE.

The advanced settings are:

• protocol: (Default: TLS)
• algorithm: (Default: SunX509)
• store_type: (Default: JKS)
• cipher_suites: (Default:

TLS_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_256_CBC_SHA)
• require_client_auth: (Default: false)

http://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html#CreateKeystore

Configuration

95

Enables or disables certificate authentication.

Related information: Node-to-node encryption on page 100

client_encryption_options

Enable or disable client-to-node encryption. You must also generate keys and provide the appropriate key
and trust store locations and passwords. No custom encryption options are currently enabled. The available
options are:

• enabled: (Default: false)

To enable, set to true.
• keystore: (Default: conf/.keystore)

The location of a Java keystore (JKS) suitable for use with Java Secure Socket Extension (JSSE), which
is the Java version of the Secure Sockets Layer (SSL), and Transport Layer Security (TLS) protocols.
The keystore contains the private key used to encrypt outgoing messages.

• keystore_password: (Default: cassandra)

Password for the keystore. This must match the password used when generating the keystore and
truststore.

• require_client_auth: (Default: false)

Enables or disables certificate authentication. (Available starting with Cassandra 1.2.3.)
• truststore: (Default: conf/.truststore)

Set if require_client_auth is true.
• truststore_password: <truststore_password>

Set if require_client_auth is true.

The advanced settings are:

• protocol: (Default: TLS)
• algorithm: (Default: SunX509)
• store_type: (Default: JKS)
• cipher_suites: (Default:

TLS_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_256_CBC_SHA)

Related information: Client-to-node encryption on page 98

ssl_storage_port

(Default: 7001) The SSL port for encrypted communication. Unused unless enabled in encryption_options.

native_transport_port_ssl

(Default: 9142) In Cassandra 3.0 and later, an additional dedicated port can be designated for
encryption. If client encryption is enables and native_transport_port_ssl is disabled, the
native_transport_port (default: 9042) will encrypt all traffic. To use both unencrypted and encrypted
traffic, enable native_transport_port_ssl

Cassandra include file
Set environment variables (cassandra.in.sh).

To set environment variables, Cassandra can use the cassandra.in.sh file, located in:

• Tarball installations: install_location/bin/cassandra.in.sh
• Package installations: /usr/share/cassandra/cassandra.in.sh

Configuration

96

Security
Topics for securing Cassandra.

Securing Cassandra
Cassandra provides various security features to the open source community.

Cassandra provides these security features to the open source community.

• SSL encryption

Cassandra provides secure communication between a client machine and a database cluster, and
among nodes in a cluster. Enabling SSL encryption ensures that data in flight is not compromised and
is transferred securely. You can configure client-to-node and node-to-node encryption independently.

• Authentication based on internally controlled login accounts/passwords

Administrators can create users and roles who can be authenticated to Cassandra database clusters
using the CREATE USER or CREATE ROLE command. Internally, Cassandra manages user accounts
and access to the database cluster using passwords. User accounts may be altered and dropped using
CQL.

• Object permission management

Once authenticated into a database cluster using either internal authentication, the next security issue
to be tackled is permission management. What can the user do inside the database? Authorization
capabilities for Cassandra use the familiar GRANT/REVOKE security paradigm to manage object
permissions.

SSL encryption
Topics for using SSL in Cassandra.

The Secure Socket Layer (SSL) is a cryptographic protocol used to secure communications between
computers. For reference, see SSL in wikipedia.

Briefly, it works in the following manner. A client and server are defined as two entities that are
communicating with one another, either software or hardware. These entities must exchange information
to set up trust between them. Each entity that will provide such information must have a generated key
that consists of a private key that only the entity stores and a public key that can be exchanged with
other entities. If the client wants to connect to the server, the client requests the secure connection and
the server sends a certificate that includes its public key. The client checks the validity of the certificate
by exchanging information with the server, which the server validates with its private key. If a two-way
validation is desired, this process must be carried out in both directions. Private keys are stored in the
keystore and public keys are stored in the truststore.

For Cassandra, the entities can be nodes or one of the tools such as cqlsh or nodetool running on
either a local node or a remote node.

Preparing server certificates
Steps to generate SSL certificates for client-to-node encryption or node-to-node encryption.

To use SSL encryption for client-to-node encryption or node-to-node encryption, SSL certificates must
be generated using keytool. If you generate the certificates for one type of encryption, you do not need
to generate them again for the other; the same certificates are used for both. All nodes must have all
the relevant SSL certificates on all nodes. A keystore contains private keys. The truststore contains
SSL certificates for each node. The certificates in the truststore don't require signing by a trusted and
recognized public certification authority.

https://en.wikipedia.org/wiki/Transport_Layer_Security
http://docs.oracle.com/javase/8/docs/technotes/guides/security/SecurityToolsSummary.html

Configuration

97

Procedure
• Generate a private and public key pair on each node of the cluster. Use an alias that identifies the

node. Prompts for the keystore password, dname (first and last name, organizational unit, organization,
city, state, country), and key password. The dname should be generated with the CN value as the IP
address or FQDN for the node.

$ keytool -genkey -keyalg RSA -alias node0 -keystore keystore.node0
• The generation command can also include all prompted-for information in the command line. This

example uses an alias of node0, a keystore name of keystore.node0, uses the same password of
cassandra for both the keystore and the key, and a dname that identifies the IP address of node0 as
172.31.10.22.

$ keytool -genkey -keyalg RSA -alias node0 -keystore keystore.node0 -
storepass cassandra -keypass cassandra -dname "CN=172.31.10.22, OU=None,
 O=None, L=None, C=None"

• Export the public part of the certificate to a separate file.

$ keytool -export -alias cassandra -file node0.cer -keystore .keystore
• Add the node0.cer certificate to the node0 truststore of the node using the keytool -import

command.

$ keytool -import -v -trustcacerts -alias node0 -file node0.cer -keystore
 truststore.node0

• cqlsh does not work with the certificate in the format generated. openssl is used to generate a
PEM file of the certificate with no keys, node0.cer.pem, and a PEM file of the key with no certificate,
node0.key.pem. First, the keystore is imported in PKCS12 format to a destination keystore,
node0.p12, in the example. This is followed by the two commands that extract the two PEM files.

$ keytool -importkeystore -srckeystore keystore.node0 -destkeystore
 node0.p12 -deststoretype PKCS12 -srcstorepass cassandra -deststorepass
 cassandra
openssl pkcs12 -in node0.p12 -nokeys -out node0.cer.pem -passin
 pass:cassandra
openssl pkcs12 -in node0.p12 -nodes -nocerts -out node0.key.pem -passin
 pass:cassandra

• For client-to-remote-node encryption or node-to-node encryption, use a copying tool such as scp to
copy the node0.cer file to each node. Import the file into the truststore after copying to each node.
The example imports the certificate for node0 into the truststore for node1.

$ keytool -import -v -trustcacerts -alias node0 -file node0.cer -keystore
 truststore.node1

• Make sure keystore file is readable only to the Cassandra daemon and not by any user of the system.
• Check that the certificates exist in the keystore and truststore files using keytool -list. The

example shows checking for the node1 certificate in the keystore file and for the node0 and node1
certificates in the truststore file.

$ keytool -list -keystore keystore.node1
keytool -list -keystore truststore.node1

Adding new trusted users
Add new users when client certificate authentication is enabled.

How to add new users when client certificate authentication is enabled.

Configuration

98

Prerequisites
The client certificate authentication must be enabled (require_client_auth=true).

Procedure
1. Generate the certificate as described in Client-to-node encryption on page 98.

2. Import the user's certificate into every node's truststore using keytool:

$ keytool -import -v -trustcacerts -alias <username> -file <certificate
 file> -keystore .truststore

Client-to-node encryption
Client-to-node encryption protects data in flight from client machines to a database cluster using SSL (Secure Sockets Layer).

Client-to-node encryption protects data in flight from client machines to a database cluster using SSL
(Secure Sockets Layer). It establishes a secure channel between the client and the coordinator node.

Prerequisites
All nodes must have all the relevant SSL certificates on all nodes. See Preparing server certificates on
page 96.

To enable client-to-node SSL, you must set the client_encryption_options in the cassandra.yaml file.

Procedure
On each node under client_encryption_options:
• Enable encryption.
• Set the appropriate paths to your .keystore and .truststore files.
• Provide the required passwords. The passwords must match the passwords used when generating the

keystore and truststore.
• To enable client certificate authentication for two-way SSL encryption, set require_client_auth to true.

Enabling this option allows tools like cqlsh to connect to a remote node. If only local access is required,
such as running cqlsh on a local node with SSL encryption, this option is not required. If the options is
set to true, then the truststore and truststore password must also be included.

This example uses the password cassandra for both the keystore and the truststore.

client_encryption_options:
enabled: true
The path to your keystore file; ex: conf/keystore.node0
keystore: conf/keystore.node0
The password for your keystore file
keystore_password: cassandra
The next 3 lines are included if 2-way SSL is desired
require_client_auth: true
The path to your trustore file; ex: conf/truststore.node0
truststore: conf/truststore.node0
The password for your truststore file
truststore_password: cassandra

Note: Cassandra must be restarted after making changes to the cassandra.yaml file.
• Enabling client encryption will encrypt all traffic on the native_transport_port (default: 9042).

If both encrypted and unencrypted traffic is required, an additional cassandra.yaml setting must be
enabled. The native_transport_port_ssl (default: 9142) sets an additional dedicated port to

http://docs.oracle.com/javase/8/docs/technotes/guides/security/SecurityToolsSummary.html

Configuration

99

carry encrypted transmissions, while native_transport_port carries unencrypted transmissions.
It is beneficial to install the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy
Files if this option is enabled.

Using cqlsh with SSL encryption
Using a cqlshrc file with SSL encryption.

Using a cqlshrc file is the easiest method of getting cqlshrc settings. The cqlshrc.sample provides an
example that can be copied as a starting point.

Procedure
1. To run cqlsh with SSL encryption, create a .cassandra/cqlshrc file in your home or client program

directory. The following settings must be added to the file. When validate is enabled, the host in the
certificate is compared to the host of the machine that it is connected to verify that the certificate is
trusted.

[authentication]
username = fred
password = !!bang!!$

[connection]
hostname = 127.0.0.1
port = 9042
factory = cqlshlib.ssl.ssl_transport_factory

[ssl]
certfile = ~/keys/node0.cer.pem
Optional, true by default
validate = true
The next 2 lines must be provided when require_client_auth = true in the
 cassandra.yaml file
userkey = ~/node0.key.pem
usercert = ~/node0.cer.pem

[certfiles]
Optional section, overrides the default certfile in the [ssl] section
 for 2 way SSL
172.31.10.22 = ~/keys/node0.cer.pem
172.31.8.141 = ~/keys/node1.cer.pem

Note: The use of the same IP addresses in the [certfiles] as is used to generate the dname of
the certificates is required for 2 way SSL encryption. Each node must have a line in the [certfiles]
section for client-to-remote-node or node-to-node. The SSL certificate must be provided either in the
configuration file or as an environment variable. The environment variables (SSL_CERTFILE and
SSL_VALIDATE) override any options set in this file.

2. Start cqlsh with the --ssl option for cqlsh to local node encrypted connection.

$ cqlsh --ssl ## Package installations
$ install_location/bin/cqlsh --ssl ## Tarball installations

3. Start cqlsh with the --ssl option for cqlsh and an IP address for remote node encrypted connection.

$ cqlsh --ssl ## Package installations
$ install_location/bin/cqlsh --ssl 172.31.10.22 ## Tarball installations

/en/cql/3.3/cql/cql_reference/cqlsh.html
/en/cql/3.3/cql/cql_reference/cqlsh.html

Configuration

100

Using nodetool (JMX) with SSL
Using nodetool with SSL encryption.

Using nodetool with SSL requires some JMX setup. Changes to cassandra-env.sh are required, and a
configuration file, ~/.cassandra/nodetool-ssl.properties, is created.

Procedure
1. First, follow steps #1-8 in Enabling JMX authentication on page 104.

2. To run nodetool with SSL encryption, some additional changes are required to cassandra-env.sh.
The following settings must be added to the file. Use the file path to the keystore and truststore, and
appropriate passwords for each file.

 JVM_OPTS="$JVM_OPTS -Djavax.net.ssl.keyStore=/home/automaton/
keystore.node0"
 JVM_OPTS="$JVM_OPTS -Djavax.net.ssl.keyStorePassword=cassandra"
 JVM_OPTS="$JVM_OPTS -Djavax.net.ssl.trustStore=/home/automaton/
truststore.node0"
 JVM_OPTS="$JVM_OPTS -Djavax.net.ssl.trustStorePassword=cassandra"
 JVM_OPTS="$JVM_OPTS -
Dcom.sun.management.jmxremote.ssl.need.client.auth=true"
 JVM_OPTS="$JVM_OPTS -Dcom.sun.management.jmxremote.registry.ssl=true"

3. Restart Cassandra.

4. To run nodetool with SSL encryption, create a .cassandra/nodetool-ssl.properties file in
your home or client program directory with the following settings.

-Djavax.net.ssl.keyStore=/home/automaton/keystore.node0
-Djavax.net.ssl.keyStorePassword=cassandra
-Djavax.net.ssl.trustStore=/home/automaton/truststore.node0
-Djavax.net.ssl.trustStorePassword=cassandra
-Dcom.sun.management.jmxremote.ssl.need.client.auth=true
-Dcom.sun.management.jmxremote.registry.ssl=true

5. Start nodetool with the --ssl option for encrypted connection for any nodetool operation.

$ nodetool --ssl info ## Package installations
$ install_location/bin/nodetool -ssl info ## Tarball installations

Node-to-node encryption
Node-to-node encryption protects data transferred between nodes in a cluster, including gossip communications, using SSL (Secure Sockets Layer).

Node-to-node encryption protects data transferred between nodes in a cluster, including gossip
communications, using SSL (Secure Sockets Layer).

Prerequisites
All nodes must have all the relevant SSL certificates on all nodes. See Preparing server certificates on
page 96.

To enable node-to-node SSL, you must set the server_encryption_options in the cassandra.yaml file.

Procedure
On each node under sever_encryption_options:
• Enable internode_encryption.

Configuration

101

The available options are:

• all
• none
• dc: Cassandra encrypts the traffic between the data centers.
• rack: Cassandra encrypts the traffic between the racks.

• Set the appropriate paths to your keystore and truststore files.
• Provide the required passwords. The passwords must match the passwords used when generating the

keystore and truststore.
• To enable 2 way certificate authentication, set require_client_auth to true.

Example
server_encryption_options:
 internode_encryption: all
 keystore: /conf/keystore.node0
 keystore_password: cassandra
 truststore: /conf/truststore.node0
 truststore_password: cassandra
 require_client_auth: true

What to do next
Cassandra must be restarted after making changes to the cassandra.yaml file. Use the nodetool utility to
check of all nodes are up after making the changes.

$ cqlsh --ssl ## Package installations
$ install_location/bin/nodetool ring ## Tarball installations

Internal authentication
Topics about internal authentication.

Internal authentication
Internal authentication is based on Cassandra-controlled login accounts and passwords.

Like object permission management using internal authorization, internal authentication is based on
Cassandra-controlled login accounts and passwords. Internal authentication works for the following clients
when you provide a user name and password to start up the client:

• Astyanax
• cqlsh
• DataStax drivers - produced and certified by DataStax to work with Cassandra.
• Hector
• pycassa

Internal authentication stores usernames and bcrypt-hashed passwords in the system_auth.credentials
table.

PasswordAuthenticator is an IAuthenticator implementation that you can use to configure Cassandra for
internal authentication out-of-the-box.

http://www.datastax.com/download#dl-datastax-drivers

Configuration

102

Configuring authentication
Steps for configuring authentication.

To configure Cassandra to use internal authentication, first make a change to the cassandra.yaml file and
increase the replication factor of the system_auth keyspace, as described in this procedure. Next, start up
Cassandra using the default user name and password (cassandra/cassandra), and start cqlsh using the
same credentials. Finally, use these CQL statements to set up user accounts to authorize users to access
the database objects:

• ALTER ROLE
• ALTER USER
• CREATE ROLE
• CREATE USER
• DROP ROLE
• DROP USER
• LIST ROLES
• LIST USERS

Note: To configure authorization, see Internal authorization on page 103.

Procedure
1. Change the authenticator option in the cassandra.yaml file to PasswordAuthenticator.

By default, the authenticator option is set to AllowAllAuthenticator.

authenticator: PasswordAuthenticator

2. Change the system_auth keyspace setting to Increase the replication factor. The recommended setting
is 3 to 5 nodes per Data Center.

If you use the default, 1, and the node with the lone replica goes down, you will not be able to log into
the cluster because the system_auth keyspace was not replicated.

3. Restart the Cassandra client.

The default superuser name and password that you use to start the client is stored in Cassandra.

$ client_startup_string -u cassandra -p cassandra

4. Start cqlsh using the superuser name and password.

$ cqlsh -u cassandra -p cassandra

5. Create another superuser, not named cassandra. This step is optional but highly recommended.

6. Log in as that new superuser.

7. Change the cassandra user password to something long and incomprehensible, and then forget about
it. It won't be used again.

8. Take away the cassandra user's superuser status.

9. Use the CQL statements listed previously to set up user accounts and then grant permissions to access
the database objects.

Logging in using cqlsh
How to create a cqlshrc file to avoid having enter credentials every time you launch cqlsh.

Typically, after configuring authentication, you log into cqlsh using the -u and -p options to the cqlsh
command. To avoid having enter credentials every time you launch cqlsh, you can create a .cassandra/
cqlshrc file. When present, this file passes default login information to cqlsh. The cqlshrc.sample
provides an example.

/en/cql/3.3/cql/cql_reference/alter_role.html
/en/cql/3.3/cql/cql_reference/alter_user_r.html
/en/cql/3.3/cql/cql_reference/create_role.html
/en/cql/3.3/cql/cql_reference/create_user_r.html
/en/cql/3.3/cql/cql_reference/drop_role.html
/en/cql/3.3/cql/cql_reference/drop_user_r.html
/en/cql/3.3/cql/cql_reference/list_roles.html
/en/cql/3.3/cql/cql_reference/list_users_r.html
/en/cql/3.3/cql/cql_reference/alter_keyspace_r.html
/en/glossary/doc/glossary/gloss_superuser.html

Configuration

103

Procedure
1. Open a text editor and create a file that specifies a user name and password.

[authentication]
username = fred
password = !!bang!!$

2. Save the file in your home/.cassandra directory and name it cqlshrc.

3. Set permissions on the file.

To protect database login information, ensure that the file is secure from unauthorized access.

Internal authorization
Topics about internal authorization.

Object permissions
Granting or revoking permissions to access Cassandra data.

Cassandra provides the familiar relational database GRANT/REVOKE paradigm to control access to
Cassandra data. A superuser, or the creator a keyspace, table, function etc. can grant initial permissions
to a user. These permissions may or may not include the ability for the user to grant/revoke permissions to
other users. Object permission management is based on internal authorization.

Read access to these system tables is implicitly given to every authenticated user or role because the
tables are used by most Cassandra tools:

• system_schema.keyspaces
• system_schema.columns
• system_schema.tables
• system.local
• system.peers

Configuring internal authorization
Steps for adding the CassandraAuthorizer.

CassandraAuthorizer is one of many possible IAuthorizer implementations. Its advantage is that it stores
permissions in the system_auth.permissions table to support all authorization-related CQL statements. To
activate it, change the authorizer option in cassandra.yaml to use the CassandraAuthorizer.

Note: To configure authentication, see Internal authorization on page 103.

Procedure
1. In the cassandra.yaml file, comment out the default AllowAllAuthorizer and add the

CassandraAuthorizer.

authorizer: CassandraAuthorizer

You can use any authenticator except AllowAll.

2. Configure the replication factor for the system_auth keyspace to increase the replication factor to a
number greater than 1.

3. Adjust the validity period for permissions caching by setting the permissions_validity_in_ms option in
the cassandra.yaml file.

Alternatively, disable permission caching by setting this option to 0.

/en/glossary/doc/glossary/gloss_superuser.html
/en/cql/3.3/cql/cql_reference/alter_keyspace_r.html

Configuration

104

Results
CQL supports these authorization statements:

• GRANT
• LIST PERMISSIONS
• REVOKE

Configuring firewall port access
Which ports to open when nodes are protected by a firewall.

If you have a firewall running on the nodes in your Cassandra cluster, you must open up the following ports
to allow communication between the nodes, including certain Cassandra ports. If this isn’t done, when
you start Cassandra on a node, the node acts as a standalone database server rather than joining the
database cluster.

Table: Public port

Port number Description

22 SSH port

Table: Cassandra inter-node ports

Port number Description

7000 Cassandra inter-node cluster communication.

7001 Cassandra SSL inter-node cluster communication.

7199 Cassandra JMX monitoring port.

Table: Cassandra client ports

Port number Description

9042 Cassandra client port.

9160 Cassandra client port (Thrift).

9142 Default for native_transport_port_ssl, useful when both encrypted and unencrypted connections are required

Related concepts
Planning an Amazon EC2 cluster on page 58
Important information for deploying a production Cassandra cluster on Amazon EC2.

Enabling JMX authentication
Steps to enable remote JMX connections.

The default settings for Cassandra make JMX accessible only from localhost. If you want to enable remote
JMX connections, change the LOCAL_JMX setting in cassandra-env.sh and enable authentication
and/or SSL. After enabling JMX authentication, ensure that tools that use JMX, such as nodetool, are
configured to use authentication.

Procedure
1. Open the cassandra-env.sh file for editing and update or add these lines:

JVM_OPTS="$JVM_OPTS -Dcom.sun.management.jmxremote.authenticate=true"

/en/cql/3.3/cql/cql_reference/grant_r.html
/en/cql/3.3/cql/cql_reference/list_permissions_r.html
/en/cql/3.3/cql/cql_reference/revoke_r.html

Configuration

105

JVM_OPTS="$JVM_OPTS -Dcom.sun.management.jmxremote.password.file=/etc/
cassandra/jmxremote.password"

If the LOCAL_JMX setting is in your file, set:

LOCAL_JMX=no

2. Copy the jmxremote.password.template from jdk_install_location/lib/management/ to
/etc/cassandra/ and rename it to jmxremote.password:

$ cp jdk_install_location/lib/management/jmxremote.password.template /etc/
cassandra/jmxremote.password

Note: This is a sample path. Set the location of this file in jdk_install_location/lib/
management/management.properties.

3. Edit jmxremote.password and add the user and password for JMX-compliant utilities:

monitorRole QED
controlRole R&D
cassandra cassandrapassword ## Specify the credentials for your
 environment.

4. For the user running Cassandra, change the ownership of jmxremote.password and change
permissions to read only:

$ chown cassandra:cassandra /etc/cassandra/jmxremote.password
$ chmod 400 /etc/cassandra/jmxremote.password

5. Add the cassandra user with read permission to jdk_install_location/lib/management/
jmxremote.access:

monitorRole readonly
cassandra readwrite
controlRole readwrite \
create javax.management.monitor.,javax.management.timer. \
unregister

6. Restart Cassandra.

7. Run nodetool status with the cassandra user and password.

$ nodetool status -u cassandra -pw cassandra

Example
If you run nodetool status without user and password, you see an error similar to:

Exception in thread "main" java.lang.SecurityException: Authentication failed!
 Credentials required
at
 com.sun.jmx.remote.security.JMXPluggableAuthenticator.authenticationFailure(Unknown
 Source)
at com.sun.jmx.remote.security.JMXPluggableAuthenticator.authenticate(Unknown
 Source)
at sun.management.jmxremote.ConnectorBootstrap
$AccessFileCheckerAuthenticator.authenticate(Unknown Source)
at javax.management.remote.rmi.RMIServerImpl.doNewClient(Unknown Source)
at javax.management.remote.rmi.RMIServerImpl.newClient(Unknown Source)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at sun.rmi.server.UnicastServerRef.dispatch(Unknown Source)

Configuration

106

at sun.rmi.transport.Transport$1.run(Unknown Source)
at sun.rmi.transport.Transport$1.run(Unknown Source)
at java.security.AccessController.doPrivileged(Native Method)
at sun.rmi.transport.Transport.serviceCall(Unknown Source)
at sun.rmi.transport.tcp.TCPTransport.handleMessages(Unknown Source)
at sun.rmi.transport.tcp.TCPTransport$ConnectionHandler.run0(Unknown Source)
at sun.rmi.transport.tcp.TCPTransport$ConnectionHandler.run(Unknown Source)
at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
at java.lang.Thread.run(Unknown Source)
at sun.rmi.transport.StreamRemoteCall.exceptionReceivedFromServer(Unknown
 Source)
at sun.rmi.transport.StreamRemoteCall.executeCall(Unknown Source)
at sun.rmi.server.UnicastRef.invoke(Unknown Source)
at javax.management.remote.rmi.RMIServerImpl_Stub.newClient(Unknown Source)
at javax.management.remote.rmi.RMIConnector.getConnection(Unknown Source)
at javax.management.remote.rmi.RMIConnector.connect(Unknown Source)
at javax.management.remote.JMXConnectorFactory.connect(Unknown Source)
at org.apache.cassandra.tools.NodeProbe.connect(NodeProbe.java:146)
at org.apache.cassandra.tools.NodeProbe.<init>(NodeProbe.java:116)
at org.apache.cassandra.tools.NodeCmd.main(NodeCmd.java:1099)

Configuring gossip settings
Using the cassandra.yaml file to configure gossip.

When a node first starts up, it looks at its cassandra.yaml configuration file to determine the name of the
Cassandra cluster it belongs to; which nodes (called seeds) to contact to obtain information about the other
nodes in the cluster; and other parameters for determining port and range information.

Procedure
In the cassandra.yaml file, set the following parameters:

Property Description

cluster_name Name of the cluster that this node is joining. Must
be the same for every node in the cluster.

listen_address The IP address or hostname that Cassandra binds
to for connecting to other Cassandra nodes.

listen_interface Use this option instead of listen_address to
specify the network interface by name, rather than
address/hostname

(Optional) broadcast_address The IP address a node tells other nodes in the
cluster to contact it by. It allows public and private
address to be different. For example, use the
broadcast_address parameter in topologies
where not all nodes have access to other nodes
by their private IP addresses. The default is the
listen_address.

seed_provider A -seeds list is comma-delimited list of hosts
(IP addresses) that gossip uses to learn the
topology of the ring. Every node should have
the same list of seeds. In multiple data-center
clusters, it is a good idea to include at least one
node from each data center (replication group)
in the seed list. Designating more than a single

Configuration

107

Property Description

seed node per data center is recommended
for fault tolerance. Otherwise, gossip has to
communicate with another data center when
bootstrapping a node. Making every node a
seed node is not recommended because of
increased maintenance and reduced gossip
performance. Gossip optimization is not critical,
but it is recommended to use a small seed list
(approximately three nodes per data center).

storage_port The inter-node communication port (default is
7000). Must be the same for every node in the
cluster.

initial_token For legacy clusters. Used in the single-node-per-
token architecture, where a node owns exactly
one contiguous range in the ring space.

num_tokens For new clusters. Defines the number of tokens
randomly assigned to this node on the ring when
using virtual nodes (vnodes).

Configuring the heap dump directory
Analyzing the heap dump file can help troubleshoot memory problems.

Analyzing the heap dump file can help troubleshoot memory problems. Cassandra starts Java with the
option -XX:+HeapDumpOnOutOfMemoryError. Using this option triggers a heap dump in the event of
an out-of-memory condition. The heap dump file consists of references to objects that cause the heap to
overflow. By default, Cassandra puts the file a subdirectory of the working, root directory when running as
a service. If Cassandra does not have write permission to the root directory, the heap dump fails. If the root
directory is too small to accommodate the heap dump, the server crashes.

To ensure that a heap dump succeeds and to prevent crashes, configure a heap dump directory that is:

• Accessible to Cassandra for writing
• Large enough to accommodate a heap dump

Base the size of the directory on the value of the Java -mx option.

Procedure
Set the location of the heap dump in the cassandra-env.sh file.

1. Open the cassandra-env.sh file for editing.

2. Scroll down to the comment about the heap dump path:

set jvm HeapDumpPath with CASSANDRA_HEAPDUMP_DIR

3. On the line after the comment, set the CASSANDRA_HEAPDUMP_DIR to the path you want to use:

set jvm HeapDumpPath with CASSANDRA_HEAPDUMP_DIR CASSANDRA_HEAPDUMP_DIR
 =<path>

4. Save the cassandra-env.sh file and restart.

Configuration

108

Configuring virtual nodes
Topics about configuring virtual nodes.

Enabling virtual nodes on a new cluster
Steps and recommendations for enabling virtual nodes (vnodes) on a new cluster.

Generally when all nodes have equal hardware capability, they should have the same number of virtual
nodes (vnodes). If the hardware capabilities vary among the nodes in your cluster, assign a proportional
number of vnodes to the larger machines. For example, you could designate your older machines to use
128 vnodes and your new machines (that are twice as powerful) with 256 vnodes.

Procedure
Set the number of tokens on each node in your cluster with the num_tokens parameter in the
cassandra.yaml file.

The recommended value is 256. Do not set the initial_token parameter.

Related information
Install locations on page 75
Install location topics.

Enabling virtual nodes on an existing production cluster
Steps and recommendations for enabling virtual nodes (vnodes) on an existing production cluster.

You cannot directly convert a single-token nodes to a vnode. However, you can configure another data
center configured with vnodes already enabled and let Cassandra automatic mechanisms distribute the
existing data into the new nodes. This method has the least impact on performance.

Procedure
1. Add a new data center to the cluster.

2. Once the new data center with vnodes enabled is up, switch your clients to use the new data center.

3. Run a full repair with nodetool repair.

This step ensures that after you move the client to the new data center that any previous writes are
added to the new data center and that nothing else, such as hints, is dropped when you remove the old
data center.

4. Update your schema to no longer reference the old data center.

5. Remove the old data center from the cluster.

See Decommissioning a data center on page 129.

Using multiple network interfaces
Steps for configuring Cassandra for multiple network interfaces or when using different regions in cloud implementations.

How to configure Cassandra for multiple network interfaces or when using different regions in cloud
implementations.

You must configure settings in both the cassandra.yaml file and the property file (cassandra-
rackdc.properties or cassandra-topology.properties) used by the snitch.

Configuration

109

Configuring cassandra.yaml for multiple networks or across regions in
cloud implementations
In multiple networks or cross-region cloud scenarios, communication between data centers can only take
place using an external IP address. The external IP address is defined in the cassandra.yaml file using
the broadcast_address setting. Configure each node as follows:

1. In the cassandra.yaml, set the listen_address to the private IP address of the node, and the
broadcast_address to the public address of the node.

This allows Cassandra nodes to bind to nodes in another network or region, thus enabling multiple
data-center support. For intra-network or region traffic, Cassandra switches to the private IP after
establishing a connection.

2. Set the addresses of the seed nodes in the cassandra.yaml file to that of the public IP. Private IP are
not routable between networks. For example:

seeds: 50.34.16.33, 60.247.70.52

Note: Do not make all nodes seeds, see Internode communications (gossip) on page 14.
3. Be sure that the storage_port or ssl_storage_port is open on the public IP firewall.

CAUTION: Be sure to enable encryption and authentication when using public IPs. See Node-to-node
encryption on page 100. Another option is to use a custom VPN to have local, inter-region/ data center
IPs.

Additional cassandra.yaml configuration for non-EC2 implementations
If multiple network interfaces are used in a non-EC2 implementation, enable the
listen_on_broadcast_address option.

listen_on_broadcast_address: true

In non-EC2 environments, the public address to private address routing is not automatically enabled.
Enabling listen_on_broadcast_address allows Cassandra to listen on both listen_address and
broadcast_address with two network interfaces.

Configuring the snitch for multiple networks
External communication between the data centers can only happen when using the broadcast_address
(public IP).

The GossipingPropertyFileSnitch on page 22 is recommended for production. The cassandra-
rackdc.properties file defines the data centers used by this snitch. Enable the option prefer_local
to ensure that traffic to broadcast_address will re-route to listen_address.

For each node in the network, specify its data center in cassandra-rackdc.properties file.

In the example below, there are two cassandra data centers and each data center is named for its
workload. The data center naming convention in this example is based on the workload. You can use other
conventions, such as DC1, DC2 or 100, 200. (Data center names are case-sensitive.)

Network A Network B

Node and data center:

• node0

dc=DC_A_cassandra
rack=RAC1

• node1

dc=DC_A_cassandra

Node and data center:

• node0

dc=DC_A_cassandra
rack=RAC1

• node1

dc=DC_A_cassandra

Configuration

110

Network A Network B

rack=RAC1
• node2

dc=DC_B_cassandra
rack=RAC1

• node3

dc=DC_B_cassandra
rack=RAC1

• node4

dc=DC_A_analytics
rack=RAC1

• node5

dc=DC_A_search
rack=RAC1

rack=RAC1
• node2

dc=DC_B_cassandra
rack=RAC1

• node3

dc=DC_B_cassandra
rack=RAC1

• node4

dc=DC_A_analytics
rack=RAC1

• node5

dc=DC_A_search
rack=RAC1

Configuring the snitch for cross-region communication in cloud
implementations
Note: Be sure to use the appropriate snitch for your implementation. If your deploying on Amazon EC2,
see the instructions in Ec2MultiRegionSnitch on page 23.

In cloud deployments, the region name is treated as the data center name and availability zones are
treated as racks within a data center. For example, if a node is in the us-east-1 region, us-east is the data
center name and 1 is the rack location. (Racks are important for distributing replicas, but not for data center
naming.)

In the example below, there are two cassandra data centers and each data center is named for its
workload. The data center naming convention in this example is based on the workload. You can use other
conventions, such as DC1, DC2 or 100, 200. (Data center names are case-sensitive.)

For each node, specify its data center in the cassandra-rackdc.properties. The dc_suffix option defines the
data centers used by the snitch. Any other lines are ignored.

Region: us-east Region: us-west

Node and data center:

• node0

dc_suffix=_1_cassandra

• node1

dc_suffix=_1_cassandra

• node2

dc_suffix=_2_cassandra

• node3

dc_suffix=_2_cassandra

• node4

dc_suffix=_1_analytics

• node5

dc_suffix=_1_search

Node and data center:

• node0

dc_suffix=_1_cassandra

• node1

dc_suffix=_1_cassandra

• node2

dc_suffix=_2_cassandra

• node3

dc_suffix=_2_cassandra

• node4

dc_suffix=_1_analytics

• node5

dc_suffix=_1_search

Configuration

111

Region: us-east Region: us-west

This results in four us-east data centers:

us-east_1_cassandra
us-east_2_cassandra
us-east_1_analytics
us-east_1_search

This results in four us-west data centers:

us-west_1_cassandra
us-west_2_cassandra
us-west_1_analytics
us-west_1_search

Configuring logging
Cassandra logging functionality using Simple Logging Facade for Java (SLF4J) with a logback backend.

Cassandra provides logging functionality using Simple Logging Facade for Java (SLF4J) with a logback
backend. Logs are written to the system.log and debug.login the Cassandra logging directory. You
can configure logging programmatically or manually. Manual ways to configure logging are:

• Run the nodetool setlogginglevel command.
• Configure the logback-test.xml or logback.xml file installed with Cassandra.
• Use the JConsole tool to configure logging through JMX.

Logback looks for logback-test.xml first, and then for logback.xml file.

The XML configuration files looks like this:

<configuration scan="true">
 <jmxConfigurator />
 <appender name="FILE"
 class="ch.qos.logback.core.rolling.RollingFileAppender">
 <file>${cassandra.logdir}/system.log</file>
 <rollingPolicy
 class="ch.qos.logback.core.rolling.FixedWindowRollingPolicy">
 <fileNamePattern>${cassandra.logdir}/system.log.%i.zip</
fileNamePattern>
 <minIndex>1</minIndex>
 <maxIndex>20</maxIndex>
 </rollingPolicy>

 <triggeringPolicy
 class="ch.qos.logback.core.rolling.SizeBasedTriggeringPolicy">
 <maxFileSize>20MB</maxFileSize>
 </triggeringPolicy>
 <encoder>
 <pattern>%-5level [%thread] %date{ISO8601} %F:%L - %msg%n</pattern>
 <!-- old-style log format
 <pattern>%5level [%thread] %date{ISO8601} %F (line %L) %msg%n</
pattern>
 -->
 </encoder>
 </appender>

 <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
 <encoder>
 <pattern>%-5level %date{HH:mm:ss,SSS} %msg%n</pattern>
 </encoder>
 </appender>

 <root level="INFO">
 <appender-ref ref="FILE" />
 <appender-ref ref="STDOUT" />
 </root>

http://logback.qos.ch/
http://logback.qos.ch/manual/configuration.html

Configuration

112

 <logger name="com.thinkaurelius.thrift" level="ERROR"/>
</configuration>

The appender configurations specify where to print the log and its configuration. The first appender directs
logs to a file. The second appender directs logs to the console. You can change the following logging
functionality:

• Rolling policy

• The policy for rolling logs over to an archive
• Location and name of the log file
• Location and name of the archive
• Minimum and maximum file size to trigger rolling

• Format of the message
• The log level

Log levels
The valid values for setting the log level include ALL for logging information at all levels, TRACE through
ERROR, and OFF for no logging. TRACE creates the most verbose log, and ERROR, the least.

• ALL
• TRACE
• DEBUG
• INFO (Default)
• WARN
• ERROR
• OFF

Note: Increasing logging levels can generate heavy logging output on a moderately trafficked cluster.

You can use the nodetool getlogginglevels command to see the current logging configuration.

$ nodetool getlogginglevels
Logger Name Log Level
ROOT INFO
com.thinkaurelius.thrift ERROR

To add debug logging to a class permanently using the logback framework, use nodetool
setlogginglevel to check you have the right class before you set it in the logback.xml file in
install_location/conf. Modify to include the following line or similar at the end of the file:

<logger name="org.apache.cassandra.gms.FailureDetector" level="DEBUG"/>

Restart the node to invoke the change.

Migrating to logback from log4j
If you upgrade from a previous version of Cassandra that used log4j, you can convert log4j.properties files
to logback.xml using the logback PropertiesTranslator web-application.

Using log file rotation
The default policy rolls the system.log file after the size exceeds 20MB. Archives are compressed in zip
format. Logback names the log files system.log.1.zip, system.log.2.zip, and so on. For more
information, see logback documentation.

http://logback.qos.ch/translator/
http://logback.qos.ch/manual/appenders.html#FixedWindowRollingPolicy

Configuration

113

Commit log archive configuration
Cassandra provides commit log archiving and point-in-time recovery.

Cassandra provides commit log archiving and point-in-time recovery. The commit log is archived at node
startup and when a commit log is written to disk, or at a specified point-in-time. You configure this feature
in the commitlog_archiving.properties configuration file.

The commands archive_command and restore_command expect only a single command with
arguments. The parameters must be entered verbatim. STDOUT and STDIN or multiple commands cannot
be executed. To workaround, you can script multiple commands and add a pointer to this file. To disable a
command, leave it blank.

Procedure
• Archive a commit log segment:

Command archive_command=

%path Fully qualified path of the segment to archive.Parameters

%name Name of the commit log.

Example archive_command=/bin/ln %path /backup/%name

• Restore an archived commit log:

Command restore_command=

%from Fully qualified path of the an archived commitlog segment from the restore_directories.Parameters

%to Name of live commit log directory.

Example restore_command=cp -f %from %to

• Set the restore directory location:

Command restore_directories=

Format restore_directories=restore_directory_location

• Restore mutations created up to and including the specified timestamp:

Command restore_point_in_time=

Format <timestamp> (YYYY:MM:DD HH:MM:SS)

Example restore_point_in_time=2013:12:11 17:00:00

Restore stops when the first client-supplied timestamp is greater than the restore point timestamp.
Because the order in which Cassandra receives mutations does not strictly follow the timestamp order,
this can leave some mutations unrecovered.

Generating tokens
If not using virtual nodes (vnodes), you must calculate tokens for your cluster.

If not using virtual nodes (vnodes), you must calculate tokens for your cluster.

The following topics in the Cassandra 1.1 documentation provide conceptual information about tokens:

• Data Distribution in the Ring
• Replication Strategy

/en/archived/cassandra/1.1/docs/cluster_architecture/partitioning.html#data-distribution-in-the-ring
/en/archived/cassandra/1.1/docs/cluster_architecture/replication.html#replication-strategy

Configuration

114

About calculating tokens for single or multiple data centers in Cassandra
1.2 and later
• Single data center deployments: calculate tokens by dividing the hash range by the number of nodes in

the cluster.
• Multiple data center deployments: calculate the tokens for each data center so that the hash range is

evenly divided for the nodes in each data center.

For more explanation, see be sure to read the conceptual information mentioned above.

The method used for calculating tokens depends on the type of partitioner:

Calculating tokens for the Murmur3Partitioner
Use this method for generating tokens when you are not using virtual nodes (vnodes) and using the
Murmur3Partitioner (default). This partitioner uses a maximum possible range of hash values from -263 to
+263-1. To calculate tokens for this partitioner:

$ python -c "print [str(((2**64 / number_of_tokens) * i) - 2**63) for i in
 range(number_of_tokens)]"

For example, to generate tokens for 6 nodes:

$ python -c "print [str(((2**64 / 6) * i) - 2**63) for i in range(6)]"

The command displays the token for each node:

['-9223372036854775808', '-6148914691236517206', '-3074457345618258604',
 '-2', '3074457345618258600', '6148914691236517202']

Calculating tokens for the RandomPartitioner
To calculate tokens when using the RandomPartitioner in Cassandra 1.2 clusters, use the Cassandra 1.1
Token Generating Tool.

Hadoop support
Cassandra support for integrating Hadoop with Cassandra.

Cassandra support for integrating Hadoop with Cassandra includes:

• MapReduce

Notice: Apache Pig is no longer supported as of Cassandra 3.0.

You can use Cassandra 3.0 with Hadoop 2.x or 1.x with some restrictions:

• You must run separate data centers: one or more data centers with nodes running just Cassandra (for
Online Transaction Processing) and others with nodes running C* & with Hadoop installed. See Isolate
Cassandra and Hadoop for details.

• Before starting the data centers of Cassandra/Hadoop nodes, disable virtual nodes (vnodes).

Note: You only need to disable vnodes in data centers with nodes running Cassandra AND Hadoop.

To disable virtual nodes:

1. In the cassandra.yaml file, set num_tokens to 1.
2. Uncomment the initial_token property and set it to 1 or to the value of a generated token for a multi-

node cluster.
3. Start the cluster for the first time.

You cannot convert single-token nodes to vnodes. See Enabling virtual nodes on an existing production
clusterfor another option.

/en/archived/cassandra/1.1/docs/initialize/token_generation.html

Configuration

115

Setup and configuration, described in the Apache docs, involves overlaying a Hadoop cluster on
Cassandra nodes, configuring a separate server for the Hadoop NameNode/JobTracker, and installing
a Hadoop TaskTracker and Data Node on each Cassandra node. The nodes in the Cassandra data
center can draw from data in the HDFS Data Node as well as from Cassandra. The Job Tracker/Resource
Manager (JT/RM) receives MapReduce input from the client application. The JT/RM sends a MapReduce
job request to the Task Trackers/Node Managers (TT/NM) and an optional clients MapReduce. The data is
written to Cassandra and results sent back to the client.

The Apache docs also cover how to get configuration and integration support.

Input and Output Formats
Hadoop jobs can receive data from CQL tables and indexes and can write their output to Cassandra tables
as well as to the Hadoop FileSystem. Cassandra 3.0 supports the following formats for these tasks:

• CqlInputFormat class: for importing job input into the Hadoop filesystem from CQL tables
• CqlOutputFormat class: for writing job output from the Hadoop filesystem to CQL tables
• CqlBulkOutputFormat class: generates Cassandra SSTables from the output of Hadoop jobs, then

loads them into the cluster using the SSTableLoaderBulkOutputFormat class

Reduce tasks can store keys (and corresponding bound variable values) as CQL rows (and respective
columns) in a given CQL table.

Running the wordcount example
Wordcount example JARs are located in the examples directory of the Cassandra source
code installation. There are CQL and legacy examples in the hadoop_cql3_word_count and
hadoop_word_count subdirectories, respectively. Follow instructions in the readme files.

http://wiki.apache.org/cassandra/HadoopSupport

Initializing a cluster

116

Isolating Hadoop and Cassandra workloads
When you create a keyspace using CQL, Cassandra creates a virtual data center for a cluster, even a one-
node cluster, automatically. You assign nodes that run the same type of workload to the same data center.
The separate, virtual data centers for different types of nodes segregate workloads running Hadoop from
those running Cassandra. Segregating workloads ensures that only one type of workload is active per data
center. Separating nodes running a sequential data load, from nodes running any other type of workload,
such as Cassandra real-time OLTP queries is a best practice.

Initializing a cluster
Topics for deploying a cluster.

Initializing a multiple node cluster (single data center)
A deployment scenario for a Cassandra cluster with a single data center.

This topic contains information for deploying a Cassandra cluster with a single data center. If you're new
to Cassandra, and haven't set up a cluster, see Planning a cluster deployment or 10 Minute Cassandra
Walkthrough.

Prerequisites
Each node must be correctly configured before starting the cluster. You must determine or perform the
following before starting the cluster:

• A good understanding of how Cassandra works. At minimum, be sure to read Understanding the
architecture on page 11, especially the Data replication section, and Cassandra's rack feature.

• Install Cassandra on each node.
• Choose a name for the cluster.
• Get the IP address of each node.
• Determine which nodes will be seed nodes. Do not make all nodes seed nodes. Please read

Internode communications (gossip) on page 14.
• Determine the snitch and replication strategy. The GossipingPropertyFileSnitch on page 22 and

NetworkTopologyStrategy are recommended for production environments.
• Determine a naming convention for each rack. For example, good names are RAC1, RAC2 or R101,

R102.
• The cassandra.yaml configuration file, and property files such as cassandra-rackdc.properties,

give you more configuration options. See the Configuration section for more information.

This example describes installing a 6 node cluster spanning 2 racks in a single data center. Each node is
configured to use the GossipingPropertyFileSnitch and 256 virtual nodes (vnodes).

In Cassandra, "Data center" is synonymous with "replication group". Both terms refer to a set of nodes
configured as a group for replication purposes.

Procedure
1. Suppose you install Cassandra on these nodes:

node0 110.82.155.0 (seed1)
node1 110.82.155.1
node2 110.82.155.2
node3 110.82.156.3 (seed2)

http://www.planetcassandra.org/Try-Cassandra/
http://www.planetcassandra.org/Try-Cassandra/

Initializing a cluster

117

node4 110.82.156.4
node5 110.82.156.5

Note: It is a best practice to have more than one seed node per data center.

2. If you have a firewall running in your cluster, you must open certain ports for communication between
the nodes. See Configuring firewall port access on page 104.

3. If Cassandra is running, you must stop the server and clear the data:

Doing this removes the default cluster_name (Test Cluster) from the system table. All nodes must use
the same cluster name.

Package installations:

a) Stop Cassandra:

$ sudo service cassandra stop
b) Clear the data:

$ sudo rm -rf /var/lib/cassandra/data/system/*

Tarball installations:

a) Stop Cassandra:

$ ps auwx | grep cassandra
$ sudo kill pid

b) Clear the data:

$ sudo rm -rf /var/lib/cassandra/data/data/system/*

4. Set the properties in the cassandra.yaml file for each node:

Note: After making any changes in the cassandra.yaml file, you must restart the node for the
changes to take effect.

Properties to set:

• num_tokens: recommended value: 256
• -seeds: internal IP address of each seed node

In new clusters. Seed nodes don't perform bootstrap (the process of a new node joining an existing
cluster.)

• internal IP address of each seed node

Seed nodes do not bootstrap, which is the process of a new node joining an existing cluster. For
new clusters, the bootstrap process on seed nodes is skipped.

• listen_address:

If not set, Cassandra asks the system for the local address, the one associated with its hostname.
In some cases Cassandra doesn't produce the correct address and you must specify the
listen_address.

• endpoint_snitch: name of snitch (See endpoint_snitch.) If you are changing snitches, see Switching
snitches on page 130.

• auto_bootstrap: false (Add this setting only when initializing a fresh cluster with no data.)

Note: If the nodes in the cluster are identical in terms of disk layout, shared libraries, and so on, you
can use the same cassandra.yaml file on all of them.

Example:

cluster_name: 'MyCassandraCluster'
num_tokens: 256
seed_provider:

/en/glossary/doc/glossary/gloss_bootstrap.html
/en/glossary/doc/glossary/gloss_bootstrap.html

Initializing a cluster

118

 - class_name: org.apache.cassandra.locator.SimpleSeedProvider
 parameters:
 - seeds: "110.82.155.0,110.82.155.3"
listen_address:
rpc_address: 0.0.0.0
endpoint_snitch: GossipingPropertyFileSnitch

If rpc_address is set to a wildcard address (0.0.0.0), then broadcast_rpc_address must be set, or the
service won't even start.

5. In the cassandra-rackdc.properties file, assign the data center and rack names you determined
in the Prerequisites. For example:

indicate the rack and dc for this node
dc=DC1
rack=RAC1

6. After you have installed and configured Cassandra on all nodes, start the seed nodes one at a time,
and then start the rest of the nodes.

Note: If the node has restarted because of automatic restart, you must first stop the node and clear the
data directories, as described above.

Package installations:

$ sudo service cassandra start

Tarball installations:

$ cd install_location
$ bin/cassandra

7. To check that the ring is up and running, run:

Package installations:

$ nodetool status

Tarball installations:

$ cd install_location
$ bin/nodetool status

The output should list each node, and show its status as UN (Up Normal).

Related information
Install locations on page 75

Initializing a cluster

119

Install location topics.

Initializing a multiple node cluster (multiple data centers)
A deployment scenario for a Cassandra cluster with multiple data centers.

This topic contains information for deploying a Cassandra cluster with multiple data centers. If you're new
to Cassandra, and haven't set up a cluster, see Planning a cluster deployment or 10 Minute Cassandra
Walkthrough.

This example describes installing a six node cluster spanning two data centers. Each node is configured to
use the GossipingPropertyFileSnitch (multiple rack aware) and 256 virtual nodes (vnodes).

In Cassandra, "Data center" is synonymous with "replication group". Both terms refer to a set of nodes
configured as a group for replication purposes.

Prerequisites
Each node must be correctly configured before starting the cluster. You must determine or perform the
following before starting the cluster:

• A good understanding of how Cassandra works. At minimum, be sure to read Understanding the
architecture on page 11 (especially the Data replication on page 18 section) and the rack feature
of Cassandra.

• Install Cassandra on each node.
• Choose a name for the cluster.
• Get the IP address of each node.
• Determine which nodes will be seed nodes. Do not make all nodes seed nodes. Please read

Internode communications (gossip) on page 14.
• Determine the snitch and replication strategy. The GossipingPropertyFileSnitch on page 22 and

NetworkTopologyStrategy are recommended for production environments.
• Determine a naming convention for each data center and rack. Examples: DC1, DC2 or 100, 200 /

RAC1, RAC2 or R101, R102. Choose the name carefully; renaming a data center is not possible.
• The cassandra.yaml configuration file, and property files such as cassandra-rackdc.properties,

give you more configuration options. See the Configuration section for more information.

Procedure
1. Suppose you install Cassandra on these nodes:

node0 10.168.66.41 (seed1)
node1 10.176.43.66
node2 10.168.247.41
node3 10.176.170.59 (seed2)
node4 10.169.61.170
node5 10.169.30.138

Note: It is a best practice to have more than one seed node per data center.

2. If you have a firewall running in your cluster, you must open certain ports for communication between
the nodes. See Configuring firewall port access on page 104.

3. If Cassandra is running, you must stop the server and clear the data:

Doing this removes the default cluster_name (Test Cluster) from the system table. All nodes must use
the same cluster name.

Package installations:

a) Stop Cassandra:

http://www.planetcassandra.org/Try-Cassandra/
http://www.planetcassandra.org/Try-Cassandra/

Initializing a cluster

120

$ sudo service cassandra stop
b) Clear the data:

$ sudo rm -rf /var/lib/cassandra/data/system/*

Tarball installations:

a) Stop Cassandra:

$ ps auwx | grep cassandra
$ sudo kill pid

b) Clear the data:

$ sudo rm -rf /var/lib/cassandra/data/data/system/*

4. Set the properties in the cassandra.yaml file for each node:

Note: After making any changes in the cassandra.yaml file, you must restart the node for the
changes to take effect.

Properties to set:

• num_tokens: recommended value: 256
• -seeds: internal IP address of each seed node

In new clusters. Seed nodes don't perform bootstrap (the process of a new node joining an existing
cluster.)

• internal IP address of each seed node

Seed nodes do not bootstrap, which is the process of a new node joining an existing cluster. For
new clusters, the bootstrap process on seed nodes is skipped.

• listen_address:

If not set, Cassandra asks the system for the local address, the one associated with its hostname.
In some cases Cassandra doesn't produce the correct address and you must specify the
listen_address.

• endpoint_snitch: name of snitch (See endpoint_snitch.) If you are changing snitches, see Switching
snitches on page 130.

• auto_bootstrap: false (Add this setting only when initializing a fresh cluster with no data.)

Note: If the nodes in the cluster are identical in terms of disk layout, shared libraries, and so on, you
can use the same cassandra.yaml file on all of them.

Example:

cluster_name: 'MyCassandraCluster'
num_tokens: 256
seed_provider:
 - class_name: org.apache.cassandra.locator.SimpleSeedProvider
 parameters:
 - seeds: "10.168.66.41,10.176.170.59"
listen_address:
endpoint_snitch: GossipingPropertyFileSnitch

Note: Include at least one node from each data center in the seeds list.

5. In the cassandra-rackdc.properties file, assign the data center and rack names you determined
in the Prerequisites. For example:

Nodes 0 to 2

Indicate the rack and dc for this node
dc=DC1

/en/glossary/doc/glossary/gloss_bootstrap.html
/en/glossary/doc/glossary/gloss_bootstrap.html

Initializing a cluster

121

rack=RAC1

Nodes 3 to 5

Indicate the rack and dc for this node
dc=DC2
rack=RAC1

6. After you have installed and configured Cassandra on all nodes, start the seed nodes one at a time,
and then start the rest of the nodes.

Note: If the node has restarted because of automatic restart, you must first stop the node and clear the
data directories, as described above.

Package installations:

$ sudo service cassandra start

Tarball installations:

$ cd install_location
$ bin/cassandra

7. To check that the ring is up and running, run:

Package installations:

$ nodetool status

Tarball installations:

$ cd install_location
$ bin/nodetool status

The output should list each node, and show its status as UN (Up Normal).

Related information
Install locations on page 75
Install location topics.

Starting and stopping Cassandra
Topics for starting and stopping Cassandra.

Starting Cassandra as a service
Start the Cassandra Java server process for packaged installations.

Start the Cassandra Java server process for packaged installations.

Startup scripts are provided in the /etc/init.d directory. The service runs as the cassandra user.

Initializing a cluster

122

Procedure
You must have root or sudo permissions to start Cassandra as a service.

On initial start-up, each node must be started one at a time, starting with your seed nodes:

$ sudo service cassandra start

On Enterprise Linux systems, the Cassandra service runs as a java process.

Starting Cassandra as a stand-alone process
Start the Cassandra Java server process for tarball installations.

Start the Cassandra Java server process for tarball installations.

Procedure
On initial start-up, each node must be started one at a time, starting with your seed nodes.
• To start Cassandra in the background:

$ cd install_location
$ bin/cassandra

• To start Cassandra in the foreground:

$ cd install_location
$ bin/cassandra -f

Stopping Cassandra as a service
Stopping the Cassandra Java server process on packaged installations.

Stopping the Cassandra Java server process on packaged installations.

Procedure

You must have root or sudo permissions to stop the Cassandra service:

$ sudo service cassandra stop

Stopping Cassandra as a stand-alone process
Stop the Cassandra Java server process on tarball installations.

Stop the Cassandra Java server process on tarball installations.

Procedure
Find the Cassandra Java process ID (PID), and then kill the process using its PID number:

$ ps auwx | grep cassandra
$ sudo kill pid

Clearing the data as a service
Remove all data from a package installation. Special instructions for AMI restart.

Remove all data from a package installation.

Operations

123

Procedure
To clear the data from the default directories:

After stopping the service, run the following command:

$ sudo rm -rf /var/lib/cassandra/*

Note: If you are clearing data from an AMI installation for restart, you need to preserve the log files.

Clearing the data as a stand-alone process
Remove data from a tarball installation.

Remove data from a tarball installation.

Procedure
• To clear all data from the default directories, including the commitlog and saved_caches:

a) Stop the process.
b) Run the following command from the install directory:

$ cd install_location
$ sudo rm -rf data/*

• To clear the only the data directory:

a) Stop the process.
b) Run the following command from the install directory:

$ cd install_location
$ sudo rm -rf data/data/*

Operations
Cassandra operation topics.

Adding or removing nodes, data centers, or clusters
Topics for adding or removing nodes, data centers, or clusters.

Adding nodes to an existing cluster
Steps to add nodes when using virtual nodes.

Virtual nodes (vnodes) greatly simplify adding nodes to an existing cluster:

• Calculating tokens and assigning them to each node is no longer required.
• Rebalancing a cluster is no longer necessary because a node joining the cluster assumes responsibility

for an even portion of the data.

For a detailed explanation about how vnodes work, see Virtual nodes on page 16.

Note: If you do not use vnodes, see Adding or replacing single-token nodes on page 132.

Procedure
Be sure to install the same version of Cassandra as is installed on the other nodes in the cluster. See
Installing earlier releases.

/en/cassandra/2.1/cassandra/install/installAMIcleardata.html

Operations

124

1. Install Cassandra on the new nodes, but do not start Cassandra.

If your Cassandra installation on Debian or Windows starts automatically, you must stop the node and
clear the data.

2. Depending on the snitch used in the cluster, set either the properties in the cassandra-
topology.properties or the cassandra-rackdc.properties file:

• The PropertyFileSnitch uses the cassandra-topology.properties file.
• The GossipingPropertyFileSnitch, Ec2Snitch, Ec2MultiRegionSnitch, and GoogleCloudSnitch use

the cassandra-rackdc.properties file.

The location of the cassandra-topology.properties file depends on the type of installation:

Package installations /etc/cassandra/cassandra-
topology.properties

Tarball installations install_location/conf/cassandra-
topology.properties

The location of the cassandra-rackdc.properties file depends on the type of installation:

Package installations /etc/cassandra/cassandra-
rackdc.properties

Tarball installations install_location/conf/cassandra-
rackdc.properties

3. Set the following properties in the cassandra.yaml file:

auto_bootstrap

If this option has been set to false, you must set it to true. This option is not listed in the default
cassandra.yaml configuration file and defaults to true.

cluster_name

The name of the cluster the new node is joining.

listen_address/broadcast_address

Can usually be left blank. Otherwise, use IP address or host name that other Cassandra nodes use to
connect to the new node.

endpoint_snitch

The snitch Cassandra uses for locating nodes and routing requests.

num_tokens

The number of vnodes to assign to the node. If the hardware capabilities vary among the nodes in your
cluster, you can assign a proportional number of vnodes to the larger machines.

seed_provider

Make sure that the new node lists at least one node in the existing cluster. The -seeds list determines which
nodes the new node should contact to learn about the cluster and establish the gossip process.

Note: Seed nodes cannot bootstrap. Make sure the new node is not listed in the -seeds list. Do not make
all nodes seed nodes. Please read Internode communications (gossip) on page 14.

Other non-default settings

Change any other non-default settings you have made to your existing cluster in the cassandra.yaml
file and cassandra-topology.properties or cassandra-rackdc.properties files. Use the diff
command to find and merge any differences between existing and new nodes.

4. Start the bootstrap node.

5. Use nodetool status to verify that the node is fully bootstrapped and all other nodes are up (UN) and not
in any other state.

/en/glossary/doc/glossary/gloss_bootstrap.html

Operations

125

6. After all new nodes are running, run nodetool cleanup on each of the previously existing nodes to
remove the keys that no longer belong to those nodes. Wait for cleanup to complete on one node
before running nodetool cleanup on the next node.

Cleanup can be safely postponed for low-usage hours.

Related tasks
Starting Cassandra as a service on page 121
Start the Cassandra Java server process for packaged installations.

Starting Cassandra as a stand-alone process on page 122
Start the Cassandra Java server process for tarball installations.

Related reference
The nodetool utility on page 163
A command line interface for managing a cluster.

Related information
Install locations on page 75
Install location topics.

Adding a data center to a cluster
Steps for adding a data center to an existing cluster.

Steps for adding a data center to an existing cluster.

Procedure
Be sure to install the same version of Cassandra as is installed on the other nodes in the cluster. See
Installing earlier releases.

1. Ensure that you are using NetworkTopologyStrategy for all of your keyspaces.

2. For each new node you are adding to the cluster, set the following properties in the cassandra.yaml file:

a) Add (or edit) auto_bootstrap: false.

By default, this setting is true and not listed in the cassandra.yaml file. Setting this parameter to
false prevents the new nodes from attempting to get all the data from the other nodes in the data
center. When you run nodetool rebuild in the last step, each node is properly mapped.

b) Set other properties, such as -seeds and endpoint_snitch, to match the cluster settings.

For more guidance, see Initializing a multiple node cluster (multiple data centers) on page 119.

Note: Do not make all nodes seeds, see Internode communications (gossip) on page 14.
c) If you want to enable vnodes, set num_tokens.

The recommended value is 256. Do not set the initial_token parameter.

3. Update the relevant property file for snitch used on all servers to include the new nodes. You do not
need to restart.

• GossipingPropertyFileSnitch on page 22: cassandra-rackdc.properties
• PropertyFileSnitch: cassandra-topology.properties

4. Ensure that your clients are configured correctly for the new cluster:

• If your client uses the DataStax Java, C#, or Python driver, set the load-balancing policy to
DCAwareRoundRobinPolicy (Java, C#, Python).

• If you are using another client such as Hector, make sure it does not auto-detect the new nodes so
that they aren't contacted by the client until explicitly directed. For example if you are using Hector,
use sethostConfig.setAutoDiscoverHosts(false);. If you are using Astyanax, use
ConnectionPoolConfigurationImpl.setLocalDatacenter("<data center name">) to
ensure you are connecting to the specified data center.

http://www.datastax.com/drivers/java/2.0/com/datastax/driver/core/policies/DCAwareRoundRobinPolicy.html
http://www.datastax.com/drivers/csharp/apidocs/html/74972c38-2e00-0ecd-e8c1-7247e6e6f820.htm
http://datastax.github.io/python-driver/api/cassandra/policies.html#cassandra.policies.DCAwareRoundRobinPolicy

Operations

126

• If you are using Astyanax 2.x, with integration with the DataStax Java Driver 2.0,
you can set the load-balancing policy to DCAwareRoundRobinPolicy by calling
JavaDriverConfigBuilder.withLoadBalancingPolicy().

AstyanaxContext<Keyspace> context = new AstyanaxContext.Builder()
 ...
 .withConnectionPoolConfiguration(new JavaDriverConfigBuilder()
 .withLoadBalancingPolicy(new TokenAwarePolicy(new
 DCAwareRoundRobinPolicy()))
 .build())
 ...

5. If using a QUORUM consistency level for reads or writes, check the LOCAL_QUORUM or
EACH_QUORUM consistency level to see if the level meets your requirements for multiple data
centers.

6. Start Cassandra on the new nodes.

7. After all nodes are running in the cluster:

a) Change the keyspace properties to specify the desired replication factor for the new data center.

For example, set strategy options to DC1:2, DC2:2.

For more information, see ALTER KEYSPACE.
b) Run nodetool rebuild specifying the existing data center on all nodes in the new data center:

$ nodetool rebuild -- name_of_existing_data_center

Otherwise, requests to the new data center with LOCAL_ONE or ONE consistency levels may fail if
the existing data centers are not completely in-sync.

You can run rebuild on one or more nodes at the same time. The choices depends on whether your
cluster can handle the extra IO and network pressure of running on multiple nodes. Running on one
node at a time has the least impact on the existing cluster.

Attention: If you don't specify the existing data center in the command line, the new nodes will
appear to rebuild successfully, but will not contain any data.

8. Change to true or remove auto_bootstrap: false in the cassandra.yaml file.

This returns this parameter to its normal setting, which allows the node to get all the data from the other
nodes in the data center if it is restarted.

Related tasks
Starting Cassandra as a service on page 121
Start the Cassandra Java server process for packaged installations.

Starting Cassandra as a stand-alone process on page 122
Start the Cassandra Java server process for tarball installations.

Related information
Install locations on page 75
Install location topics.

Replacing a dead node or dead seed node
Steps to replace a node that has died for some reason, such as hardware failure.

Steps to replace a node that has died for some reason, such as hardware failure. Prepare and start the
replacement node, then attach it to the cluster. After the replacement node is running in the cluster, remove
the dead node.

Replacing a dead seed node
1. Promote an existing node to a seed node by adding its IP address to -seeds list and remove the IP

address of the dead seed node from the cassandra.yaml file for each node in the cluster.

/en/cql/3.3/cql/cql_reference/cql_storage_options_c.html
/en/cql/3.3/cql/cql_reference/alter_keyspace_r.html

Operations

127

2. Replace the dead node, as described in the next section.

Replacing a dead node
You must prepare and start the replacement node, integrate it into the cluster, and then remove the dead
node.

Procedure
Be sure to install the same version of Cassandra as is installed on the other nodes in the cluster. See
Installing earlier releases.

1. Confirm that the node is dead using nodetool status:

The nodetool command shows a down status for the dead node (DN):

2. Note the Address of the dead node; it is used in step 5.

3. Install Cassandra on the new node, but do not start Cassandra.

If using the Debian/Ubuntu install, Cassandra starts automatically and you must stop the node and clear
the data.

4. Depending on the snitch used in the cluster, set either the properties in the cassandra-
topology.properties or the cassandra-rackdc.properties file:

• The PropertyFileSnitch uses the cassandra-topology.properties file.
• The GossipingPropertyFileSnitch, Ec2Snitch, Ec2MultiRegionSnitch, and GoogleCloudSnitch use

the cassandra-rackdc.properties file.

5. Set the following properties in the cassandra.yaml file:

auto_bootstrap

If this option has been set to false, you must set it to true. This option is not listed in the default
cassandra.yaml configuration file and defaults to true.

cluster_name

The name of the cluster the new node is joining.

listen_address/broadcast_address

Can usually be left blank. Otherwise, use IP address or host name that other Cassandra nodes use to
connect to the new node.

endpoint_snitch

The snitch Cassandra uses for locating nodes and routing requests.

num_tokens

The number of vnodes to assign to the node. If the hardware capabilities vary among the nodes in your
cluster, you can assign a proportional number of vnodes to the larger machines.

seed_provider

Make sure that the new node lists at least one node in the existing cluster. The -seeds list determines which
nodes the new node should contact to learn about the cluster and establish the gossip process.

Operations

128

Note: Seed nodes cannot bootstrap. Make sure the new node is not listed in the -seeds list. Do not make
all nodes seed nodes. Please read Internode communications (gossip) on page 14.

Other non-default settings

Change any other non-default settings you have made to your existing cluster in the cassandra.yaml
file and cassandra-topology.properties or cassandra-rackdc.properties files. Use the diff
command to find and merge any differences between existing and new nodes.

6. Start the replacement node with the replace_address option:

• Package installations: Add the following option to cassandra-env.sh file:

JVM_OPTS="$JVM_OPTS -Dcassandra.replace_address=address_of_dead_node

• Tarball installations: Start Cassandra with this option:

$ sudo bin/cassandra -Dcassandra.replace_address=address_of_dead_node

7. If using a packaged install, after the new node finishes bootstrapping, remove the option you added in
step 5.

What to do next
• Remove the old node's IP address from the cassandra-topology.properties or cassandra-

rackdc.properties file.

CAUTION: Wait at least 72 hours to ensure that old node information is removed from gossip. If
removed from the property file too soon, problems may result.

• Remove the node.

The location of the cassandra-topology.properties file depends on the type of installation:

Package installations /etc/cassandra/cassandra-
topology.properties

Tarball installations install_location/conf/cassandra-
topology.properties

Replacing a running node
Steps to replace a node with a new node, such as when updating to newer hardware or performing proactive maintenance.

Steps to replace a node with a new node, such as when updating to newer hardware or performing
proactive maintenance.

You must prepare and start the replacement node, integrate it into the cluster, and then decommission the
old node.

Note: To change the IP address of a node, simply change the IP of node and then restart Cassandra. If
you change the IP address of a seed node, you must update the -seeds parameter in the seed_provider for
each node in the cassandra.yaml file.

Procedure
Be sure to install the same version of Cassandra as is installed on the other nodes in the cluster. See
Installing earlier releases.

1. Prepare and start the replacement node, as described in Adding nodes to an existing cluster.

Note: If not using vnodes, see Adding or replacing single-token nodes on page 132.

2. Confirm that the replacement node is alive:

/en/glossary/doc/glossary/gloss_bootstrap.html

Operations

129

• Run nodetool ring if not using vnodes.
• Run nodetool status if using vnodes.

The status should show:

• nodetool ring: Up
• nodetool status: UN

3. Note the Host ID of the original node; it is used in the next step.

4. Using the Host ID of the original node, decommission the original node from the cluster using the
nodetool decommission command.

Related tasks
Removing a node on page 129
Reduce the size of a data center.

Moving a node from one rack to another
A common task is moving a node from one rack to another. For example, when using
GossipPropertyFileSnitch, a common error is mistakenly placing a node in the wrong rack. To correct the
error, use one of the following procedures.

• The preferred method is to decommission the node and re-add it to the correct rack and data center.

• This method takes longer to complete than the alternative method. Data is moved that the
decommissioned node doesn't need anymore. Then the node gets new data while bootstrapping.
The alternative method does both operations simultaneously.

• An alternative method is to update the node's topology and restart the node. Once the node is up, run a
full repair on the cluster.

CAUTION: This method is not preferred because until the repair is completed. the node might blindly
handle requests for data the node doesn't yet have.

Decommissioning a data center
Steps to properly remove a data center so no information is lost.

Steps to properly remove a data center so no information is lost.

Procedure
1. Make sure no clients are still writing to any nodes in the data center.

2. Run a full repair with nodetool repair.

This ensures that all data is propagated from the data center being decommissioned.

3. Change all keyspaces so they no longer reference the data center being removed.

4. Run nodetool decommission on every node in the data center being removed.

Removing a node
Reduce the size of a data center.

Use these instructions when you want to remove nodes to reduce the size of your cluster, not for replacing
a dead node.

Attention: If you are not using virtual nodes (vnodes), you must rebalance the cluster.

Procedure
• Check whether the node is up or down using nodetool status:

/en/cql/3.3/cql/cql_reference/alter_keyspace_r.html

Operations

130

The nodetool command shows the status of the node (UN=up, DN=down):

• If the node is up, run nodetool decommission.

This assigns the ranges that the node was responsible for to other nodes and replicates the data
appropriately.

Use nodetool netstats to monitor the progress.
• If the node is down, choose the appropriate option:

• If the cluster uses vnodes, remove the node using the nodetool removenode command.
• If the cluster does not use vnodes, before running the nodetool removenode command, adjust your

tokens to evenly distribute the data across the remaining nodes to avoid creating a hot spot.
• If removenode fails, run nodetool assassinate.

Switching snitches
Steps for switching snitches.

Because snitches determine how Cassandra distributes replicas, the procedure to switch snitches depends
on whether or not the topology of the cluster will change:

• If data has not been inserted into the cluster, there is no change in the network topology. This means
that you only need to set the snitch; no other steps are necessary.

• If data has been inserted into the cluster, it's possible that the topology has changed and you will need
to perform additional steps.

A change in topology means that there is a change in the data centers and/or racks where the nodes are
placed. Topology changes may occur when the replicas are placed in different places by the new snitch.
Specifically, the replication strategy places the replicas based on the information provided by the new
snitch. The following examples demonstrate the differences:

• No topology change

Change from: five nodes using the SimpleSnitch in a single data center

To: five nodes in one data center and 1 rack using a network snitch such as the
GossipingPropertyFileSnitch

• Topology changes

• Change from: 5 nodes using the SimpleSnitch in a single data center

To: 5 nodes in 2 data centers using the PropertyFileSnitch.

Note: If splitting from one data center to two, you need to change the schema for the keyspace that
are splitting. Additionally, the data center names must change accordingly.

• Change From: 5 nodes using the SimpleSnitch in a single data center

To: 5 nodes in 1 data center and 2 racks using the RackInferringSnitch.

Procedure
1. Create a properties file with data center and rack information.

/en/cql/3.3/cql/cql_reference/cql_storage_options_c.html

Operations

131

• cassandra-rackdc.properties

GossipingPropertyFileSnitch on page 22, Ec2Snitch, and Ec2MultiRegionSnitch only.
• cassandra-topology.properties

All other network snitches.

2. Copy the cassandra-rackdc.properties or cassandra-topology.properties file to the Cassandra
configuration directory on all the cluster's nodes. They won't be used until the new snitch is enabled.

The location of the cassandra-topology.properties file depends on the type of installation:

Package installations /etc/cassandra/cassandra-
topology.properties

Tarball installations install_location/conf/cassandra-
topology.properties

The location of the cassandra-rackdc.properties file depends on the type of installation:

Package installations /etc/cassandra/cassandra-
rackdc.properties

Tarball installations install_location/conf/cassandra-
rackdc.properties

3. Change the snitch for each node in the cluster in the node's cassandra.yaml file. For example:

endpoint_snitch: GossipingPropertyFileSnitch

4. If the topology has not changed, you can restart each node one at a time.

Any change in the cassandra.yaml file requires a node restart.

5. If the topology of the network has changed:

a) Shut down all the nodes, then restart them.
b) Run a sequential repair and nodetool cleanup on each node.

Related concepts
Snitches on page 20
A snitch determines which data centers and racks nodes belong to.

Changing keyspace replication strategy
Changing the strategy of a keyspace from SimpleStrategy to NetworkTopologyStrategy.

A keyspace is created with a strategy. For development work, the SimpleStrategy class is acceptable.
For production work, the NetworkTopologyStrategy class must be set. To change the strategy, two
steps are required.

Procedure
• Change the snitch to a network-aware setting.
• Alter the keyspace properties using the ALTER KEYSPACE command. For example, the keyspace

cycling set to SimpleStrategy is switched to NetworkTopologyStrategy.

cqlsh> ALTER KEYSPACE cycling WITH REPLICATION = {'class' :
 'NetworkTopologyStrategy', 'DC1' : 3, 'DC2' : 2 };

Operations

132

Edge cases for transitioning or migrating a cluster
Unusual migration scenarios without interruption of service.

The information in this topic is intended for the following types of scenarios (without any interruption of
service):

• Transition a cluster on EC2 to a cluster on Amazon virtual private cloud (VPC).
• Migrate from a cluster when the network separates the current cluster from the future location.
• Migrate from an early Cassandra cluster to a recent major version.

Procedure
The following method ensures that if something goes wrong with the new cluster, you still have the existing
cluster until you no longer need it.

1. Set up and configure the new cluster as described in Initializing a cluster on page 116.

Note: If you're not using vnodes, be sure to configure the token ranges in the new nodes to match the
ranges in the old cluster.

2. Set up the schema for the new cluster using CQL.

3. Configure your client to write to both clusters.

Depending on how the writes are done, code changes may be needed. Be sure to use identical
consistency levels.

4. Ensure that the data is flowing to the new nodes so you won't have any gaps when you copy the
snapshots to the new cluster in step 6.

5. Snapshot the old EC2 cluster.

6. Copy the data files from your keyspaces to the nodes.

• You may be able to copy the data files to their matching nodes in the new cluster, which is simpler
and more efficient. This will work if:

• You are not using vnodes
• The destination is not a different version of Cassandra
• The node ratio is 1:1

• If the clusters are different sizes or if you are using vnodes, use the sstableloader (Cassandra bulk
loader) on page 253 (sstableloader).

7. You can either switch to the new cluster all at once or perform an incremental migration.

For example, to perform an incremental migration, you can set your client to designate a percentage of
the reads that go to the new cluster. This allows you to test the new cluster before decommissioning the
old cluster.

8. Decommission the old cluster, as described in Decommissioning a data center on page 129.

Adding or replacing single-token nodes
Steps for adding or replacing nodes in single-token architecture clusters.

This topic applies only to clusters using single-token architecture, not vnodes.

About adding Capacity to an Existing Cluster
Cassandra allows you to add capacity to a cluster by introducing new nodes to the cluster in stages and by
adding an entire data center. When a new node joins an existing cluster, it needs to know:

• Its position in the ring and the range of data it is responsible for, which is assigned by the initial_token
and the partitioner.

• The seed nodes to contact for learning about the cluster and establish the gossip process.

/en/cql/3.3/cql/cqlIntro.html

Operations

133

• The name of the cluster it is joining and how the node should be addressed within the cluster.
• Any other non-default settings made to cassandra.yaml on your existing cluster.

When you add one or more nodes to a cluster, you must calculate the tokens for the new nodes. Use one
of the following approaches:

Add capacity by doubling the cluster size

Adding capacity by doubling (or tripling or quadrupling) the number of nodes is less complicated when
assigning tokens. Existing nodes can keep their existing token assignments, and new nodes are assigned
tokens that bisect (or trisect) the existing token ranges. For example, when you generate tokens for six
nodes, three of the generated token values will be the same as if you generated for three nodes. To clarify,
you first obtain the token values that are already in use, and then assign the newly calculated token values
to the newly added nodes.

Recalculate new tokens for all nodes and move nodes around the ring

When increasing capacity by a non-uniform number of nodes, you must recalculate tokens for the entire
cluster, and then use nodetool move to assign the new tokens to the existing nodes. After all nodes are
restarted with their new token assignments, run a nodetool cleanup to remove unused keys on all nodes.
These operations are resource intensive and should be done during low-usage times.

Add one node at a time and leave the initial_token property empty

When the initial_token is empty, Cassandra splits the token range of the heaviest loaded node and places
the new node into the ring at that position. This approach is unlikely to result in a perfectly balanced ring,
but will alleviate hot spots.

Adding Nodes to a Cluster
1. Install Cassandra on the new nodes, but do not start them.
2. Calculate the tokens for the nodes based on the expansion strategy you are using the Token

Generating Tool. You can skip this step if you want the new nodes to automatically pick a token range
when joining the cluster.

3. Set the cassandra.yaml for the new nodes.
4. Set the initial_token according to your token calculations (or leave it unset if you want the new nodes to

automatically pick a token range when joining the cluster).
5. Start Cassandra on each new node. Allow two minutes between node initializations. You can monitor

the startup and data streaming process using nodetool netstats.
6. After the new nodes are fully bootstrapped, assign the new initial_token property value to the nodes that

required new tokens, and then run nodetool move new_token, one node at a time.
7. After all nodes have their new tokens assigned, run nodetool cleanup one node at a time for each node.

Wait for cleanup to complete before doing the next node. This step removes the keys that no longer
belong to the previously existing nodes.

Note: Cleanup may be safely postponed for low-usage hours.

Adding a Data Center to a Cluster
Before starting this procedure, please read the guidelines in Adding Capacity to an Existing Cluster above.

1. Ensure that you are using NetworkTopologyStrategy for all of your keyspaces.
2. For each new node, edit the configuration properties in the cassandra.yaml file:

• Set auto_bootstrap to False.
• Set the initial_token. Be sure to offset the tokens in the new data center, see Generating

tokens on page 113.
• Set the cluster name.
• Set any other non-default settings.
• Set the seed lists. Every node in the cluster must have the same list of seeds and include at least

one node from each data center. Typically one to three seeds are used per data center.

Operations

134

3. Update either the cassandra-rackdc.properties (GossipingPropertyFileSnitch) or cassandra-
topology.properties (PropertyFileSnitch) on all servers to include the new nodes. You do not need to
restart.

4. Ensure that your client does not auto-detect the new nodes so that they aren't contacted by the client
until explicitly directed.

5. If using a QUORUM consistency level for reads or writes, check the LOCAL_QUORUM or
EACH_QUORUM consistency level to make sure that the level meets the requirements for multiple data
centers.

6. Start the new nodes.
7. After all nodes are running in the cluster:

a. Change the replication factor for your keyspace for the expanded cluster.
b. Run nodetool rebuild on each node in the new data center.

Replacing a Dead Node
1. Confirm that the node is dead using the nodetool ring command on any live node in the cluster.

The nodetool ring command shows a Down status for the token value of the dead node:

2. Install Cassandra on the replacement node.
3. Remove any preexisting Cassandra data on the replacement node:

$ sudo rm -rf /var/lib/cassandra/*
4. Set auto_bootstrap: true. (If auto_bootstrap is not in the cassandra.yaml file, it automatically

defaults to true.)
5. Set the initial_token in the cassandra.yaml file to the value of the dead node's token -1. Using

the value from the above graphic, this is 28356863910078205288614550619314017621-1:

initial_token: 28356863910078205288614550619314017620

6. Configure any non-default settings in the node's cassandra.yaml to match your existing cluster.
7. Start the new node.
8. After the new node has finished bootstrapping, check that it is marked up using the nodetool ring

command.
9. Run nodetool repair on each keyspace to ensure the node is fully consistent. For example:

$ nodetool repair -h 10.46.123.12 keyspace_name
10.Remove the dead node.

Backing up and restoring data
Cassandra backs up data by taking a snapshot of all on-disk data files (SSTable files) stored in the data directory.

/en/cql/3.3/cql/cql_reference/alter_keyspace_r.html

Operations

135

About snapshots
A brief description of how Cassandra backs up data.

Cassandra backs up data by taking a snapshot of all on-disk data files (SSTable files) stored in the data
directory. You can take a snapshot of all keyspaces, a single keyspace, or a single table while the system
is online.

Using a parallel ssh tool (such as pssh), you can snapshot an entire cluster. This provides an eventually
consistent backup. Although no one node is guaranteed to be consistent with its replica nodes at the time
a snapshot is taken, a restored snapshot resumes consistency using Cassandra's built-in consistency
mechanisms.

After a system-wide snapshot is performed, you can enable incremental backups on each node
to backup data that has changed since the last snapshot: each time a memtable is flushed to disk
and an SSTable is created, a hard link is copied into a /backups subdirectory of the data directory
(provided JNA is enabled). Compacted SSTables will not create hard links in /backups because
snapshot_before_compaction creates a new set of hardlinks before every compaction that can be
used to recreate any SSTables compacted.

Taking a snapshot
Steps for taking a global snapshot or per node.

Snapshots are taken per node using the nodetool snapshot command. To take a global snapshot, run the
nodetool snapshot command using a parallel ssh utility, such as pssh.

A snapshot first flushes all in-memory writes to disk, then makes a hard link of the SSTable files for each
keyspace. You must have enough free disk space on the node to accommodate making snapshots of your
data files. A single snapshot requires little disk space. However, snapshots can cause your disk usage to
grow more quickly over time because a snapshot prevents old obsolete data files from being deleted. After
the snapshot is complete, you can move the backup files to another location if needed, or you can leave
them in place.

Note: Cassandra can only restore data from a snapshot when the table schema exists. It is recommended
that you also backup the schema.

Procedure
Run the nodetool snapshot command, specifying the hostname, JMX port, and keyspace. For example:

$ nodetool -h localhost -p 7199 snapshot mykeyspace

Results
The snapshot is created in data_directory_location/keyspace_name/table_name-UUID/
snapshots/snapshot_name directory. Each snapshot directory contains numerous .db files that
contain the data at the time of the snapshot.

For example:

• Package installations: /var/lib/cassandra/data/mykeyspace/
users-081a1500136111e482d09318a3b15cc2/snapshots/1406227071618/mykeyspace-
users-ka-1-Data.db

• Tarball installations: install_location/data/data/mykeyspace/
users-081a1500136111e482d09318a3b15cc2/snapshots/1406227071618/mykeyspace-
users-ka-1-Data.db

Operations

136

Deleting snapshot files
Steps to delete snapshot files.

When taking a snapshot, previous snapshot files are not automatically deleted. You should remove old
snapshots that are no longer needed.

The nodetool clearsnapshot command removes all existing snapshot files from the snapshot directory of
each keyspace. You should make it part of your back-up process to clear old snapshots before taking a
new one.

Procedure
To delete all snapshots for a node, run the nodetool clearsnapshot command. For example:

$ nodetool -h localhost -p 7199 clearsnapshot

To delete snapshots on all nodes at once, run the nodetool clearsnapshot command using a parallel
ssh utility.

Enabling incremental backups
Steps to enable incremental backups. When incremental backups are enabled, Cassandra hard-links each memtable flushed t oan SSTable to a backups directory under the keyspace data directory.

When incremental backups are enabled (disabled by default), Cassandra hard-links each memtable-
flushed SSTable to a backups directory under the keyspace data directory. This allows storing backups
offsite without transferring entire snapshots. Also, incremental backups combined with snapshots to
provide a dependable, up-to-date backup mechanism. Compacted SSTables do not create hard links in
the backup folder because a snapshot will include links to SSTables that can reconstitute any compacted
SSTable. A snapshot at a point in time, plus all incremental backups and commit logs since that time form
a compete backup.

As with snapshots, Cassandra does not automatically clear incremental backup files. DataStax
recommends setting up a process to clear incremental backup hard-links each time a new snapshot is
created.

Procedure
Edit the cassandra.yaml configuration file on each node in the cluster and change the value of
incremental_backups to true.

Restoring from a snapshot
Methods for restoring from a snapshot.

Restoring a keyspace from a snapshot requires all snapshot files for the table, and if using incremental
backups, any incremental backup files created after the snapshot was taken.

Generally, before restoring a snapshot, you should truncate the table. If the backup occurs before the
delete and you restore the backup after the delete without first truncating, you do not get back the original
data (row). Until compaction, the tombstone is in a different SSTable than the original row, so restoring
the SSTable containing the original row does not remove the tombstone and the data still appears to be
deleted.

Cassandra can only restore data from a snapshot when the table schema exists. If you have not backed up
the schema, you can do the either of the following:

• Method 1

1. Restore the snapshot, as described below.

/en/cql/3.3/cql/cql_reference/truncate_r.html
/en/cql/3.3/cql/cql_reference/delete_r.html

Operations

137

2. Recreate the schema.
• Method 2

1. Recreate the schema.
2. Restore the snapshot, as described below.
3. Run nodetool refresh.

Procedure
You can restore a snapshot in several ways:
• Use the sstableloader tool.
• Copy the snapshot SSTable directory (see Taking a snapshot) to the

data/keyspace/table_name-UUID directory and then call the JMX method
loadNewSSTables() in the column family MBean for each column family through JConsole. You can
use nodetool refresh instead of the loadNewSSTables() call.

The location of the data directory depends on the type of installation:

• Package installations: /var/lib/cassandra/data
• Tarball installations: install_location/data/data

• Use the Node Restart Method described below.

Node restart method
Steps for restoring a snapshot. This method requires shutting down and starting nodes.

If restoring a single node, you must first shutdown the node. If restoring an entire cluster, you must shut
down all nodes, restore the snapshot data, and then start all nodes again.

Note: Restoring from snapshots and incremental backups temporarily causes intensive CPU and I/O
activity on the node being restored.

The location of the commitlog directory depends on the type of installation:

Package installations /var/lib/cassandra/commitlog

Tarball installations install_location/data/commitlog

Procedure
1. Shut down the node.

2. To ensure that data is not lost, run nodetool drain. This is especially important if only a single table is
restored.

3. Clear all files in the commitlog directory.

This prevents the commitlog replay from putting data back, which would defeat the purpose of restoring
data to a particular point in time.

4. Delete all *.db files in the data_directory/keyspace_name/keyspace_name-keyspace_name
directory, but DO NOT delete the snapshots and backups subdirectories.

where data_directory is:

• Package installations: /var/lib/cassandra/data
• Tarball installations: install_location/data/data

5. Locate the most recent snapshot folder in this directory:

data_directory/keyspace_name/table_name-UUID/snapshots/snapshot_name

6. Copy its contents into this directory:

data_directory/keyspace_name/table_name-UUID directory.

Operations

138

7. If using incremental backups, copy all contents of this directory:

data_directory/keyspace_name/table_name-UUID/backups

8. Paste it into this directory:

data_directory/keyspace_name/table_name-UUID

9. Restart the node.

Restarting causes a temporary burst of I/O activity and consumes a large amount of CPU resources.

10.Run nodetool repair.

Related tasks
Starting Cassandra as a service on page 121
Start the Cassandra Java server process for packaged installations.

Starting Cassandra as a stand-alone process on page 122
Start the Cassandra Java server process for tarball installations.

Stopping Cassandra as a service on page 122
Stopping the Cassandra Java server process on packaged installations.

Stopping Cassandra as a stand-alone process on page 122
Stop the Cassandra Java server process on tarball installations.

Related reference
The nodetool utility on page 163
A command line interface for managing a cluster.

Related information
Repairing nodes on page 140
Node repair topics.

Restoring a snapshot into a new cluster
Steps for restoring a snapshot by recovering the cluster into another newly created cluster.

Suppose you want to copy a snapshot of SSTable data files from a three node Cassandra cluster with
vnodes enabled (256 tokens) and recover it on another newly created three node cluster (256 tokens). The
token ranges will not match, because the token ranges cannot be exactly the same in the new cluster. You
need to specify the tokens for the new cluster that were used in the old cluster.

Note: This procedure assumes you are familiar with restoring a snapshot and configuring and initializing a
cluster. If not, see Initializing a cluster on page 116.

Procedure
To recover the snapshot on the new cluster:

1. From the old cluster, retrieve the list of tokens associated with each node's IP:

$ nodetool ring | grep ip_address_of_node | awk '{print $NF ","}' | xargs

2. In the cassandra.yaml file for each node in the new cluster, add the list of tokens you obtained in the
previous step to the initial_token parameter using the same num_tokens setting as in the old cluster.

3. Make any other necessary changes in the new cluster's cassandra.yaml and property files so that the
new nodes match the old cluster settings. Make sure the seed nodes are set for the new cluster.

4. Clear the system table data from each new node:

$ sudo rm -rf /var/lib/cassandra/data/system/*

This allows the new nodes to use the initial tokens defined in the cassandra.yaml when they restart.

5. Start each node using the specified list of token ranges in new cluster's cassandra.yaml:

initial_token: -9211270970129494930, -9138351317258731895,
 -8980763462514965928, ...

6. Create schema in the new cluster. All the schema from the old cluster must be reproduced in the new
cluster.

Operations

139

7. Stop the node. Using nodetool refresh is unsafe because files within the data directory of a
running node can be silently overwritten by identically named just-flushed SSTables from memtable
flushes or compaction. Copying files into the data directory and restarting the node will not work for the
same reason.

8. Restore the SSTable files snapshotted from the old cluster onto the new cluster using the same
directories, while noting that the UUID component of target directory names has changed. Without
restoration, the new cluster will not have data to read upon restart.

9. Restart the node.

Recovering from a single disk failure using JBOD
Recovering from a single disk failure in a disk array using JBOD.

How to recover from a single disk failure in a disk array using JBOD (just a bunch of disks).

Node can restart
1. Stop Cassandra and shut down the node.
2. Replace the failed disk.
3. Start the node and Cassandra.
4. Run nodetool repair on the node.

Node cannot restart
If the node cannot restart, it is possible the system directory is corrupted. If the node cannot restart after
completing these steps, see Replacing a dead node or dead seed node on page 126.

If using the node uses vnodes:

1. Stop Cassandra and shut down the node.
2. Replace the failed disk.
3. On a healthy node run the following command:

$ nodetool ring | grep ip_address_of_node | awk ' {print $NF ","}' | xargs
4. On the node with the new disk, add the list of tokens from the previous step (separated by commas),

under initial_token in the cassandra.yaml file.
5. Clear each system directory for every functioning drive:

Assuming disk1 has failed and the data_file_directories setting in the cassandra.yaml for each drive
is:

-/mnt1/cassandra/data
-/mnt2/cassandra/data
-/mnt3/cassandra/data

Run the following commands:

$ rm -fr /mnt2/cassandra/data/system
$ rm -fr /mnt3/cassandra/data/system

6. Start the node and Cassandra.
7. Run nodetool repair.
8. After the node is fully integrated into the cluster, it is recommended to return to normal vnode settings:

• Set num_tokens to the correct number_of_tokens
• Comment out the #initial_token setting

If the node uses assigned tokens (single-token architecture):

1. Stop Cassandra and shut down the node.

Operations

140

2. Replace the failed disk.
3. Clear each system directory for every functioning drive:

Assuming disk1 has failed and the data_file_directories setting in the cassandra.yaml for each drive
is:

-/mnt1/cassandra/data
-/mnt2/cassandra/data
-/mnt3/cassandra/data

Run the following commands:

$ rm -fr /mnt2/cassandra/data/system
$ rm -fr /mnt3/cassandra/data/system

4. Start the node and Cassandra.
5. Run nodetool repair on the node.

Repairing nodes
Node repair topics.

Over time, data in a replica can become inconsistent with other replicas due to the distributed nature of
the database. Node repair makes data on a replica consistent with data on other nodes and is important
for every Cassandra cluster. Repair is the process of correcting the inconsistencies so that eventually, all
nodes have the same and most up-to-date data.

Repair can occur in the following ways:

• Hinted Handoff

During the write path, if a node that should receive data is unavailable, hints are written to the
coordinator. When the node comes back online, the coordinator can hand off the hints so that the node
can catch up and write the data.

• Read Repair

During the read path, a query acquires data from several nodes. The acquired data from each node is
checked against each other node. If a node has outdated data, the most recent data is written back to
the node.

• Anti-Entropy Repair

For maintenance purposes or recovery, manually run anti-entropy repair to rectify inconsistencies on
any nodes.

Cassandra settings or Cassandra tools can be used to configure each type of repair. Depending on other
conditions of the cluster, when to use each type of repair and how to configure them varies.

Hinted Handoff: repair during write path
Describes hinted handoff, repair during write path.

On occasion, a node becomes unresponsive while data is being written. Reasons for unresponsiveness
are hardware problems, network issues, or overloaded nodes that experience long garbage collection (GC)
pauses. By design, hinted handoff inherently allows Cassandra to continue performing the same number of
writes even when the cluster is operating at reduced capacity.

After the failure detector marks a node as down, missed writes are stored by the coordinator for a period of
time, if hinted handoff is enabled in the cassandra.yaml file. In Cassandra 3.0 and later, the hint is stored
in a local hints directory on each node for improved replay. The hint consists of a target ID for the downed
node, a hint ID that is a time UUID for the data, a message ID that identifies the Cassandra version, and
the data itself as a blob. Hints are flushed to disk every 10 seconds, reducing the staleness of the hints.
When gossip discovers when a node has comes back online, the coordinator replays each remaining hint

Operations

141

to write the data to the newly-returned node, then deletes the hint file. If a node is down for longer than
max_hint_window_in_ms (3 hours by default), the coordinator stops writing new hints.

The coordinator also checks every ten minutes for hints corresponding to writes that timed out during
an outage too brief for the failure detector to notice through gossip. If a replica node is overloaded or
unavailable, and the failure detector has not yet marked the node as down, then expect most or all writes
to that node to fail after the timeout triggered by write_request_timeout_in_ms, (10 seconds by default).
The coordinator returns a TimeOutException exception, and the write will fail but a hint will be stored. If
several nodes experience brief outages simultaneously, substantial memory pressure can build up on the
coordinator. The coordinator tracks how many hints it is currently writing, and if the number increases too
much, the coordinator refuses writes and throws the OverloadedException exception.

The consistency level of a write request affects whether hints are written and a write request subsequently
fails. If the cluster consists of two nodes, A and B, with a replication factor of 1, each row is stored on only
one node. Suppose node A is down when a row K is written to it with a consistency level of ONE. In this
case, the consistency level specified cannot be met, and since node A is the coordinator, it cannot store
a hint. Node B cannot write the data, because it has not received the data as the coordinator nor has a
hint been stored. The coordinator checks the number of replicas that are up and will not attempt to write
the hint if the consistency level specified by a client cannot be met. A hinted handoff failure occurs and will
return a UnavailableException exception. The write request fails and the hint is not written.

In general, the recommendation is to have enough nodes in the cluster and a replication factor sufficient
to avoid write request failures. For example, consider a cluster consisting of three nodes, A, B, and C,with
a replication factor of 2. When a row K is written to the coordinator (node A in this case), even if node C
is down, the consistency level of ONE or QUORUM can be met. Why? Both nodes A and B will receive
the data, so the consistency level requirement is met. A hint is stored for node C and written when node C
comes up.

/en/cassandra/2.2/cassandra/configuration/configCassandra_yaml.html#reference_ds_qfg_n1r_1k__write_request_timeout_in_ms

Operations

142

For applications that want Cassandra to accept writes when all the normal replicas are down and
consistency level ONE cannot be satisfied, Cassandra provides consistency level ANY. ANY guarantees
that the write is durable and readable after an appropriate replica target becomes available and receives
the hint replay.

Nodes that die might have stored undelivered hints, because any node can be a coordinator. The data on
the dead node will be stale after a long outage as well. If a node has been down for an extended period of
time, a manual repair should be run.

At first glance, it seems that hinted handoff eliminates the need for manual repair, but this is not true
because hardware failure is inevitable and has the following ramifications:

• Loss of the historical data necessary to tell the rest of the cluster exactly what data is missing.
• Loss of hints-not-yet-replayed from requests that the failed node coordinated.

When removing a node from the cluster by decommissioning the node or by using the nodetool
removenode command, Cassandra automatically removes hints targeting the node that no longer exists.
Cassandra also removes hints for dropped tables.

For more explanation about hint storage, see Modern hinted handoff.

/en/cassandra/2.2/cassandra/tools/toolsRemoveNode.html
/en/cassandra/2.2/cassandra/tools/toolsRemoveNode.html
http://www.datastax.com/dev/blog/modern-hinted-handoff

Operations

143

Read Repair: repair during read path
Describes read repair, repair during read path.

Read repair is an important component of keeping data consistent in a Cassandra cluster, because every
time a read request occurs, it provides an opportunity for consistency improvement. As a background
process, read repair generally puts little strain on the cluster.

When data is read to satisfy a query and return a result, all replicas are queried for the data needed. The
first replica node receives a direct read request and supplies the full data. The other nodes contacted
receive a digest request and return a digest, or hash of the data. A digest is requested because generally
the hash is smaller than the data itself. A comparison of the digests allows the coordinator to return the
most up-to-date data to the query. If the digests are the same for enough replicas to meet the consistency
level, the data is returned. If the consistency level of the read query is ALL, the comparison must be
completed before the results are returned; otherwise for all lower consistency levels, it is done in the
background.

The coordinator compares the digests, and if a mismatch is discovered, a request for the full data is sent
to the mismatched nodes. The most current data found in a full data comparison is used to reconcile any
inconsistent data on other replicas.

Read repair can be configured per table, using read_repair_chance, and is enabled by default.

The compaction strategy DateTieredCompactionStrategy precludes using read repair, because of the way
timestamps are checked for DTCS compaction. In this case, you must set read_repair_chance to zero.
For other compaction strategies, read repair should be enabled with a read_repair_chance value of 0.2
being typical.

Manual repair: Anti-entropy repair
Describe how manual repair works.

Anti-entropy node repairs are important for every Cassandra cluster. Frequent data deletions and downed
nodes are common causes of data inconsistency. Use anti-entropy repair for routine maintenance and
when a cluster needs fixing by running the nodetool repair command.

How does anti-entropy repair work?
Cassandra accomplishes anti-entropy repair using Merkle trees, similar to Dynamo and Riak. Anti-
entropy is a process of comparing the data of all replicas and updating each replica to the newest version.
Cassandra has two phases to the process:

1. Merkle trees are built for each replica
2. The Merkle trees are compared to discover where differences are present

The nodetool repair command can be run on either a specified node or on all nodes if a node is
not specified. The node that initiates the repair becomes the coordinator node for the operation. To build
the Merkle trees, the coordinator node determines peer nodes with matching ranges of data. A major, or
validation, compaction is triggered on the peer nodes. The validation compaction reads and generates a
hash for every row in the stored column families, adds the result to a Merkle tree, and returns the tree to
the initiating node. Merkle trees use hashes of the data, because in general, hashes will be smaller than
the data itself. Repair in Cassandra discusses this process in more detail.

Merkle trees are binary hash trees where leaves are hashes of the individual key values. In the case of
Cassandra, a leaf will hold the hash of a row value. Parent nodes higher in the tree are hashes of their
respective children. Because higher nodes in the Merkle tree represent data further down the tree, each
branch of the tree can be checked independently without requiring nodes to download the entire data set.
The structure of Merkle trees allows the anti-entropy repair Cassandra employs to use a compact tree
version with a depth of 15 (2^15 = 32K leaf nodes). For example, a node containing a million partitions
with one damaged partition, about 30 partitions are streamed, which is the number that fall into each of the
leaves of the tree. Two consequences of building smaller Merkle trees are reducing memory usage to store
the trees and minimizing the amount of data required to transfer a Merkle tree to another node during the
comparison process.

/en/glossary/doc/glossary/gloss_anti_entropy.html
http://www.datastax.com/dev/blog/repair-in-cassandra

Operations

144

After the initiating node receives the Merkle trees from the participating peer nodes, the initiating node
compares every tree to every other tree. If a difference is detected, the differing nodes exchange data for
the conflicting range(s), and the new data is written to SSTables. The comparison begins with the top node
of the Merkle tree. If no difference is detected, the process proceeds to the left child node and compares
and then the right child node. When a node is found to differ, inconsistent data exists for the range that
pertains to that node. All data that corresponds to the leaves below that Merkle tree node will be replaced
with new data.

Merkle tree building is quite resource intensive, stressing disk I/O and using memory. Some of the options
discussed here help lessen the impact on the cluster performance.

Full vs Incremental repair
The process above describes a full repair of a node's data. All SSTables for that node are compared and
repaired, if necessary. The default setting is incremental repair. An incremental repair makes already
repaired data persistent, and only calculates a Merkle tree for unrepaired SSTables. New metadata was
introduced that keeps track of the repaired status of an SSTable and identifies repaired and unrepaired
data.

Operations

145

Reducing the size of the Merkle tree improves the performance of the incremental repair process,
assuming repairs are run frequently. Incremental repairs work like full repairs, with an initiating node
requesting Merkle trees from peer nodes with the same unrepaired data, and then comparing the Merkle
trees to discover mismatches. Once the data has been reconciled and new SSTables built, the initiating
node issues an anti-compaction command. Anti-compaction is the process of segregating repaired and
unrepaired ranges into separate SSTables, unless the SSTable fits entirely within the repaired range. In
the latter case, the SSTable metadata is updated to reflect its repaired status.

Anti-compaction is handled differently, depending on the compaction strategy assigned to the data.

• Size-tiered compaction (STCS) splits repaired and unrepaired data into separate pools for separate
compactions. A major compaction generates two SSTables, one for each pool of data.

• Leveled compaction (LCS) performs size-tiered compaction on unrepaired data. After repair completes,
Casandra moves data from the set of unrepaired SSTables to L0.

• Date-tiered (DTCS) splits repaired and unrepaired data into separate pools for separate compactions.
A major compaction generates two SSTables, one for each pool of data. DTCS compaction should not
use incremental repair.

Full repair is the default in Cassandra 2.1 and earlier. Incremental repair is the default for Cassandra 2.2
and later. In Cassandra 2.2 and later, when a full repair is run, SSTables are marked as repaired and anti-
compacted.

Parallel vs Sequential
Sequential repair takes action on one node after another. Parallel repair will repair all nodes with the same
replica data at the same time.

Operations

146

Sequential repair takes a snapshot of each replica. Snapshots are hardlinks to existing SSTables. They
are immutable and require almost no disk space. The snapshots are live until the repair is completed and
then they are removed. The coordinator node constructs the Merkle trees for one replica after the other,
and finally repairs each replica one by one from the snapshots. For example, if you have RF=3 and A, B
and C represents three replicas, this command takes a snapshot of each replica immediately and then
sequentially repairs each replica from the snapshots (A<->B, A<->C, B<->C).

A parallel repair does the repair of nodes A, B, and C all at once. During this type of repair, the dynamic
snitch maintains performance for your application using a replica in the snapshot that is not undergoing
repair.

Snapshots are hardlinks to existing SSTables. Snapshots are immutable and require almost no disk space.
Repair requires intensive disk I/O because validation compaction occurs during Merkle tree construction.
For any given replica set, only one replica at a time performs the validation compaction.

Sequential repair is the default in Cassandra 2.1 and earlier. Parallel repair is the default for Cassandra 2.2
and later.

Note: Sequential and incremental do not work together in Cassandra 2.1.

Partitioner range (-pr)
In a Cassandra cluster, a particular range of data will be stored on multiple nodes. If you consider running
nodetool repair on each node, the same range of data will be repaired several times based on the
replication factor used in the keyspace. The partitioner range option will only repair a particular range of
data once, rather than repeating the repair operation needlessly. This will decrease the strain on network
resources, although Merkle trees still must be built for each replica.

Note: If you use this option, you must run nodetool repair -pr on EVERY node in the cluster to
repair all data. Otherwise, some ranges of data will not be repaired.

It is recommended that the partitioner range option be used for routine maintenance. If the tool is used on a
downed node, however, do not use this option.

Local (-local, --in-local-dc) vs Data center (dc, --in-dc) vs Cluster-
wide
Using nodetool repair across data centers versus within a local data center requires some careful
consideration. Run repair on a node, and using -local or --in-local-dc, only nodes within the same
center as the node running nodetool repair will be repaired. Otherwise, all nodes with a replica,
whether in the same data center or not, will be repaired. Network traffic between data centers can increase
tremendously and cause cluster issues. Using the -dc or --in-dc options, a specific data center can be
specified to run repair. In this case, nodes in other data centers may hold replicas and would be repaired,
but repair will be initiated only on nodes within the data center. This option can decrease network traffic
while repairing more nodes than the local options.

The -pr option becomes especially important to use across multiple data centers, as the number of
replicas can grow quite cumbersome. If two data centers, DC1 and DC2, are being repaired, and each
has a replication factor of 3, each range repaired will need to build Merkle tables for 6 nodes. This number
increases linearly for additional data centers.

Note: The -local option cannot be used with -pr unless a data center's nodes have all the data for all
ranges.

The -local option should only be done with full repair and not incremental.

Cassandra 2.2+ includes a -dcpar or --dc-parallel option to repair data centers in parallel. For
multiple data centers, the recommendation is to run in parallel.

http://www.datastax.com/dev/blog/dynamic-snitching-in-cassandra-past-present-and-future
http://www.datastax.com/dev/blog/dynamic-snitching-in-cassandra-past-present-and-future

Operations

147

Endpoint range vs Subrange repair (-st, --start-token, -et --end-
token)
A repair operation runs on all partition ranges, or endpoint range, stored on a node unless the subrange
option is used. Subrange repair specifies a start token and a end token so that only some partition ranges
are repaired. Generally, subrange repair is not recommended because it requires the use of generated
token ranges. However, if a known partition has an error, that partition range can be targeted for repair. A
problem known as overstreaming, which can tie up resources by sending repairs to a range over and over,
can be relieved with the subrange repair option.

Subrange repair involves more than just the nodetool repair command. A Java describe_splits
call to ask for a split containing 32k partitions can be iterated throughout the entire range incrementally or
in parallel to eliminate the overstreaming behavior. Once the tokens are generated for the split, they are
passed to nodetool repair -st <start_token> -et <end_token>. The -local option can be
used to repair only within a local data center to reduce cross data center transfer.

When to run anti-entropy repair
When should anti-entropy repair be run on nodes.

When to run anti-entropy repair is dependent on the characteristics of a Cassandra cluster. General
guidelines are presented here, and should be tailored to each particular case.

When is repair needed?
Run repair in these situations:

• To routinely maintain node health.

Note: Even if deletions never occur, schedule regular repairs. Setting a column to null is a delete.
• To recover a node after a failure while bringing it back into the cluster.
• To update data on a node containing data that is not read frequently, and therefore does not get read

repair.
• To update data on a node that has been down.
• To recover missing data or corrupted SSTables. A non-incremental repair is required.

Guidelines for running routine node repair include:

• Run incremental repair daily, run full repairs weekly to monthly. Monthly is generally sufficient, but run
more frequently if warranted.

Important: Full repair is useful for maintaining data integrity, even if deletions never occur.
• Use the parallel and partitioner range options, unless precluded by the scope of the repair.
• Run a full repair to eliminate anti-compaction. Anti-compaction is the process of splitting an SSTable

into two SSTables, one with repaired data and one with non-repaired data. This has compaction
strategy implications.

Note: Migrating to incremental repairs is recommended if you use leveled compaction.
• Run repair frequently enough that every node is repaired before reaching the time specified in the

gc_grace_seconds setting. Deleted data is properly handled in the cluster if this requirement is met.
• Schedule routine node repair to minimize cluster disruption.

• If possible, schedule repair operation for low-usage hours.
• If possible, schedule repair operations on single nodes at a time.

• Increase the time value setting of gc_grace_seconds if data is seldom deleted or overwritten. For these
tables, changing the setting will:

• Minimizes impact to disk space.
• Allow longer interval between repair operations.

• Mitigate heavy disk usage by configuring nodetool compaction throttling options
(setcompactionthroughput and setcompactionthreshold) before running a repair.

http://www.datastax.com/dev/blog/anticompaction-in-cassandra-2-1
http://www.datastax.com/dev/blog/anticompaction-in-cassandra-2-1
/en/cql/3.3/cql/cql_reference/tabProp.html

Operations

148

Guidelines for running repair on a downed node:

• Do not use partitioner range, -pr.

Migrating to incremental repairs
Migrating to incremental repairs requires several steps to change nodes because SSTable metadata has changed, adding the RepairedAt field.

Migrating to incremental repairs

Migrating to incremental repairs by using the sstablerepairedset utility is recommended only under
the following conditions:

• You are doing an incremental repair for the first time.
• You are using the leveled compaction strategy.

Full, sequential repairs are the default because until the first incremental repair, Cassandra does not
know the repaired state of SSTables. After an incremental repair, anticompaction marks SSTables as
repaired or not. If you use the leveled compaction strategy and perform an incremental repair for the first
time, Cassandra performs size-tiering on all SSTables because the repair/unrepaired status is unknown.
This operation can take a long time. To save time, migrate to incremental repair one node at a time. The
migration procedure, covered in the next section, uses utilities in the tools/bin directory of installations
other than RHEL and Debian:

• sstablemetadata for checking the repaired or unrepaired status of an SSTable
• sstablerepairedset for manually marking an SSTable as repaired

The syntax of these commands is:

$ sstablemetadata <sstable filenames>

$ sstablerepairedset [--is-repaired | --is-unrepaired] [-f <sstable-list> |
 <sstables>]

In Cassandra 2.1.1, sstablerepairedset can take as arguments a list of SSTables on the command
line or a file of SSTables with a "-f" flag.

Note: In RHEL and Debian installations, you must install the tools packages.

This example shows how to use sstablerepairedset to clear the repaired state of an SSTable, rendering
the SSTable unrepaired. As mentioned above, because until the first incremental repair, Cassandra does
not know the repaired state of SSTables, this example shows how to use sstablerepairedset to clear the
repaired state of an SSTable, rendering the SSTable unrepaired.

1. Stop the node.
2. Run this command:

$ sstablerepairedset --is-unrepaired -f list_of_sstable_names.txt
3. Restart the node.

All data is changed to an unrepaired state.

Procedure for migrating to incremental repairs
To migrate to incremental repair, one node at a time:

1. Disable compaction on the node using nodetool disableautocompaction.
2. Run the default full, sequential repair.
3. Stop the node.
4. Use the tool sstablerepairedset to mark all the SSTables that were created before you disabled

compaction.
5. Restart cassandra

Operations

149

SSTables remain in a repaired state after running a full, but not a partition range, repair if you make no
changes to the SSTables.

Monitoring Cassandra
Monitoring topics.

Monitoring a Cassandra cluster
Understanding the performance characteristics of a Cassandra cluster is critical to diagnosing issues and planning capacity.

Understanding the performance characteristics of a Cassandra cluster is critical to diagnosing issues and
planning capacity.

Cassandra exposes a number of statistics and management operations via Java Management Extensions
(JMX). JMX is a Java technology that supplies tools for managing and monitoring Java applications
and services. Any statistic or operation that a Java application has exposed as an MBean can then be
monitored or manipulated using JMX.

JMX). JMX is a Java technology that supplies tools for managing and monitoring Java applications
and services. Any statistic or operation that a Java application has exposed as an MBean can then be
monitored or manipulated using JMX.

During normal operation, Cassandra outputs information and statistics that you can monitor using JMX-
compliant tools, such as:

• The Cassandra nodetool utility
• JConsole

Using the same tools, you can perform certain administrative commands and operations such as flushing
caches or doing a node repair.

Monitoring using the nodetool utility
The nodetool utility is a command-line interface for monitoring Cassandra and performing routine database
operations. It is included in the Cassandra distribution. nodetool is typically run directly from an
operational Cassandra node.

The nodetool utility supports the most important JMX metrics and operations, and includes other useful
commands for Cassandra administration, such as the proxyhistogram command. This example shows the
output from nodetool proxyhistograms after running 4,500 insert statements and 45,000 select statements
on a three ccm node-cluster on a local computer.

$ nodetool proxyhistograms

proxy histograms
Percentile Read Latency Write Latency Range Latency
 (micros) (micros) (micros)
50% 1502.50 375.00 446.00
75% 1714.75 420.00 498.00
95% 31210.25 507.00 800.20
98% 36365.00 577.36 948.40
99% 36365.00 740.60 1024.39
Min 616.00 230.00 311.00
Max 36365.00 55726.00 59247.00

For a summary of the ring and its current state of general health, use the status command. For example:

$ nodetool status

Note: Ownership information does not include topology; for complete
 information, specify a keyspace

/en/glossary/doc/glossary/gloss_node_repair.html
https://github.com/pcmanus/ccm

Operations

150

Datacenter: datacenter1
=======================
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address Load Tokens Owns Host ID
 Rack
UN 127.0.0.1 47.66 KB 1 33.3% aaa1b7c1-6049-4a08-
ad3e-3697a0e30e10 rack1
UN 127.0.0.2 47.67 KB 1 33.3% 1848c369-4306-4874-
afdf-5c1e95b8732e rack1
UN 127.0.0.3 47.67 KB 1 33.3% 49578bf1-728f-438d-b1c1-
d8dd644b6f7f rack1

The nodetool utility provides commands for viewing detailed metrics for tables, server metrics, and
compaction statistics:

• nodetool tablestats displays statistics for each table and keyspace.
• nodetool tablehistograms provides statistics about a table, including read/write latency, row size,

column count, and number of SSTables.
• nodetool netstats provides statistics about network operations and connections.
• nodetool tpstats provides statistics about the number of active, pending, and completed tasks for

each stage of Cassandra operations by thread pool.

Monitoring using JConsole
JConsole is a JMX-compliant tool for monitoring Java applications such as Cassandra. It is included with
Sun JDK 5.0 and higher. JConsole consumes the JMX metrics and operations exposed by Cassandra and
displays them in a well-organized GUI. For each node monitored, JConsole provides these six separate tab
views:

• Overview

Displays overview information about the Java VM and monitored values.
• Memory

Displays information about memory use.
• Threads

Displays information about thread use.
• Classes

Displays information about class loading.
• VM Summary

Displays information about the Java Virtual Machine (VM).
• Mbeans

Displays information about MBeans.

The Overview and Memory tabs contain information that is very useful for Cassandra developers.
The Memory tab allows you to compare heap and non-heap memory usage, and provides a control to
immediately perform Java garbage collection.

For specific Cassandra metrics and operations, the most important area of JConsole is the MBeans tab.
This tab lists the following Cassandra MBeans:

• org.apache.cassandra.auth

Includes permissions cache.
• org.apache.cassandra.db

Includes caching, table metrics, and compaction.
• org.apache.cassandra.internal

Operations

151

Internal server operations such as gossip, hinted handoff, and Memtable values.
• org.apache.cassandra.metrics

Includes metrics on CQL, clients, keyspaces, read repair, storage, and threadpools and other topics.
• org.apache.cassandra.net

Inter-node communication including FailureDetector, MessagingService and StreamingManager.
• org.apache.cassandra.request

Tasks related to read, write, and replication operations.
• org.apache.cassandra.service

Includes GCInspector.

When you select an MBean in the tree, its MBeanInfo and MBean Descriptor are displayed on the right,
and any attributes, operations or notifications appear in the tree below it. For example, selecting and
expanding the org.apache.cassandra.db MBean to view available actions for a table results in a display like
the following:

If you choose to monitor Cassandra using JConsole, keep in mind that JConsole consumes a significant
amount of system resources. For this reason, DataStax recommends running JConsole on a remote
machine rather than on the same host as a Cassandra node.

The JConsole CompactionManagerMBean exposes compaction metrics that can indicate when you need
to add capacity to your cluster.

Compaction metrics
Monitoring compaction performance is an important aspect of knowing when to add capacity to your cluster.

Monitoring compaction performance is an important aspect of knowing when to add capacity to your
cluster. The following attributes are exposed through CompactionManagerMBean:

Operations

152

Table: Compaction Metrics

Attribute Description

BytesCompacted Total number of bytes compacted since the last start of this Cassandra
instance

CompletedTasks Number of completed compactions since the last start of this Cassandra
instance

PendingTasks Estimated number of compactions remaining to be performed

PendingTasksByTableNameEstimated number of compactions remaining to be performed, grouped by
keyspace, then by table name

Thread pool and read/write latency statistics
Increases in pending tasks on thread pool statistics can indicate when to add additional capacity.

Cassandra maintains distinct thread pools for different stages of execution. Each of the thread pools
provide statistics on the number of tasks that are active, pending, and completed. Trends on these pools
for increases in the pending tasks column indicate when to add additional capacity. After a baseline is
established, configure alarms for any increases above normal in the pending tasks column. Use nodetool
tpstats on the command line to view the thread pool details shown in the following table.

Table: Thread Pools reported by nodetool tpstats

Thread Pool Description

AE_SERVICE_STAGE Shows anti-entropy tasks.

CONSISTENCY-
MANAGER

Handles the background consistency checks if they were triggered from the
client's consistency level.

FLUSH-SORTER-POOL Sorts flushes that have been submitted.

FLUSH-WRITER-POOL Writes the sorted flushes.

GOSSIP_STAGE Activity of the Gossip protocol on the ring.

LB-OPERATIONS The number of load balancing operations.

LB-TARGET Used by nodes leaving the ring.

MEMTABLE-POST-
FLUSHER

Memtable flushes that are waiting to be written to the commit log.

MESSAGE-
STREAMING-POOL

Streaming operations. Usually triggered by bootstrapping or decommissioning
nodes.

MIGRATION_STAGE Tasks resulting from the call of system_* methods in the API that have
modified the schema.

MISC_STAGE

MUTATION_STAGE API calls that are modifying data.

READ_STAGE API calls that have read data.

RESPONSE_STAGE Response tasks from other nodes to message streaming from this node.

Read/Write latency metrics
Cassandra tracks latency (averages and totals) of read, write, and slicing operations at the server level
through StorageProxyMBean.

Operations

153

Table statistics
Compaction metrics provide a number of statistics that are important for monitoring performance trends.

For individual tables, ColumnFamilyStoreMBean provides the same general latency attributes as
StorageProxyMBean. Unlike StorageProxyMBean, ColumnFamilyStoreMBean has a number of other
statistics that are important to monitor for performance trends. The most important of these are:

Table: Table Statistics

Attribute Description

MemtableDataSize The total size consumed by this table's data (not including metadata).

MemtableColumnsCount Returns the total number of columns present in the memtable (across
all keys).

MemtableSwitchCount How many times the memtable has been flushed out.

RecentReadLatencyMicros The average read latency since the last call to this bean.

RecentWriterLatencyMicros The average write latency since the last call to this bean.

LiveSSTableCount The number of live SSTables for this table.

The recent read latency and write latency counters are important in making sure operations are happening
in a consistent manner. If these counters start to increase after a period of staying flat, you probably need
to add capacity to the cluster.

You can set a threshold and monitor LiveSSTableCount to ensure that the number of SSTables for a given
table does not become too great.

Tuning Java resources
Consider tuning Java resources in the event of a performance degradation or high memory consumption.

Consider tuning Java resources in the event of a performance degradation or high memory consumption.

The jvm.options control environment settings, such as Java Virtual Machine (JVM) configuration
settings, for Cassandra.

Heap sizing options
To override Cassandra's automatic calculation of heap sizing, set both MAX_HEAP_SIZE and
HEAP_NEWSIZE together in jvm.options.

• -Xmx / -Xms

These options set the maximum and minimum heap sizes for the JVM. The same value is also used for
both. This allows the heap to be locked in memory at process start to keep it from being swapped out
by the OS.

• HEAP_NEWSIZE

The size of the young generation. The larger this is, the longer GC pause times will be. The shorter it is,
the more expensive GC will be (usually). A good guideline is 100 MB per CPU core.

Tuning the Java heap
Because Cassandra spends significant time interacting with the operating system's I/O infrastructure
through the JVM, so a well-tuned Java heap size is important. Cassandra's default configuration opens the
JVM with a heap size that is based on the total amount of system memory:

/en/glossary/doc/glossary/gloss_memtable.html
/en/glossary/doc/glossary/gloss_sstable.html

Operations

154

System Memory Heap Size

Less than 2GB 1/2 of system memory

2GB to 4GB 1GB

Greater than 4GB 1/4 system memory, but not more than 8GB

Many users new to Cassandra are tempted to turn up Java heap size too high, which consumes the
majority of the underlying system's RAM. In most cases, increasing the Java heap size is actually
detrimental for these reasons:

• The capability of Java to gracefully handle garbage collection above 8GB quickly diminishes.
• Modern operating systems maintain the OS page cache for frequently accessed data and are very good

at keeping this data in memory, but can be prevented from doing its job by an elevated Java heap size.

If you have more than 2GB of system memory, keep the size of the Java heap relatively small to allow
more memory for the page cache.

Some Solr users have reported that increasing the stack size improves performance under Tomcat. To
increase the stack size, uncomment and modify the default setting in the cassandra-env.sh file. Also,
decreasing the memtable space to make room for Solr caches can improve performance. Modify the
memtable space using the memtable_total_space_in_mb property in the cassandra.yaml file.

Because MapReduce runs outside the JVM, changes to the JVM do not affect Analytics/Hadoop
operations directly.

How Cassandra uses memory
You can typically allocate about 8GB of memory on the heap before garbage collection pause time starts
to become a problem. Modern machines have much more memory than that and Cassandra makes
use of additional memory as page cache when files on disk are accessed. Allocating more than 8GB of
memory on the heap poses a problem due to the amount of Cassandra metadata about data on disk. The
Cassandra metadata resides in memory and is proportional to total data. Some of the components grow
proportionally to the size of total memory.

In Cassandra 1.2 and later, the Bloom filter and compression offset map that store this metadata reside off-
heap, greatly increasing the capacity per node of data that Cassandra can handle efficiently. The partition
summary also resides off-heap.

About the off-head row cache
About the off-heap row cache</title><p>Cassandra can store cached rows in native memory, outside the
Java heap. This results in reduced JVM heap requirements, which helps keep the heap size in the sweet
spot for JVM garbage collection performance.

Tuning Java garbage collection
In Cassandra 2.2 and later, the default JVM garbage collection is the Concurrent-Mark-Sweep (CMS)
garbage collector. The G1 garbage collector can be configured. The G1 garbage collector is more
performant than the Concurrent-Sweep-Mark (CMS) garbage collector for a heap size of 4GB or larger.
It will become the default garbage collector for Java 9 in the future. G1 scans the regions of the heap
that contain the most garbage objects first. It also compacts the heap on-the-go, while the CMS garbage
collector only compacts during full stop-the-world garbage collection.

To configure Cassandra to use G1:

1. Open $CASSANDRA_HOME/conf/jvm.options.
2. Comment out all lines in the ### CMS Settings section.
3. Uncomment the relevant G1 settings in the ### G1 Settings section.

Operations

155

Cassandra's GCInspector class logs information about garbage collection whenever a garbage collection
takes longer than 200ms. Garbage collections that occur frequently and take a moderate length of time
to complete (such as ConcurrentMarkSweep taking a few seconds), indicate that there is a lot of garbage
collection pressure on the JVM. Remedies include adding nodes, lowering cache sizes, or adjusting the
JVM options regarding garbage collection.

JMX options
Cassandra exposes a number of statistics and management operations via Java Management Extensions
(JMX). JMX is a Java technology that supplies tools for managing and monitoring Java applications
and services. Any statistic or operation that a Java application has exposed as an MBean can then be
monitored or manipulated using JMX. JConsole and the nodetool utility are examples of JMX-compliant
management tools.

By default, you can modify the following properties in the cassandra-env.sh file to configure JMX to listen
on port 7199 without authentication.

• com.sun.management.jmxremote.port

The port on which Cassandra listens from JMX connections.
• com.sun.management.jmxremote.ssl

Enable/disable SSL for JMX.
• com.sun.management.jmxremote.authenticate

Enable/disable remote authentication for JMX.
• -Djava.rmi.server.hostname

Sets the interface hostname or IP that JMX should use to connect. Uncomment and set if you are
having trouble connecting.

Data caching
Data caching topics.

Configuring data caches
Cassandra includes integrated caching and distributes cache data around the cluster. The integrated architecture facilitates troubleshooting and the cold start problem.

Cassandra includes integrated caching and distributes cache data around the cluster. When a node
goes down, the client can read from another cached replica of the data. The integrated architecture also
facilitates troubleshooting because there is no separate caching tier, and cached data matches what is in
the database exactly. The integrated cache alleviates the cold start problem by saving the cache to disk
periodically. Cassandra reads contents back into the cache and distributes the data when it restarts. The
cluster does not start with a cold cache.

In Cassandra 2.1 and later, the saved key cache files include the ID of the table in the file name. A saved
key cache file name for the users table in the mykeyspace keyspace in a Cassandra 2.1 and later looks
similar to: mykeyspace-users.users_name_idx-19bd7f80352c11e4aa6a57448213f97f-
KeyCache-b.db2046071785672832311.tmp

About the partition key cache
The partition key cache is a cache of the partition index for a Cassandra table. Using the key cache instead
of relying on the OS page cache decreases seek times. However, enabling just the key cache results in
disk (or OS page cache) activity to actually read the requested data rows.

/en/cql/3.3/cql/cql_using/useCreateTable.html

Operations

156

About the row cache
You can configure the number of rows to cache in a partition by setting the rows_per_partition table option.
To cache rows, if the row key is not already in the cache, Cassandra reads the first portion of the partition,
and puts the data in the cache. If the newly cached data does not include all cells configured by user,
Cassandra performs another read. The actual size of the row-cache depends on the workload. You should
properly benchmark your application to get ”the best” row cache size to configure.

There are two row cache options, the old serializing cache provider and a new off-heap cache (OHC)
provider. The new OHC provider has been benchmarked as performing about 15% better than the older
option.

Typically, you enable either the partition key or row cache for a table.

Tip: Enable a row cache only when the number of reads is much bigger than the number of writes.
Consider using the operating system page cache instead of the row cache, because writes to a partition
invalidate the whole partition in the cache.

Tip: Disable caching entirely for archive tables, which are infrequently read.

Enabling and configuring caching
Using CQL to enable or disable caching.

Use CQL to enable or disable caching by configuring the caching table property. Set parameters in the
cassandra.yaml file to configure global caching properties:

• Partition key cache size
• Row cache size
• How often Cassandra saves partition key caches to disk
• How often Cassandra saves row caches to disk

Configuring the row_cache_size_in_mb (in the cassandra.yaml configuration file) determines how much
space in memory Cassandra allocates to store rows from the most frequently read partitions of the table.

Procedure
Set the table caching property that configures the partition key cache and the row cache.

CREATE TABLE users (
 userid text PRIMARY KEY,
 first_name text,
 last_name text,
)
WITH caching = { 'keys' : 'NONE', 'rows_per_partition' : '120' };

Tips for efficient cache use
Various tips for efficient cache use.

Tuning the row cache in Cassandra 2.1 describes best practices of using the built-in caching mechanisms
and designing an effective data model. Some tips for efficient cache use are:

• Store lower-demand data or data with extremely long partitions in a table with minimal or no caching.
• Deploy a large number of Cassandra nodes under a relatively light load per node.
• Logically separate heavily-read data into discrete tables.

When you query a table, turn on tracing to check that the table actually gets data from the cache rather
than from disk. The first time you read data from a partition, the trace shows this line below the query
because the cache has not been populated yet:

Row cache miss [ReadStage:41]

/en/cql/3.3/cql/cql_reference/tabProp.html?scroll=tabProp__moreCaching
http://www.datastax.com/dev/blog/row-caching-in-cassandra-2-1
/en/cql/3.3/cql/cql_reference/tracing_r.html

Operations

157

In subsequent queries for the same partition, look for a line in the trace that looks something like this:

Row cache hit [ReadStage:55]

This output means the data was found in the cache and no disk read occurred. Updates invalidate the
cache. If you query rows in the cache plus uncached rows, request more rows than the global limit allows,
or the query does not grab the beginning of the partition, the trace might include a line that looks something
like this:

Ignoring row cache as cached value could not satisfy query [ReadStage:89]

This output indicates that an insufficient cache caused a disk read. Requesting rows not at the beginning
of the partition is a likely cause. Try removing constraints that might cause the query to skip the beginning
of the partition, or place a limit on the query to prevent results from overflowing the cache. To ensure that
the query hits the cache, try increasing the cache size limit, or restructure the table to position frequently
accessed rows at the head of the partition.

Monitoring and adjusting caching
Use nodetool to make changes to cache options and then monitor the effects of each change.

Make changes to cache options in small, incremental adjustments, then monitor the effects of each change
using the nodetool utility. The output of the nodetool info command shows the following row cache and
key cache metrics, which are configured in the cassandra.yaml file:

• Cache size in bytes
• Capacity in bytes
• Number of hits
• Number of requests
• Recent hit rate
• Duration in seconds after which Cassandra saves the key cache.

For example, on start-up, the information from nodetool info might look something like this:

ID : 387d15ba-7103-491b-9327-1a691dbb504a
Gossip active : true
Thrift active : true
Native Transport active: true
Load : 65.87 KB
Generation No : 1400189757
Uptime (seconds) : 148760
Heap Memory (MB) : 392.82 / 1996.81
Data Center : datacenter1
Rack : rack1
Exceptions : 0
Key Cache : entries 10, size 728 (bytes), capacity 103809024 (bytes),
 93 hits, 102 requests, 0.912 recent hit rate, 14400 save period in seconds
Row Cache : entries 0, size 0 (bytes), capacity 0 (bytes), 0 hits, 0
 requests, NaN recent hit rate, 0 save period in seconds
Counter Cache : entries 0, size 0 (bytes), capacity 51380224 (bytes), 0
 hits, 0 requests, NaN recent hit rate, 7200 save period in seconds
Token : -9223372036854775808

In the event of high memory consumption, consider tuning data caches.

Configuring memtable throughput
Configuring memtable throughput to improve write performance.

Configuring memtable throughput can improve write performance. Cassandra flushes memtables to disk,
creating SSTables when the commit log space threshold or thememtable cleanup threshold has been

/en/cql/3.3/cql/cql_reference/select_r.html?scroll=reference_ds_d35_v2q_xj__selAllFltr

Operations

158

exceeded. Configure the commit log space threshold per node in the cassandra.yaml. How you tune
memtable thresholds depends on your data and write load. Increase memtable throughput under either of
these conditions:

• The write load includes a high volume of updates on a smaller set of data.
• A steady stream of continuous writes occurs. This action leads to more efficient compaction.

Allocating memory for memtables reduces the memory available for caching and other internal Cassandra
structures, so tune carefully and in small increments.

Configuring compaction
Steps for configuring compaction. The compaction process merges keys, combines columns, evicts tombstones, consolidates SSTables, and creates a new index in the merged SSTable.

As discussed in the Compaction on page 28 topic, the compaction process merges keys, combines
columns, evicts tombstones, consolidates SSTables, and creates a new index in the merged SSTable.

In the cassandra.yaml file, you configure these global compaction parameters:

• snapshot_before_compaction
• concurrent_compactors
• compaction_throughput_mb_per_sec

The compaction_throughput_mb_per_sec parameter is designed for use with large partitions because
compaction is throttled to the specified total throughput across the entire system.

Cassandra provides a start-up option for testing compaction strategies without affecting the production
workload.

Using CQL, you configure a compaction strategy:

• SizeTieredCompactionStrategy (STCS): The default compaction strategy. This strategy triggers
a minor compaction when there are a number of similar sized SSTables on disk as configured by the
table subproperty, min_threshold. A minor compaction does not involve all the tables in a keyspace.
Also see STCS compaction subproperties.

• DateTieredCompactionStrategy (DTCS): This strategy is particularly useful for time series
data. DateTieredCompactionStrategy stores data written within a certain period of time in the same
SSTable. For example, Cassandra can store your last hour of data in one SSTable time window, and
the next 4 hours of data in another time window, and so on. Compactions are triggered when the
min_threshold (4 by default) for SSTables in those windows is reached. The most common queries for
time series workloads retrieve the last hour/day/month of data. Cassandra can limit SSTables returned
to those having the relevant data. Also, Cassandra can store data that has been set to expire using
TTL in an SSTable with other data scheduled to expire at approximately the same time. Cassandra can
then drop the SSTable without doing any compaction. Also see DTCS compaction subproperties and
DateTieredCompactionStrategy: Compaction for Time Series Data.

Note: It is necessary to disable read repair when using DTCS. Use incremental repair and full repair as
necessary.

• LeveledCompactionStrategy (LCS): The leveled compaction strategy creates SSTables of a
fixed, relatively small size (160 MB by default) that are grouped into levels. Within each level, SSTables
are guaranteed to be non-overlapping. Each level (L0, L1, L2 and so on) is 10 times as large as the
previous. Disk I/O is more uniform and predictable on higher than on lower levels as SSTables are
continuously being compacted into progressively larger levels. At each level, row keys are merged into
non-overlapping SSTables in the next level. This process can improve performance for reads, because
Cassandra can determine which SSTables in each level to check for the existence of row key data.
This compaction strategy is modeled after Google's leveldb implementation. Also see LCS compaction
subproperties.

To configure the compaction strategy property and CQL compaction subproperties, such as the maximum
number of SSTables to compact and minimum SSTable size, use CREATE TABLE or ALTER TABLE.

/en/cql/3.3/cql/cql_reference/compactSubprop.html?scroll=compactSubprop__compactionSubpropertiesSTCS
http://planetcassandra.org/blog/getting-started-with-time-series-data-modeling/
http://planetcassandra.org/blog/getting-started-with-time-series-data-modeling/
/en/cql/3.3/cql/cql_reference/compactSubprop.html?scroll=compactSubprop__compactionSubpropertiesDTCS
http://www.datastax.com/dev/blog/datetieredcompactionstrategy
http://leveldb.googlecode.com/svn/trunk/doc/impl.html
/en/cql/3.3/cql/cql_reference/compactSubprop.html?scroll=compactSubprop__compactionSubpropertiesLCS
/en/cql/3.3/cql/cql_reference/compactSubprop.html?scroll=compactSubprop__compactionSubpropertiesLCS
/en/cql/3.3/cql/cql_reference/cql_storage_options_c.html
/en/cql/3.3/cql/cql_reference/create_table_r.html
/en/cql/3.3/cql/cql_reference/alter_table_r.html

Operations

159

Procedure
1. Update a table to set the compaction strategy using the ALTER TABLE statement.

ALTER TABLE users WITH
 compaction = { 'class' : 'LeveledCompactionStrategy' }

2. Change the compaction strategy property to SizeTieredCompactionStrategy and specify the minimum
number of SSTables to trigger a compaction using the CQL min_threshold attribute.

ALTER TABLE users
 WITH compaction =
 {'class' : 'SizeTieredCompactionStrategy', 'min_threshold' : 6 }

Results
You can monitor the results of your configuration using compaction metrics, see Compaction metrics on
page 151.

Compression
Compression maximizes the storage capacity of Cassandra nodes by reducing the volume of data on disk and disk I/O, particularly for read-dominated workloads.

Compression maximizes the storage capacity of Cassandra nodes by reducing the volume of data on disk
and disk I/O, particularly for read-dominated workloads. Cassandra quickly finds the location of rows in the
SSTable index and decompresses the relevant row chunks.

Write performance is not negatively impacted by compression in Cassandra as it is in traditional
databases. In traditional relational databases, writes require overwrites to existing data files on disk. The
database has to locate the relevant pages on disk, decompress them, overwrite the relevant data, and
finally recompress. In a relational database, compression is an expensive operation in terms of CPU cycles
and disk I/O. Because Cassandra SSTable data files are immutable (they are not written to again after
they have been flushed to disk), there is no recompression cycle necessary in order to process writes.
SSTables are compressed only once when they are written to disk. Writes on compressed tables can show
up to a 10 percent performance improvement.

In Cassandra 2.2 and later, the commit log can also be compressed and write performance can be
improved 6-12%. For more information, see Updates to Cassandra’s Commit Log in 2.2.

When to compress data
Compression is best suited for tables that have many rows and each row has the same columns, or at least as many columns, as other rows.

Compression is most effective on a table with many rows, where each row contains the same set of
columns (or the same number of columns) as all other rows. For example, a table containing user data
such as username, email and state is a good candidate for compression. The greater the similarity of the
data across rows, the greater the compression ratio and gain in read performance.

A table whose rows contain differing sets of columns is not well-suited for compression.

Don't confuse table compression with compact storage of columns, which is used for backward
compatibility of old applications with CQL.

Depending on the data characteristics of the table, compressing its data can result in:

• 2x-4x reduction in data size
• 25-35% performance improvement on reads
• 5-10% performance improvement on writes

After configuring compression on an existing table, subsequently created SSTables are compressed.
Existing SSTables on disk are not compressed immediately. Cassandra compresses existing SSTables

/en/cql/3.3/cql/cql_reference/tabProp.html?scroll=tabProp__moreCompaction
http://www.datastax.com/dev/blog/updates-to-cassandras-commit-log-in-2-2
/en/cql/3.3/cql/cql_reference/create_table_r.html

Operations

160

when the normal Cassandra compaction process occurs. Force existing SSTables to be rewritten and
compressed by using nodetool upgradesstables (Cassandra 1.0.4 or later) or nodetool scrub.

Configuring compression
Steps for configuring compression.

You configure a table property and subproperties to manage compression. The CQL table properties
documentation describes the types of compression options that are available. Compression is enabled by
default.

Procedure
1. Disable compression, using CQL to set the compression parameter enabled to false.

CREATE TABLE DogTypes (
 block_id uuid,
 species text,
 alias text,
 population varint,
 PRIMARY KEY (block_id)
)
 WITH compression = { 'enabled' : false };

2. Enable compression on an existing table, using ALTER TABLE to set the compression algorithm class
to LZ4Compressor (Cassandra 1.2.2 and later), SnappyCompressor, or DeflateCompressor.

CREATE TABLE DogTypes (
 block_id uuid,
 species text,
 alias text,
 population varint,
 PRIMARY KEY (block_id)
)
 WITH compression = { 'class' : 'LZ4Compressor' };

3. Change compression on an existing table, using ALTER TABLE and setting the compression algorithm
class to DeflateCompressor.

ALTER TABLE CatTypes
 WITH compression = { 'class' : 'DeflateCompressor',
 'chunk_length_in_kb' : 64 }

You tune data compression on a per-table basis using CQL to alter a table.

Testing compaction and compression
Enabling write survey mode.

Write survey mode is a Cassandra startup option for testing new compaction and compression strategies.
In write survey mode, you can test out new compaction and compression strategies on that node and
benchmark the write performance differences, without affecting the production cluster.

Write survey mode adds a node to a database cluster. The node accepts all write traffic as if it were part of
the normal Cassandra cluster, but the node does not officially join the ring.

Also use write survey mode to try out a new Cassandra version. The nodes you add in write survey mode
to a cluster must be of the same major release version as other nodes in the cluster. The write survey

/en/cql/3.3/cql/cql_reference/tabProp.html?scroll=tabProp__moreCompression
/en/cql/3.3/cql/cql_reference/tabProp.html?scroll=tabProp__moreCompression

Operations

161

mode relies on the streaming subsystem that transfers data between nodes in bulk and differs from one
major release to another.

If you want to see how read performance is affected by modifications, stop the node, bring it up as a
standalone machine, and then benchmark read operations on the node.

Procedure
Start the Cassandra node using the write_survey option:

• Package installations: Add the following option to cassandra-env.sh file:

JVM_OPTS="$JVM_OPTS -Dcassandra.write_survey=true

• Tarball installations: Start Cassandra with this option:

$ cd install_location
$ sudo bin/cassandra -Dcassandra.write_survey=true

The location of the cassandra-topology.properties file depends on the type of installation:

Package installations /etc/cassandra/cassandra-
topology.properties

Tarball installations install_location/conf/cassandra-
topology.properties

Tuning Bloom filters
Cassandra uses Bloom filters to determine whether an SSTable has data for a particular row.

Cassandra uses Bloom filters to determine whether an SSTable has data for a particular partition.
Bloom filters are unused for range scans, but are used for index scans. Bloom filters are probabilistic
sets that allow you to trade memory for accuracy. This means that higher Bloom filter attribute
settings bloom_filter_fp_chance use less memory, but will result in more disk I/O if the SSTables
are highly fragmented. Bloom filter settings range from 0 to 1.0 (disabled). The default value of
bloom_filter_fp_chance depends on the compaction strategy. The LeveledCompactionStrategy uses a
higher default value (0.1) than the SizeTieredCompactionStrategy or DateTieredCompactionStrategy,
which have a default of 0.01. Memory savings are nonlinear; going from 0.01 to 0.1 saves about one third
of the memory. SSTables using LCS contain a relatively smaller ranges of keys than those using STCS,
which facilitates efficient exclusion of the SSTables even without a bloom filter; however, adding a small
bloom filter helps when there are many levels in LCS.

The settings you choose depend the type of workload. For example, to run an analytics application that
heavily scans a particular table, you would want to inhibit the Bloom filter on the table by setting it high.

To view the observed Bloom filters false positive rate and the number of SSTables consulted per read use
tablestats in the nodetool utility.

Bloom filters are stored off-heap so you don't need include it when determining the -Xmx settings (the
maximum memory size that the heap can reach for the JVM).

To change the bloom filter property on a table, use CQL. For example:

ALTER TABLE addamsFamily WITH bloom_filter_fp_chance = 0.1;

After updating the value of bloom_filter_fp_chance on a table, Bloom filters need to be regenerated in one
of these ways:

• Initiate compaction
• Upgrade SSTables

/en/cql/3.3/cql/cql_reference/tabProp.html?scroll=tabProp__moreBloomFilter
/en/cql/3.3/cql/cql_reference/tabProp.html?scroll=tabProp__moreCompaction
/en/cql/3.3/cql/cql_reference/tabProp.html?scroll=tabProp__moreBloomFilter

Operations

162

You do not have to restart Cassandra after regenerating SSTables.

Moving data to or from other databases
Solutions for migrating from other databases.

Cassandra offers several solutions for migrating from other databases:

• The COPY command, which mirrors what the PostgreSQL RDBMS uses for file/export import.
• The Cassandra bulk loader provides the ability to bulk load external data into a cluster.

About the COPY command
You can use COPY in CQL shell to load flat file data into Cassandra (nearly all relational databases have
unload utilities that allow table data to be written to OS files) as well to write Cassandra data to CSV files.

ETL Tools
If you need more sophistication applied to a data movement situation (more than just extract-load), then
you can use any number of extract-transform-load (ETL) solutions that now support Cassandra. These
tools provide excellent transformation routines that allow you to manipulate source data in literally any way
you need and then load it into a Cassandra target. They also supply many other features such as visual,
point-and-click interfaces, scheduling engines, and more.

Many ETL vendors who support Cassandra supply community editions of their products that are free
and able to solve many different use cases. Enterprise editions are also available that supply many other
compelling features that serious enterprise data users need.

You can freely download and try ETL tools from Jaspersoft, Pentaho, and Talend that all work with
Cassandra.

Purging gossip state on a node
Correcting a problem in the gossip state.

Gossip information is persisted locally by each node to use immediately on node restart without having to
wait for gossip communications.

Procedure
In the unlikely event you need to correct a problem in the gossip state:

1. Use the nodetool assassinate to shut down the problem node.

This takes approximately 35 seconds to complete, so wait for confirmation that the node is deleted.

2. If this method doesn't solve the problem, stop your client application from sending writes to the cluster.

3. Take the entire cluster offline:

a) Drain each node.

$ nodetool options drain
b) Stop each node:

• Package installations:

$ sudo service cassandra stop
• Tarball installations:

$ sudo service cassandra stop

/en/cql/3.3/cql/cql_reference/copy_r.html

Cassandra tools

163

4. Clear the data from the peers directory:

$ sudo rm -r /var/lib/cassandra/data/system/peers/*

CAUTION:

Use caution when performing this step. The action clears internal system data from Cassandra and
may cause application outage without careful execution and validation of the results. To validate the
results, run the following query individually on each node to confirm that all of the nodes are able to see
all other nodes.

select * from system.peers;

5. Clear the gossip state when the node starts:

• For tarball installations, you can use a command line option or edit the cassandra-env.sh. To use
the command line:

$ install_location/bin/cassandra -Dcassandra.load_ring_state=false
• For package installations or if you are not using the command line option above, add the following

line to the cassandra-env.sh file:

$env:JVM_OPTS="$JVM_OPTS -Dcassandra.load_ring_state=false"

• Package installations: /usr/share/cassandra/cassandra-env.sh
• Tarball installations: install_location/conf/cassandra-env.sh

6. Bring the cluster online one node at a time, starting with the seed nodes.

• Package installations:

$ sudo service cassandra start
• Tarball installations:

$ cd install_location
$ bin/cassandra

What to do next
Remove the line you added in the cassandra-env.sh file.

Cassandra tools
Topics for Cassandra tools.

The nodetool utility
A command line interface for managing a cluster.

The nodetool utility is a command line interface for managing a cluster.

Command formats

$ nodetool [options] command [args]

Cassandra tools

164

Table: Options

Short Long Description

-h --host Hostname or IP address

-p --port Port number

-pwf --password-file Password file path

-pw --password Password

-u --username User name

Note:

• For tarball installations, execute the command from the install_location/bin directory.
• If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the

host, then you must specify credentials.
• The repair and rebuild commands can affect multiple nodes in the cluster.
• Most nodetool commands operate on a single node in the cluster if -h is not used to identify one or

more other nodes. If the node from which you issue the command is the intended target, you do not
need the -h option to identify the target; otherwise, for remote invocation, identify the target node, or
nodes, using -h.

Example

$ nodetool -u cassandra -pw cassandra describering demo_keyspace

Getting nodetool help
nodetool help

Provides a listing of nodetool commands.

nodetool help command name

Provides help on a specific command. For example:

$ nodetool help upgradesstables

nodetool assassinate
Forcefully removes a dead node without re-replicating any data. It is a last resort tool if you cannot successfully use nodetool removenode.

Forcefully removes a dead node without re-replicating any data. It is a last resort tool if you cannot
successfully use nodetool removenode.

Synopsis

$ nodetool [options] assassinate [args]

Table: Options

Short Long Description

-h --host Hostname or IP address

-p --port Port number

-pwf --password-file Password file path

-pw --password Password

-u --username User name

Cassandra tools

165

Note:

• For tarball installations, execute the command from the install_location/bin directory.
• If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the

host, then you must specify credentials.
• nodetool assassinate operates on a single node in the cluster if -h is not used to identify one or

more other nodes. If the node from which you issue the command is the intended target, you do not
need the -h option to identify the target; otherwise, for remote invocation, identify the target node, or
nodes, using -h.

Synopsis Legend
In the synopsis section of each statement, formatting has the following meaning:

• Uppercase means literal
• Lowercase means not literal
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

A semicolon that terminates CQL statements is not included in the synopsis.

Description
The nodetool assassinate command is a tool of last resort. Only use this tool to remove a node from
a cluster when removenode is not successful.

Examples

$ nodetool -u cassandra -pw cassandra assassinate 192.168.100.2

nodetool bootstrap
Monitor and manage a node's bootstrap process.

Monitor and manage a node's bootstrap process.

Synopsis

$ nodetool [options] bootstrap [resume]

Table: Options

Short Long Description

-h --host Hostname or IP address

-p --port Port number

-pwf --password-file Password file path

-pw --password Password

-u --username User name

Note:

• For tarball installations, execute the command from the install_location/bin directory.

Cassandra tools

166

• If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the
host, then you must specify credentials.

• nodetool bootstrap operates on a single node in the cluster if -h is not used to identify one or more
other nodes. If the node from which you issue the command is the intended target, you do not need the
-h option to identify the target; otherwise, for remote invocation, identify the target node, or nodes, using
-h.

Synopsis Legend
In the synopsis section of each statement, formatting has the following meaning:

• Uppercase means literal
• Lowercase means not literal
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

A semicolon that terminates CQL statements is not included in the synopsis.

Description
The nodetool bootstrap command can be used to monitor and manage a node's bootstrap process.
If no argument is defined, the help information is displayed. If the argument resume is used, bootstrap
streaming is resumed.

Examples

$ nodetool -u cassandra -pw cassandra bootstrap resume

nodetool cfhistograms
This tool has been renamed.

This tool has been renamed as tablehistograms.

nodetool cfstats
This tool has been renamed.

This tool has been renamed as nodetool tablestats.

nodetool cleanup
Cleans up keyspaces and partition keys no longer belonging to a node.

Cleans up keyspaces and partition keys no longer belonging to a node.

Synopsis

$ nodetool <options> cleanup -- <keyspace> (<table> ...)

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -- separates an option from an argument that could be mistaken for a option.

Cassandra tools

167

• keyspace is a keyspace name.
• table is one or more table names, separated by a space.

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
Use this command to remove unwanted data after adding a new node to the cluster. Cassandra does
not automatically remove data from nodes that lose part of their partition range to a newly added node.
Run nodetool cleanup on the source node and on neighboring nodes that shared the same subrange
after the new node is up and running. Failure to run this command after adding a node causes Cassandra
to include the old data to rebalance the load on that node. Running the nodetool cleanup command
causes a temporary increase in disk space usage proportional to the size of your largest SSTable. Disk I/O
occurs when running this command.

Running this command affects nodes that use a counter column in a table. Cassandra assigns a new
counter ID to the node.

Optionally, this command takes a list of table names. If you do not specify a keyspace, this command
cleans all keyspaces no longer belonging to a node.

nodetool clearsnapshot
Removes one or more snapshots.

Removes one or more snapshots.

Synopsis

$ nodetool <options> clearsnapshot -t <snapshot> -- (<keyspace> ...)

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -t means the following file contains the snapshot.
• snapshot is the name of the snapshot.
• -- separates an option from an argument that could be mistaken for a option.
• keyspace is one or more keyspace names, separated by a space.

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Cassandra tools

168

Description
Deletes snapshots in one or more keyspaces. To remove all snapshots, omit the snapshot name.

nodetool compact
Forces a major compaction on one or more tables.

Forces a major compaction on one or more tables.

Synopsis

$ nodetool <options> compact <keyspace> (<table> ...)

Table: Options

Short Long Description

-h --host Hostname or IP address.

-p --port Remote JMX agent port number.

-pw --password Password.

-pwf --password-file Password file path.

-s --split-output Split output of STCS files to 50%-25%-12.5%-etc.
of the total size.

-u --username Remote JMX agent user name.

--user-defined Submit listed files for user-defined compaction. For
Casasandra 3.4 and later.

Note:

• For tarball installations, execute the command from the install_location/bin directory.
• If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the

host, then you must specify credentials.
• No -s will create one large SSTable for STCS.
• -s will not affect DTCS; it will create one large SSTable.

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
This command starts the compaction process on tables using SizeTieredCompactionStrategy (STCS),
DateTieredCompactionStrategy (DTCS), or Leveled compaction (LCS):

• If you do not specify a keyspace or table, a major compaction is run on all keyspaces and tables.
• If you specify only a keyspace, a major compaction is run on all tables in that keyspace.
• If you specify one or more tables, a major compaction is run on those tables.

Major compactions may behave differently depending which compaction strategy is used for the affected
tables:

/en/glossary/doc/glossary/gloss_compaction.html

Cassandra tools

169

• Size-tiered compaction (STCS) splits repaired and unrepaired data into separate pools for separate
compactions. A major compaction generates two SSTables, one for each pool of data.

• Leveled compaction (LCS) performs size-tiered compaction on unrepaired data. After repair completes,
Casandra moves data from the set of unrepaired SSTables to L0.

• Date-tiered (DTCS) splits repaired and unrepaired data into separate pools for separate compactions. A
major compaction generates two SSTables, one for each pool of data.

For more details, see How is data maintained? and Configuring compaction.

Note: A major compaction can cause considerably more disk I/O than minor compactions.

nodetool compactionhistory
Provides the history of compaction operations.

Provides the history of compaction operations.

Synopsis

$ nodetool <options> compactionhistory

Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Example
The actual output of compaction history is seven columns wide. The first three columns show the id,
keyspace name, and table name of the compacted SSTable.

$ nodetool compactionhistory

Compaction History:
id keyspace_name
 columnfamily_name
d06f7080-07a5-11e4-9b36-abc3a0ec9088 system
 schema_columnfamilies
d198ae40-07a5-11e4-9b36-abc3a0ec9088 libdata users
0381bc30-07b0-11e4-9b36-abc3a0ec9088 Keyspace1 Standard1
74eb69b0-0621-11e4-9b36-abc3a0ec9088 system local
e35dd980-07ae-11e4-9b36-abc3a0ec9088 system
 compactions_in_progress
8d5cf160-07ae-11e4-9b36-abc3a0ec9088 system
 compactions_in_progress
ba376020-07af-11e4-9b36-abc3a0ec9088 Keyspace1 Standard1
d18cc760-07a5-11e4-9b36-abc3a0ec9088 libdata libout
64009bf0-07a4-11e4-9b36-abc3a0ec9088 libdata libout
d04700f0-07a5-11e4-9b36-abc3a0ec9088 system sstable_activity

Cassandra tools

170

c2a97370-07a9-11e4-9b36-abc3a0ec9088 libdata users
cb928a80-07ae-11e4-9b36-abc3a0ec9088 Keyspace1 Standard1
cd8d1540-079e-11e4-9b36-abc3a0ec9088 system schema_columns
62ced2b0-07a4-11e4-9b36-abc3a0ec9088 system schema_keyspaces
d19cccf0-07a5-11e4-9b36-abc3a0ec9088 system
 compactions_in_progress
640bbf80-07a4-11e4-9b36-abc3a0ec9088 libdata users
6cd54e60-07ae-11e4-9b36-abc3a0ec9088 Keyspace1 Standard1
c29241f0-07a9-11e4-9b36-abc3a0ec9088 libdata libout
c2a30ad0-07a9-11e4-9b36-abc3a0ec9088 system
 compactions_in_progress
e3a6d920-079d-11e4-9b36-abc3a0ec9088 system schema_keyspaces
62c55cd0-07a4-11e4-9b36-abc3a0ec9088 system
 schema_columnfamilies
62b07540-07a4-11e4-9b36-abc3a0ec9088 system schema_columns
cdd038c0-079e-11e4-9b36-abc3a0ec9088 system schema_keyspaces
b797af00-07af-11e4-9b36-abc3a0ec9088 Keyspace1 Standard1
8c918b10-07ae-11e4-9b36-abc3a0ec9088 Keyspace1 Standard1
377d73f0-07ae-11e4-9b36-abc3a0ec9088 system
 compactions_in_progress
62b9c410-07a4-11e4-9b36-abc3a0ec9088 system local
d0566a40-07a5-11e4-9b36-abc3a0ec9088 system schema_columns
ba637930-07af-11e4-9b36-abc3a0ec9088 system
 compactions_in_progress
cdbc1480-079e-11e4-9b36-abc3a0ec9088 system
 schema_columnfamilies
e3456f80-07ae-11e4-9b36-abc3a0ec9088 Keyspace1 Standard1
d086f020-07a5-11e4-9b36-abc3a0ec9088 system schema_keyspaces
d06118a0-07a5-11e4-9b36-abc3a0ec9088 system local
cdaafd80-079e-11e4-9b36-abc3a0ec9088 system local
640fde30-07a4-11e4-9b36-abc3a0ec9088 system
 compactions_in_progress
37638350-07ae-11e4-9b36-abc3a0ec9088 Keyspace1 Standard1

The four columns to the right of the table name show the timestamp, size of the SSTable before and after
compaction, and the number of partitions merged. The notation means {tables:rows}. For example: {1:3,
3:1} means 3 rows were taken from one SSTable (1:3) and 1 row taken from 3 SSTables (3:1) to make the
one SSTable in that compaction operation.

. . . compacted_at bytes_in bytes_out rows_merged

. . . 1404936947592 8096 7211 {1:3, 3:1}

. . . 1404936949540 144 144 {1:1}

. . . 1404941328243 1305838191 1305838191 {1:4647111}

. . . 1404770149323 5864 5701 {4:1}

. . . 1404940844824 573 148 {1:1, 2:2}

. . . 1404940700534 576 155 {1:1, 2:2}

. . . 1404941205282 766331398 766331398 {1:2727158}

. . . 1404936949462 8901649 8901649 {1:9315}

. . . 1404936336175 8900821 8900821 {1:9315}

. . . 1404936947327 223 108 {1:3, 2:1}

. . . 1404938642471 144 144 {1:1}

. . . 1404940804904 383020422 383020422 {1:1363062}

. . . 1404933936276 4889 4177 {1:4}

. . . 1404936334171 441 281 {1:3, 2:1}

. . . 1404936949567 379 79 {2:2}

. . . 1404936336248 144 144 {1:1}

. . . 1404940645958 307520780 307520780 {1:1094380}

. . . 1404938642319 8901649 8901649 {1:9315}

. . . 1404938642429 416 165 {1:3, 2:1}

. . . 1404933543858 692 281 {1:3, 2:1}

. . . 1404936334109 7760 7186 {1:3, 2:1}

. . . 1404936333972 4860 4724 {1:2, 2:1}

Cassandra tools

171

. . . 1404933936715 441 281 {1:3, 2:1}

. . . 1404941200880 1269180898 1003196133 {1:2623528,
 2:946565}
. . . 1404940699201 297639696 297639696 {1:1059216}
. . . 1404940556463 592 148 {1:2, 2:2}
. . . 1404936334033 5760 5680 {2:1}
. . . 1404936947428 8413 5316 {1:2, 3:1}
. . . 1404941205571 429 42 {2:2}
. . . 1404933936584 7994 6789 {1:4}
. . . 1404940844664 306699417 306699417 {1:1091457}
. . . 1404936947746 601 281 {1:3, 3:1}
. . . 1404936947498 5840 5680 {3:1}
. . . 1404933936472 5861 5680 {3:1}
. . . 1404936336275 378 80 {2:2}
. . . 1404940556293 302170540 281000000 {1:924660, 2:75340}

nodetool compactionstats
Provide statistics about a compaction.

Provide statistics about a compaction.

Synopsis

$ nodetool <options> compactionstats -H

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -- separates an option and argument that could be mistaken for a option.
• data center is the name of an arbitrarily chosen data center from which to select sources for streaming.
• H converts bytes to a human readable form: kilobytes (KB), megabytes (MB), gigabytes (GB), or

terabytes (TB). (Cassandra 2.1.1)

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
The total column shows the total number of uncompressed bytes of SSTables being compacted. The
system log lists the names of the SSTables compacted.

Example

$ nodetool compactionstats

pending tasks: 5
 compaction type keyspace table completed
 total unit progress

Cassandra tools

172

 Compaction Keyspace1 Standard1 282310680
 302170540 bytes 93.43%
 Compaction Keyspace1 Standard1 58457931
 307520780 bytes 19.01%
Active compaction remaining time : 0h00m16s

nodetool decommission
Deactivates a node by streaming its data to another node.

Deactivates a node by streaming its data to another node.

Synopsis

$ nodetool <options> decommission

Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
Causes a live node to decommission itself, streaming its data to the next node on the ring. Use netstats to
monitor the progress, as described on http://wiki.apache.org/cassandra/NodeProbe#Decommission and
http://wiki.apache.org/cassandra/Operations#Removing_nodes_entirely.

nodetool describecluster
Provide the name, snitch, partitioner and schema version of a cluster

Provide the name, snitch, partitioner and schema version of a cluster

Synopsis

$ nodetool <options> describecluster -- <data center>

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -- separates an option and argument that could be mistaken for a option.
• data center is the name of an arbitrarily chosen data center from which to select sources for streaming.

http://wiki.apache.org/cassandra/NodeTool#Decommission
http://wiki.apache.org/cassandra/Operations#Removing_nodes_entirely

Cassandra tools

173

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
Describe cluster is typically used to validate the schema after upgrading. If a schema disagreement occurs,
check for and resolve schema disagreements.

Example

$ nodetool describecluster

Cluster Information:
 Name: Test Cluster
 Snitch: org.apache.cassandra.locator.DynamicEndpointSnitch
 Partitioner: org.apache.cassandra.dht.Murmur3Partitioner
 Schema versions:
 65e78f0e-e81e-30d8-a631-a65dff93bf82: [127.0.0.1]

If a schema disagreement occurs, the last line of the output includes information about unreachable nodes.

$ nodetool describecluster

Cluster Information:
 Name: Production Cluster
 Snitch: org.apache.cassandra.locator.DynamicEndpointSnitch
 Partitioner: org.apache.cassandra.dht.Murmur3Partitioner
 Schema versions:
 UNREACHABLE: 1176b7ac-8993-395d-85fd-41b89ef49fbb:
 [10.202.205.203]

nodetool describering
Provides the partition ranges of a keyspace.

Provides the partition ranges of a keyspace.

Synopsis

$ nodetool <options> describering -- <keyspace>

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -- separates an option from an argument that could be mistaken for a option.
• keyspace is a keyspace name.

Cassandra tools

174

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Example
This example shows the sample output of the command on a three-node cluster.

$ nodetool describering demo_keyspace

Schema Version:1b04bd14-0324-3fc8-8bcb-9256d1e15f82
TokenRange:
 TokenRange(start_token:3074457345618258602,
 end_token:-9223372036854775808,
 endpoints:[127.0.0.1, 127.0.0.2, 127.0.0.3],
 rpc_endpoints:[127.0.0.1, 127.0.0.2, 127.0.0.3],
 endpoint_details:[EndpointDetails(host:127.0.0.1,
 datacenter:datacenter1, rack:rack1),
 EndpointDetails(host:127.0.0.2, datacenter:datacenter1,
 rack:rack1),
 EndpointDetails(host:127.0.0.3, datacenter:datacenter1,
 rack:rack1)])
 TokenRange(start_token:-3074457345618258603,
 end_token:3074457345618258602,
 endpoints:[127.0.0.3, 127.0.0.1, 127.0.0.2],
 rpc_endpoints:[127.0.0.3, 127.0.0.1, 127.0.0.2],
 endpoint_details:[EndpointDetails(host:127.0.0.3,
 datacenter:datacenter1, rack:rack1),
 EndpointDetails(host:127.0.0.1, datacenter:datacenter1,
 rack:rack1),
 EndpointDetails(host:127.0.0.2, datacenter:datacenter1,
 rack:rack1)])
 TokenRange(start_token:-9223372036854775808,
 end_token:-3074457345618258603,
 endpoints:[127.0.0.2, 127.0.0.3, 127.0.0.1],
 rpc_endpoints:[127.0.0.2, 127.0.0.3, 127.0.0.1],
 endpoint_details:[EndpointDetails(host:127.0.0.2,
 datacenter:datacenter1, rack:rack1),
 EndpointDetails(host:127.0.0.3, datacenter:datacenter1,
 rack:rack1),
 EndpointDetails(host:127.0.0.1, datacenter:datacenter1,
 rack:rack1)])

If a schema disagreement occurs, the last line of the output includes information about unreachable nodes.

$ nodetool describecluster

Cluster Information:
 Name: Production Cluster
 Snitch: org.apache.cassandra.locator.DynamicEndpointSnitch
 Partitioner: org.apache.cassandra.dht.Murmur3Partitioner
 Schema versions:
 UNREACHABLE: 1176b7ac-8993-395d-85fd-41b89ef49fbb:
 [10.202.205.203]

Cassandra tools

175

nodetool disableautocompaction
Disables autocompaction for a keyspace and one or more tables.

Disables autocompaction for a keyspace and one or more tables.

Synopsis

$ nodetool <options> disableautocompaction -- <keyspace> (<table> ...)

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -- separates an option and argument that could be mistaken for a option.
• keyspace is the name of a keyspace.
• table is one or more table names, separated by a space.

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
The keyspace can be followed by one or more tables.

nodetool disablebackup
Disables incremental backup.

Disables incremental backup.

Synopsis

$ nodetool <options> disablebackup

Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Cassandra tools

176

nodetool disablebinary
Disables the native transport.

Disables the native transport.

Synopsis

$ nodetool <options> disablebinary

Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
Disables the binary protocol, also known as the native transport.

nodetool disablegossip
Disables the gossip protocol.

Disables the gossip protocol.

Synopsis

$ nodetool <options> disablegossip

Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
This command effectively marks the node as being down.

Cassandra tools

177

nodetool disablehandoff
Disables storing of future hints on the current node.

Disables storing of future hints on the current node.

Synopsis

$ nodetool <options> disablehandoff

Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

nodetool disablehintsfordc
Disable hints for a data center.

Disable hints for a data center.

Synopsis

$ nodetool [options] disablehintsfordc [--] <datacenter>

Table: Options

Short Long Description

-h --host Hostname or IP address

-p --port Port number

-pwf --password-file Password file path

-pw --password Password

-u --username User name

Note:

• For tarball installations, execute the command from the install_location/bin directory.
• If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the

host, then you must specify credentials.
• nodetool disablehintsfordc operates on a single node in the cluster if -h is not used to identify

one or more other nodes. If the node from which you issue the command is the intended target, you do
not need the -h option to identify the target; otherwise, for remote invocation, identify the target node, or
nodes, using -h.

• [--] can be used to separate command-line options from the list of arguments, when the list might be
mistaken for options.

Cassandra tools

178

Synopsis Legend
In the synopsis section of each statement, formatting has the following meaning:

• Uppercase means literal
• Lowercase means not literal
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

A semicolon that terminates CQL statements is not included in the synopsis.

Description
The nodetool disablehintsfordc command is used to turn off hints for a data center. This can be
useful if there is a downed data center, but hints should continue on other data centers. Another common
case is during data center failover, when hints will put unnecessary pressure on the data center.

Examples

$ nodetool -u cassandra -pw cassandra disablehintsfordc DC2

nodetool disablethrift
Disables the Thrift server.

Disables the Thrift server.

Synopsis

$ nodetool [options] disablethrift [args]

Table: Options

Short Long Description

-h --host Hostname or IP address

-p --port Port number

-pwf --password-file Password file path

-pw --password Password

-u --username User name

Note:

• For tarball installations, execute the command from the install_location/bin directory.
• If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the

host, then you must specify credentials.
• nodetool disablethrift operates on a single node in the cluster if -h is not used to identify one

or more other nodes. If the node from which you issue the command is the intended target, you do not
need the -h option to identify the target; otherwise, for remote invocation, identify the target node, or
nodes, using -h.

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable

Cassandra tools

179

• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
nodetool disablethrift will disable thrift on a node preventing the node from acting as a coordinator.
The node can still be a replica for a different coordinator and data read at consistency level ONE could
be stale. To cause a node to ignore read requests from other coordinators, nodetool disablegossip
would also need to be run. However, if both commands are run, the node will not perform repairs, and
the node will continue to store stale data. If the goal is to repair the node, set the read operations to a
consistency level of QUORUM or higher while you run repair. An alternative approach is to delete the
node's data and restart the Cassandra process.

Note that the nodetool commands using the -h option will not work remotely on a disabled node until
nodetool enablethrift and nodetool enablegossip are run locally on the disabled node.

Examples

$ nodetool -u cassandra -pw cassandra disablethrift 192.168.100.1

nodetool drain
Drains the node.

Drains the node.

Synopsis

$ nodetool <options> drain

Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
Flushes all memtables from the node to SSTables on disk. Cassandra stops listening for connections from
the client and other nodes. You need to restart Cassandra after running nodetool drain. You typically
use this command before upgrading a node to a new version of Cassandra. To simply flush memtables to
disk, use nodetool flush.

Cassandra tools

180

nodetool enableautocompaction
Enables autocompaction for a keyspace and one or more tables.

Enables autocompaction for a keyspace and one or more tables.

Synopsis

$ nodetool <options> enableautocompaction -- <keyspace> (<table> ...)

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -- separates an option and argument that could be mistaken for a option.
• keyspace is the name of a keyspace.
• table is the name of one or more keyspaces, separated by a space.

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
The keyspace can be followed by one or more tables. Enables compaction for the named keyspace or the
current keyspace, and one or more named tables, or all tables.

nodetool enablebackup
Enables incremental backup.

Enables incremental backup.

Synopsis

$ nodetool <options> enablebackup

Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Cassandra tools

181

nodetool enablebinary
Re-enables native transport.

Re-enables native transport.

Synopsis

$ nodetool <options> enablebinary

Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
Re-enables the binary protocol, also known as native transport.

nodetool enablegossip
Re-enables gossip.

Re-enables gossip.

Synopsis

$ nodetool <options> enablegossip

Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Cassandra tools

182

nodetool enablehandoff
Re-enables the storing of future hints on the current node.

Re-enables the storing of future hints on the current node.

Synopsis

$ nodetool <options> enablehandoff

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -- separates an option and argument that could be mistaken for a option.
• <dc-name>,<dc-name> means enable hinted handoff only for these data centers

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

nodetool enablehintsfordc
Enable hints for a data center.

Enable hints for a data center.

Synopsis

$ nodetool [options] enablehintsfordc [--] <datacenter>

Table: Options

Short Long Description

-h --host Hostname or IP address

-p --port Port number

-pwf --password-file Password file path

-pw --password Password

-u --username User name

Note:

• For tarball installations, execute the command from the install_location/bin directory.
• If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the

host, then you must specify credentials.
• nodetool enablehintsfordc operates on a single node in the cluster if -h is not used to identify

one or more other nodes. If the node from which you issue the command is the intended target, you do
not need the -h option to identify the target; otherwise, for remote invocation, identify the target node, or
nodes, using -h.

Cassandra tools

183

• [--] can be used to separate command-line options from the list of arguments, when the list might be
mistaken for options.

Synopsis Legend
In the synopsis section of each statement, formatting has the following meaning:

• Uppercase means literal
• Lowercase means not literal
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

A semicolon that terminates CQL statements is not included in the synopsis.

Description
The nodetool enablehintsfordc command is used to turn on hints for a data center. The
cassandra.yaml file has a parameter, hinted_handoff_disabled_datacenters that will blacklist data centers
on startup. If a data center can be enabled later with nodetool enablehintsfordc.

Examples

$ nodetool -u cassandra -pw cassandra enablehintsfordc DC2

nodetool enablethrift
Re-enables the Thrift server.

Re-enables the Thrift server.

Synopsis

$ nodetool <options> enablethrift

Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

nodetool flush
Flushes one or more tables from the memtable.

Flushes one or more tables from the memtable.

Cassandra tools

184

Synopsis

$ nodetool <options> flush -- <keyspace> (<table> ...)

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -- separates an option and argument that could be mistaken for a option.
• keyspace is the name of a keyspace.
• table is the name of one or more tables, separated by a space.

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
You can specify a keyspace followed by one or more tables that you want to flush from the memtable to
SSTables on disk.

nodetool gcstats
Print garbage collection (GC) statistics.

Print garbage collection (GC) statistics.

Synopsis

$ nodetool [options] gcstats

Table: Options

Short Long Description

-h --host Hostname or IP address

-p --port Port number

-pwf --password-file Password file path

-pw --password Password

-u --username User name

Note:

• For tarball installations, execute the command from the install_location/bin directory.
• If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the

host, then you must specify credentials.
• nodetool gcstats operates on a single node in the cluster if -h is not used to identify one or more

other nodes. If the node from which you issue the command is the intended target, you do not need the

Cassandra tools

185

-h option to identify the target; otherwise, for remote invocation, identify the target node, or nodes, using
-h.

Synopsis Legend
In the synopsis section of each statement, formatting has the following meaning:

• Uppercase means literal
• Lowercase means not literal
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

A semicolon that terminates CQL statements is not included in the synopsis.

Description
The nodetool gcstats command will print garbage collection statistics that returns values based on
all the garbage collection that has run since the last time nodetool gcstats was run. Statistics identify
the interval time, some GC elapsed time measures, the disk space reclaimed (in MB), number of garbage
collections that took place, and direct memory bytes.

Examples

$ nodetool -u cassandra -pw cassandra gcstats

nodetool getcompactionthreshold
Provides the minimum and maximum compaction thresholds in megabytes for a table.

Provides the minimum and maximum compaction thresholds in megabytes for a table.

Synopsis

$ nodetool <options> getcompactionthreshold -- <keyspace> <table>

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -- separates an option and argument that could be mistaken for a option.
• keyspace is the name of a keyspace.
• table is the name of a table.

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Cassandra tools

186

nodetool getcompactionthroughput
Print the throughput cap (in MB/s) for compaction in the system.

Print the throughput cap (in MB/s) for compaction in the system.

Synopsis

$ nodetool [options] getcompactionthroughput

Table: Options

Short Long Description

-h --host Hostname or IP address

-p --port Port number

-pwf --password-file Password file path

-pw --password Password

-u --username User name

Note:

• For tarball installations, execute the command from the install_location/bin directory.
• If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the

host, then you must specify credentials.
• nodetool getcompactionthroughput operates on a single node in the cluster if -h is not used to

identify one or more other nodes. If the node from which you issue the command is the intended target,
you do not need the -h option to identify the target; otherwise, for remote invocation, identify the target
node, or nodes, using -h.

Synopsis Legend
In the synopsis section of each statement, formatting has the following meaning:

• Uppercase means literal
• Lowercase means not literal
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

A semicolon that terminates CQL statements is not included in the synopsis.

Description
The nodetool getcompactionthroughput command prints the current compaction throughput.

Examples

$ nodetool -u cassandra -pw cassandra getcompactionthroughput

nodetool getendpoints
Provides the IP addresses or names of replicas that own the partition key.

Provides the IP addresses or names of replicas that own the partition key.

Cassandra tools

187

Synopsis

$ nodetool <options> getendpoints -- <keyspace> <table> key

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -- separates an option and argument that could be mistaken for a option.
• keyspace is a keyspace name.
• table is a table name.
• key is the partition key of the end points you want to get.

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Example
For example, which nodes own partition key_1, key_2, and key_3?

Note: The partitioner returns a token for the key. Cassandra will return an endpoint whether or not data
exists on the identified node for that token.

$ nodetool -h 127.0.0.1 -p 7100 getendpoints myks mytable key_1

127.0.0.2

$ nodetool -h 127.0.0.1 -p 7100 getendpoints myks mytable key_2

127.0.0.2

$ nodetool -h 127.0.0.1 -p 7100 getendpoints myks mytable key_2

127.0.0.1

nodetool getlogginglevels
Get the runtime logging levels.

Get the runtime logging levels.

Synopsis

$ nodetool <options> getlogginglevels

options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>

Cassandra tools

188

• (-pw | --password) <password>
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

nodetool getsstables
Provides the SSTables that own the partition key.

Provides the SSTables that own the partition key.

Synopsis

$ nodetool <options> getsstables -- <keyspace> <table> key

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -- separates an option and argument that could be mistaken for a option.
• keyspace is a keyspace name.
• table is a table name.
• key is the partition key of the SSTables.

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

nodetool getstreamthroughput
Provides the megabytes per second throughput limit for streaming in the system.

Provides the megabytes per second throughput limit for streaming in the system.

Synopsis

$ nodetool <options> getstreamthroughput

Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>

Cassandra tools

189

• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

nodetool gettimeout
Print the timeout value of the given type in milliseconds.

Print the timeout value of the given type in milliseconds.

Synopsis

$ nodetool [options] gettimeout [--] <timeout_type>

Table: Options

Short Long Description

-h --host Hostname or IP address

-p --port Port number

-pwf --password-file Password file path

-pw --password Password

-u --username User name

Note:

• For tarball installations, execute the command from the install_location/bin directory.
• If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the

host, then you must specify credentials.
• -- separates an option and argument that could be mistaken for a option.
• The timeout type:

• read
• range
• write
• counterwrite
• cascontention
• truncate
• streamingsocket
• misc, such as general rpc_timeout_in_ms

Synopsis Legend
In the synopsis section of each statement, formatting has the following meaning:

• Uppercase means literal
• Lowercase means not literal
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR

Cassandra tools

190

• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

A semicolon that terminates CQL statements is not included in the synopsis.

Description
The nodetool gettimeout command prints the timeout value of the given type in milliseconds. Several
timeouts are available.

Examples

$ nodetool -u cassandra -pw cassandra gettimeout read

nodetool gettraceprobability
Get the probability for tracing a request.

Get the current trace probability.

Synopsis

$ nodetool <options> gettraceprobability

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -- separates an option and argument that could be mistaken for a option.
• value is a probability between 0 and 1.

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
Provides the current trace probability. To set the trace probability, see nodetool settraceprobability.

nodetool gossipinfo
Provides the gossip information for the cluster.

Provides the gossip information for the cluster.

Synopsis

$ nodetool <options> gossipinfo

Options are:

• (-h | --host) <host name> | <ip address>

Cassandra tools

191

• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

nodetool help
Provides nodetool command help.

Provides nodetool command help.

Synopsis

$ nodetool help <command>

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
The help command provides a synopsis and brief description of each nodetool command.

Examples
Using nodetool help lists all commands and usage information. For example, nodetool help netstats
provides the following information.

NAME
 nodetool netstats - Print network information on provided host
 (connecting node by default)

SYNOPSIS
 nodetool [(-h <host> | --host <host>)] [(-p <port> | --port <port>)]
 [(-pw <password> | --password <password>)]
 [(-u <username> | --username <username>)] netstats

OPTIONS
 -h <host>, --host <host>
 Node hostname or ip address

 -p <port>, --port <port>
 Remote jmx agent port number

 -pw <password>, --password <password>
 Remote jmx agent password

Cassandra tools

192

 -u <username>, --username <username>
 Remote jmx agent username

nodetool info
Provides node information, such as load and uptime.

Provides node information, such as load and uptime.

Synopsis

$ nodetool <options> info (-T | --tokens)

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -T or --tokens means provide all token information.

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
Provides node information including the token and on disk storage (load) information, times started
(generation), uptime in seconds, and heap memory usage.

nodetool invalidatecountercache
Resets the global counter cache parameter, counter_cache_keys_to_save, to the default (not set), which saves all keys.

Invalidates the counter cache, and resets the global counter cache parameter,
counter_cache_keys_to_save, to the default (not set), which saves all keys..

Synopsis

$ nodetool [options] invalidatecountercache

Table: Options

Short Long Description

-h --host Hostname or IP address

-p --port Port number

-pwf --password-file Password file path

-pw --password Password

-u --username User name

Cassandra tools

193

Note:

• For tarball installations, execute the command from the install_location/bin directory.
• If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the

host, then you must specify credentials.
• nodetool invalidatecountercache operates on a single node in the cluster if -h is not used to

identify one or more other nodes. If the node from which you issue the command is the intended target,
you do not need the -h option to identify the target; otherwise, for remote invocation, identify the target
node, or nodes, using -h.

Synopsis Legend
In the synopsis section of each statement, formatting has the following meaning:

• Uppercase means literal
• Lowercase means not literal
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

A semicolon that terminates CQL statements is not included in the synopsis.

Description
The nodetool invalidatecountercache command will invalidate the counter cache, and the system
will start saving all counter keys.

Examples

$ nodetool -u cassandra -pw cassandra invalidatecountercache

nodetool invalidatekeycache
Resets the global key cache parameter to the default, which saves all keys.

Resets the global key cache parameter to the default, which saves all keys.

Synopsis

$ nodetool <options> invalidatekeycache

Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Cassandra tools

194

Description
By default the key_cache_keys_to_save is disabled in the cassandra.yaml. This command resets the
parameter to the default.

nodetool invalidaterowcache
Resets the global key cache parameter, row_cache_keys_to_save, to the default (not set), which saves all keys.

Resets the global key cache parameter, row_cache_keys_to_save, to the default (not set), which saves all
keys.

Synopsis

$ nodetool <options> invalidaterowcache

Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

nodetool join
Causes the node to join the ring.

Causes the node to join the ring.

Synopsis

$ nodetool <options> join

Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Cassandra tools

195

Description
Causes the node to join the ring, assuming the node was initially not started in the ring using the -
Djoin_ring=false cassandra utility option. The joining node should be properly configured with the desired
options for seed list, initial token, and auto-bootstrapping.

nodetool listsnapshots
Lists snapshot names, size on disk, and true size.

Lists snapshot names, size on disk, and true size.

Synopsis

$ nodetool <options> listsnapshots

Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
Available in Cassandra 2.1 and later.

Example

Snapshot Details:
Snapshot Name Keyspace Column Family True Size Size on Disk

1387304478196 Keyspace1 Standard1 0 bytes 308.66 MB
1387304417755 Keyspace1 Standard1 0 bytes 107.21 MB
1387305820866 Keyspace1 Standard2 0 bytes 41.69 MB

 Keyspace1 Standard1 0 bytes 308.66 MB

nodetool move
Moves the node on the token ring to a new token.

Moves the node on the token ring to a new token.

Synopsis

$ nodetool <options> move -- <new token>

• Options are:

• (-h | --host) <host name> | <ip address>

Cassandra tools

196

• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -- separates an option and argument that could be mistaken for a option.
• new token is a number in the range -263 to +263-1.

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
Escape negative tokens using \\ . For example: move \\-123. This command moves a node from one token
value to another. This command is generally used to shift tokens slightly.

nodetool netstats
Provides network information about the host.

Provides network information about the host.

Synopsis

$ nodetool <options> netstats -H

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• H converts bytes to a human readable form: kilobytes (KB), megabytes (MB), gigabytes (GB), or
terabytes (TB). (Cassandra 2.1.1)

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
The default host is the connected host if the user does not include a host name or IP address in the
command. The output includes the following information:

• JVM settings
• Mode

The operational mode of the node: JOINING, LEAVING, NORMAL, DECOMMISSIONED, CLIENT

Cassandra tools

197

• Read repair statistics
• Attempted

The number of successfully completed read repair operations
• Mismatch (blocking)

The number of read repair operations since server restart that blocked a query.
• Mismatch (background)

The number of read repair operations since server restart performed in the background.
• Pool name

Information about client read and write requests by thread pool.
• Active, pending, and completed number of commands and responses

Example
Get the network information for a node 10.171.147.128:

$ nodetool -h 10.171.147.128 netstats

The output is:

Mode: NORMAL
Not sending any streams.
Read Repair Statistics:
Attempted: 0
Mismatch (Blocking): 0
Mismatch (Background): 0
Pool Name Active Pending Completed
Commands n/a 0 1156
Responses n/a 0 2750

nodetool pausehandoff
Pauses the hints delivery process

Pauses the hints delivery process

Synopsis

$ nodetool <options> pausehandoff

Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Cassandra tools

198

nodetool proxyhistograms
Provides a histogram of network statistics.

Provides a histogram of network statistics.

Synopsis

$ nodetool <options> proxyhistograms

Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
The output of this command shows the full request latency recorded by the coordinator. The output
includes the percentile rank of read and write latency values for inter-node communication. Typically, you
use the command to see if requests encounter a slow node.

Examples
This example shows the output from nodetool proxyhistograms after running 4,500 insert statements and
45,000 select statements on a three ccm node-cluster on a local computer.

$ nodetool proxyhistograms

proxy histograms
Percentile Read Latency Write Latency Range Latency
 (micros) (micros) (micros)
50% 1502.50 375.00 446.00
75% 1714.75 420.00 498.00
95% 31210.25 507.00 800.20
98% 36365.00 577.36 948.40
99% 36365.00 740.60 1024.39
Min 616.00 230.00 311.00
Max 36365.00 55726.00 59247.00

nodetool rangekeysample
Provides the sampled keys held across all keyspaces.

Provides the sampled keys held across all keyspaces.

Synopsis

$ nodetool <options> rangekeysample

https://github.com/pcmanus/ccm

Cassandra tools

199

Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

nodetool rebuild
Rebuilds data by streaming from other nodes.

Rebuilds data by streaming from other nodes.

Synopsis

$ nodetool <options> rebuild -- <src-dc-name>

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -- separates an option and argument that could be mistaken for a option.
• src-dc-name is the name of the data center from which to select sources for streaming. You can pick

any data center.

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
This command operates on multiple nodes in a cluster. Similar to bootstrap. Rebuild (like bootstrap) only
streams data from a single source replica per range. Use this command to bring up a new data center in an
existing cluster.

nodetool rebuild_index
Performs a full rebuild of the index for a table

Performs a full rebuild of the index for a table

Cassandra tools

200

Synopsis

$ nodetool <options> rebuild_index -- (<keyspace>.<table>.<indexName> ...)

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -- separates an option and argument that could be mistaken for a option.
• keyspace is a keyspace name.
• table is a table name.
• indexName is an optional list of index names separated by a space.

The keyspace and table name followed by a list of index names. For example: Standard3.IdxName
Standard3.IdxName1

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
Fully rebuilds one or more indexes for a table.

nodetool refresh
Loads newly placed SSTables onto the system without a restart.

Loads newly placed SSTables onto the system without a restart.

Synopsis

$ nodetool <options> refresh -- <keyspace> <table>

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -- separates an option and argument that could be mistaken for a option.
• keyspace is a keyspace name.
• table is a table name.

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR

Cassandra tools

201

• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

nodetool reloadtriggers
Reloads trigger classes.

Reloads trigger classes.

Synopsis

$ nodetool <options> reloadtriggers

options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
Available in Cassandra 2.1 and later.

nodetool relocatesstables
Rewrites any SSTable that contains tokens that should be in another data directory.

In Cassandra 3.2 and later, rewrites any SSTable that contains tokens that should be in another data
directory for JBOD disks. Basically, this commands relocates SSTables to the correct disk.

Synopsis

$ nodetool <options> relocatesstables -- <keyspace> <table>

• options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -- separates an option and argument that could be mistaken for a option.
• keyspace is the name of a keyspace.
• table is a table name.

Synopsis Legend
In the synopsis section of each statement, formatting has the following meaning:

Cassandra tools

202

• Uppercase means literal
• Lowercase means not literal
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
This nodetool command can be used to manually rewrite the location of SSTables on disk. It is for
use with JBOD disk storage. The command can also be used if you change the replication factor for the
cluster stored on JBOD or if you add a new disk. If all the token are correctly stored in the data directories,
nodetool relocatesstables will have no effect.

Examples
Text

$ nodetool relocatesstables cycling

nodetool removenode
Provides the status of current node removal, forces completion of pending removal, or removes the identified node.

Provides the status of current node removal, forces completion of pending removal, or removes the
identified node.

Synopsis

$ nodetool <options> removenode -- <status> | <force> | <ID>

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -- separates an option and argument that could be mistaken for a option.
• status provides status information.
• force forces completion of the pending removal.
• ID is the host ID, in UUID format.

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
This command removes a node, shows the status of a removal operation, or forces the completion
of a pending removal. When the node is down and nodetool decommission cannot be used, use
nodetool removenode. Run this command only on nodes that are down. If the cluster does not use
vnodes, before running the nodetool removenode command, adjust the tokens.

Cassandra tools

203

Examples
Determine the UUID of the node to remove by running nodetool status. Use the UUID of the node that
is down to remove the node.

$ nodetool status

Datacenter: DC1
===============
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address Load Tokens Owns (effective) Host ID
 Rack
UN 192.168.2.101 112.82 KB 256 31.7% 420129fc-0d84-42b0-
be41-ef7dd3a8ad06 RAC1
DN 192.168.2.103 91.11 KB 256 33.9% d0844a21-3698-4883-
ab66-9e2fd5150edd RAC1
UN 192.168.2.102 124.42 KB 256 32.6% 8d5ed9f4-7764-4dbd-
bad8-43fddce94b7c RAC1

$ nodetool removenode d0844a21-3698-4883-ab66-9e2fd5150edd

View the status of the operation to remove the node:

$ nodetool removenode status

RemovalStatus: No token removals in process.

Confirm that the node has been removed.

$ nodetool removenode status

Datacenter: DC1
===============
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address Load Tokens Owns (effective) Host ID
 Rack
UN 192.168.2.101 112.82 KB 256 37.7% 420129fc-0d84-42b0-
be41-ef7dd3a8ad06 RAC1
UN 192.168.2.102 124.42 KB 256 38.3% 8d5ed9f4-7764-4dbd-
bad8-43fddce94b7c RAC1

nodetool repair
Repairs one or more tables.

Repairs one or more tables. See Manual repair: Anti-entropy repair for more information.

Synopsis

$ nodetool [options] repair [args] [--] <keyspace> <tables>

Table: Options

Short Long Description

-h --host Hostname or IP address

-p --port Port number

Cassandra tools

204

Short Long Description

-pwf --password-file Password file path

-pw --password Password

-u --username User name

Note:

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -- separates an option and argument that could be mistaken for a option.
• keyspace is the keyspace name. The default is all.
• table is zero or more table names, separated by a space. If no tables are listed, the tool operates on all

tables.
• For tarball installations, execute the command from the install_location/bin directory.
• If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the

host, then you must specify credentials.
• nodetool repair operates on a single node in the cluster if -h is not used to identify one or more

other nodes. If the node from which you issue the command is the intended target, you do not need the
-h option to identify the target; otherwise, for remote invocation, identify the target node, or nodes, using
-h.

Table: Arguments

Short Long Description

-dc <dc> --in-dc <dc> Repair specified data center

-dcpar --dc-parallel Repair data centers in parallel

-et <end_token> --end-token <end_token> Token at which repair range ends

-full --full Do full repair

-j <job_threads> --job-threads
<job_threads>

Number of threads to run repair
jobs. Default: 1 Maximum: 4

-local --in-local-dc Repair only nodes in same data
center

-pr --partitioner-range Repair only first range returned
by partitioner

-seq --sequential Sequential repair

-st <start_token> --start-token
<start_token>

Token at which repair range
starts

-tr --trace Trace the repair. Traces are
logged to system_traces.events.

• -dc, or --in-dc, followed by dc_name, or means restrict repair to nodes in the named data center, which
must be the local data center.

• -dcpar, or --dc-parallel, means repair data centers in parallel.

Cassandra tools

205

• -et, or --end-token, followed by the UUID of a token means stop repairing a range of nodes after
repairing this token. Use -hosts to specify neighbor nodes.

• -inc, or --incremental means do an incremental repair.
• -local, or --in-local-dc, means repair nodes in the same data center only.
• -par, or --parallel, means do a parallel repair.
• -pr, or --partitioner-range, means repair only the first range returned by the partitioner.
• -st, or --start-token, followed by the UUID of a token means start repairing a range of nodes at this

token.

Synopsis Legend
In the synopsis section of each statement, formatting has the following meaning:

• Uppercase means literal
• Lowercase means not literal
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

A semicolon that terminates CQL statements is not included in the synopsis.

Description
Performing an anti-entropy node repair on a regular basis is important, especially when frequently deleting
data. The nodetool repair command repairs one or more nodes in a cluster, and includes an option to
restrict repair to a set of nodes. Anti-entropy node repair performs the following tasks:

• Ensures that all data on a replica is consistent.
• Repairs inconsistencies on a node that has been down.

Full repair is the default in Cassandra 2.1 and earlier. Incremental repair is the default for Cassandra 2.2
and later. In Cassandra 2.2 and later, when a full repair is run, SSTables are marked as repaired and anti-
compacted. Sequential repair is the default in Cassandra 2.1 and earlier. Parallel repair is the default for
Cassandra 2.2 and later.

Using options
You can use options to do these other types of repair:

• Sequential or Parallel
• Full or incremental

Use the -hosts option to list the good nodes to use for repairing the bad nodes. Use -h to name the bad
nodes.

Use the -full option for a full repair if required. By default, an incremental repair eliminates the need for
constant Merkle tree construction by persisting already repaired data and calculating only the Merkle trees
for SSTables that have not been repaired. The repair process is likely more performant than the other
types of repair even as datasets grow, assuming you run repairs frequently. Before doing an incremental
repair for the first time, perform migration steps first if necessary for tables created before Cassandra 2.2.

Use the -dcpar option to repair data centers in parallel. Unlike sequential repair, parallel repair constructs
the Merkle tables for all data centers at the same time. Therefore, no snapshots are required (or
generated). Use parallel repair to complete the repair quickly or when you have operational downtime that
allows the resources to be completely consumed during the repair.

Performing partitioner range repairs by using the -pr option is generally not recommended.

Cassandra tools

206

Example
All nodetool repair arguments are optional. The following examples show the following types of repair:

• A sequential repair of all keyspaces on the current node
• A partitioner range repair of the bad partition on current node using the good partitions on 10.2.2.20 or

10.2.2.21
• A start-point-to-end-point repair of all nodes between two nodes on the ring

$ nodetool repair -seq
$ nodetool repair -pr -hosts 10.2.2.20 10.2.2.21
$ nodetool -st a9fa31c7-f3c0-44d1-b8e7-a26228867840c -et f5bb146c-
db51-475ca44f-9facf2f1ad6e

To restrict the repair to the local data center, use the -dc option followed by the name of the data center.
Issue the command from a node in the data center you want to repair. Issuing the command from a data
center other than the named one returns an error. Do not use -pr with this option to repair only a local data
center.

$ nodetool repair -dc DC1

[2014-07-24 21:59:55,326] Nothing to repair for keyspace 'system'
[2014-07-24 21:59:55,617] Starting repair command #2, repairing 490 ranges
 for keyspace system_traces (seq=true, full=true)
[2014-07-24 22:23:14,299] Repair session 323b9490-137e-11e4-88e3-
c972e09793ca
 for range (820981369067266915,822627736366088177] finished
[2014-07-24 22:23:14,320] Repair session 38496a61-137e-11e4-88e3-
c972e09793ca
 for range (2506042417712465541,2515941262699962473] finished
. . .

An inspection of the system.log shows repair taking place only on IP addresses in DC1.

. . .
INFO [AntiEntropyStage:1] 2014-07-24 22:23:10,708 RepairSession.java:171
 - [repair #16499ef0-1381-11e4-88e3-c972e09793ca] Received merkle tree
 for sessions from /192.168.2.101
INFO [RepairJobTask:1] 2014-07-24 22:23:10,740 RepairJob.java:145
 - [repair #16499ef0-1381-11e4-88e3-c972e09793ca] requesting merkle trees
 for events (to [/192.168.2.103, /192.168.2.101])
. . .

nodetool replaybatchlog
Replay batchlog and wait for finish.

Replay batchlog and wait for finish.

Synopsis

$ nodetool <options> replaybatchlog

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

Cassandra tools

207

Synopsis Legend
In the synopsis section of each statement, formatting has the following meaning:

• Uppercase means literal
• Lowercase means not literal
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
nodetool replaybatchlog is intended to force a batchlog replay. It also blocks until the batches have
been replayed.

nodetool resetlocalschema
Reset the node's local schema and resynchronizes.

Reset the node's local schema and resynchronizes.

Synopsis

$ nodetool [options] resetlocalschema [args]

Table: Options

Short Long Description

-h --host Hostname or IP address

-p --port Port number

-pwf --password-file Password file path

-pw --password Password

-u --username User name

Note:

• For tarball installations, execute the command from the install_location/bin directory.
• If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the

host, then you must specify credentials.
• nodetool resetlocalschema operates on a single node in the cluster if -h is not used to identify

one or more other nodes. If the node from which you issue the command is the intended target, you do
not need the -h option to identify the target; otherwise, for remote invocation, identify the target node, or
nodes, using -h.

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Cassandra tools

208

Description
Normally, this command is used to rectify schema disagreements on different nodes. It can be useful if
table schema changes have generated too many tombstones, on the order of 100,000s.

nodetool resetlocalschema drops the schema information of the local node and resynchronizes the
schema from another node. To drop the schema, the tool truncates all the system schema tables. The
node will temporarily lose metadata about the tables on the node, but will rewrite the information from
another node. If the node is experiencing problems with too many tombstones, the truncation of the tables
will eliminate the tombstones.

This command is useful when you have one node that is out of sync with the cluster. The system schema
tables must have another node from which to fetch the tables. It is not useful when all or many of your
nodes are in an incorrect state. If there is only one node in the cluster (replication factor of 1) – it does
not perform the operation, because another node from which to fetch the tables does not exist. Run the
command on the node experiencing difficulty.

nodetool resumehandoff
Resume hints delivery process.

Resume hints delivery process.

Synopsis

$ nodetool <options> resumehandoff

options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password>
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

nodetool ring
Provides node status and information about the ring.

Provides node status and information about the ring.

Synopsis

$ nodetool <options> ring (-r | --resolve-ip) -- <keyspace>

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

Cassandra tools

209

• -r, or --resolve-ip, means to provide node names instead of IP addresses.
• -- separates an option and argument that could be mistaken for a option.
• keyspace is a keyspace name.

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
Displays node status and information about the ring as determined by the node being queried. This
information can give you an idea of the load balance and if any nodes are down. If your cluster is not
properly configured, different nodes may show a different ring. Check that the node appears the same way
in the ring.If you use virtual nodes (vnodes), use nodetool status for succinct output.

• Address

The node's URL.
• DC (data center)

The data center containing the node.
• Rack

The rack or, in the case of Amazon EC2, the availability zone of the node.
• Status - Up or Down

Indicates whether the node is functioning or not.
• State - N (normal), L (leaving), J (joining), M (moving)

The state of the node in relation to the cluster.
• Load - updates every 90 seconds

The amount of file system data under the cassandra data directory after excluding all content in the
snapshots subdirectories. Because all SSTable data files are included, any data that is not cleaned up,
such as TTL-expired cell or tombstoned data) is counted.

• Token

The end of the token range up to and including the value listed. For an explanation of token ranges, see
Data Distribution in the Ring .

• Owns

The percentage of the data owned by the node per data center times the replication factor. For
example, a node can own 33% of the ring, but show100% if the replication factor is 3.

• Host ID

The network ID of the node.

nodetool scrub
Rebuild SSTables for one or more Cassandra tables.

Rebuild SSTables for one or more Cassandra tables.

Synopsis

$ nodetool <options> scrub <keyspace> -- (-ns | --no-snapshot) (-s | --
skip-corrupted) (<table> ...)

/en/archived/cassandra/1.1/docs/cluster_architecture/partitioning#data-distribution-in-the-ring

Cassandra tools

210

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -- separates an option and argument that could be mistaken for a option.
• keyspace is the name of a keyspace.
• -ns, or --no-snapshot, triggers a snapshot of the scrubbed table first assuming snapshots are not

disabled (the default).
• - s, or --skip-corrupted skips corrupted partitions even when scrubbing counter tables. (default false)
• table is one or more table names, separated by a space.

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
Rebuilds SSTables on a node for the named tables and snapshots data files before rebuilding as a safety
measure. If possible use nodetool upgradesstables. While scrub rebuilds SSTables, it also discards
data that it deems broken and creates a snapshot, which you have to remove manually. If the -ns option
is specified, snapshot creation is disabled. If scrub can't validate the column value against the column
definition's data type, it logs the partition key and skips to the next partition. Skipping corrupted partitions
in tables having counter columns results in under-counting. By default the scrub operation stops if you
attempt to skip such a partition. To force the scrub to skip the partition and continue scrubbing, re-run
nodetool scrub using the --skip-corrupted option.

nodetool setcachecapacity
Set global key and row cache capacities in megabytes.

Set global key and row cache capacities in megabytes.

Synopsis

$ nodetool <options> setcachecapacity -- <key-cache-capacity> <row-cache-
capacity>

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -- separates an option and argument that could be mistaken for a option.
• key-cache-capacity is the maximum size in MB of the key cache in memory.
• row-cache-capacity corresponds to the maximum size in MB of the row cache in memory.
• counter-cache-capacity corresponds to the maximum size in MB of the counter cache in memory.

Cassandra tools

211

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
The key-cache-capacity argument corresponds to the key_cache_size_in_mb parameter in the
cassandra.yaml. Each key cache hit saves one seek and each row cache hit saves a minimum of two
seeks. Devoting some memory to the key cache is usually a good tradeoff considering the positive effect
on the response time. The default value is empty, which means a minimum of five percent of the heap in
MB or 100 MB.

The row-cache-capacity argument corresponds to the row_cache_size_in_mb parameter in the
cassandra.yaml. By default, row caching is zero (disabled).

The counter-cache-capacity argument corresponds to the counter_cache_size_in_mb in the
cassandra.yaml. By default, counter caching is a minimum of 2.5% of Heap or 50MB.

nodetool setcachekeystosave
Sets the number of keys saved by each cache for faster post-restart warmup.

Sets the number of keys saved by each cache for faster post-restart warmup.

Synopsis

$ nodetool <options> setcachekeystosave -- <key-cache-keys-to-save> <row-
cache-keys-to-save>

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -- separates an option and argument that could be mistaken for a option.
• key-cache-keys-to-save is the number of keys from the key cache to save to the saved caches

directory.
• row-cache-keys-to-save is the number of keys from the row cache to save to the saved caches

directory.

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
This command saves the specified number of key and row caches to the saved caches directory,
which you specify in the cassandra.yaml. The key-cache-keys-to-save argument corresponds to the

Cassandra tools

212

key_cache_keys_to_save in the cassandra.yaml, which is disabled by default, meaning all keys will
be saved. The row-cache-keys-to-save argument corresponds to the row_cache_keys_to_save in the
cassandra.yaml, which is disabled by default.

nodetool setcompactionthreshold
Sets minimum and maximum compaction thresholds for a table.

Sets minimum and maximum compaction thresholds for a table.

Synopsis

$ nodetool <options> setcompactionthreshold -- <keyspace> <table>
 <minthreshold> <maxthreshold>

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -- separates an option and argument that could be mistaken for a option.
• keyspace is the name of a keyspace.
• table is a table name.
• minthreshold sets the minimum number of SSTables to trigger a minor compaction when using

SizeTieredCompactionStrategy or DateTieredCompactionStrategy.
• maxthreshold sets the maximum number of SSTables to allow in a minor compaction when using

SizeTieredCompactionStrategy or DateTieredCompactionStrategy.

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
This parameter controls how many SSTables of a similar size must be present before a minor compaction
is scheduled. The max_threshold table property sets an upper bound on the number of SSTables that
may be compacted in a single minor compaction, as described in http://wiki.apache.org/cassandra/
MemtableSSTable.

When using LeveledCompactionStrategy, maxthreshold sets the MAX_COMPACTING_L0, which limits
the number of L0 SSTables that are compacted concurrently to avoid wasting memory or running out of
memory when compacting highly overlapping SSTables.

nodetool setcompactionthroughput
Sets the throughput capacity for compaction in the system, or disables throttling.

Sets the throughput capacity for compaction in the system, or disables throttling.

Synopsis

$ nodetool <options> setcompactionthroughput -- <value_in_mb>

/en/cql/3.3/cql/cql_reference/compactSubprop.html
http://wiki.apache.org/cassandra/MemtableSSTable
http://wiki.apache.org/cassandra/MemtableSSTable

Cassandra tools

213

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -- separates an option and argument that could be mistaken for a option.
• value_in_mb is the throughput capacity in MB per second for compaction.

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
Set value_in_mb to 0 to disable throttling.

nodetool sethintedhandoffthrottlekb
Sets hinted handoff throttle in kb/sec per delivery thread. (Cassandra 2.1.1 and later)

Sets hinted handoff throttle in kb/sec per delivery thread. (Cassandra 2.1.1 and later)

Synopsis

$ nodetool <options> sethintedhandoffthrottlekb <value_in_kb/sec>

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -- separates an option and argument that could be mistaken for a option.
• value_in_kb/sec is the throttle time.

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
When a node detects that a node for which it is holding hints has recovered, it begins sending the hints to
that node. This setting specifies the maximum sleep interval per delivery thread in kilobytes per second
after delivering each hint. The interval shrinks proportionally to the number of nodes in the cluster. For
example, if there are two nodes in the cluster, each delivery thread uses the maximum interval; if there are

Cassandra tools

214

three nodes, each node throttles to half of the maximum interval, because the two nodes are expected to
deliver hints simultaneously.

Example

$ nodetool sethintedhandoffthrottlekb 2048

nodetool setlogginglevel
Set the log level for a service.

Set the log level for a service.

Synopsis

$ nodetool <options> setlogginglevel -- < class_qualifier > < level >

options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password>
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)
• -- separates an option and argument that could be mistaken for a option.
• class_qualifier is the logger class qualifier, a fully qualified domain name, such as

org.apache.cassandra.service.StorageProxy.
• level is the logging level, for example DEBUG.

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
You can use this command to set logging levels for services instead of modifying the logback-text.xml file.
The following values are valid for the logger class qualifier:

• org.apache.cassandra
• org.apache.cassandra.db
• org.apache.cassandra.service.StorageProxy

The possible log levels are:

• ALL
• TRACE
• DEBUG
• INFO
• WARN
• ERROR
• OFF

If both class qualifier and level arguments to the command are empty or null, the command resets logging
to the initial configuration.

Cassandra tools

215

Example
This command sets the StorageProxy service to debug level.

$ nodetool setlogginglevel org.apache.cassandra.service.StorageProxy DEBUG

nodetool setstreamthroughput
Sets the throughput capacity in MB for streaming in the system, or disable throttling.

Sets the throughput capacity in MB for streaming in the system, or disable throttling.

Synopsis

$ nodetool <options> setstreamthroughput -- <value_in_mb>

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -- separates an option and argument that could be mistaken for a option.
• value_in_mb is the throughput capacity in MB per second for streaming.

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
Set value_in_MB to 0 to disable throttling.

nodetool settimeout
Set the specified timeout in ms, or 0 to disable timeout.

Set the specified timeout in ms, or 0 to disable timeout.

Synopsis

$ nodetool [options] settimeout [--] <timeout_type> <timeout_in_ms>

Table: Options

Short Long Description

-h --host Hostname or IP address

-p --port Port number

-pwf --password-file Password file path

-pw --password Password

-u --username User name

Cassandra tools

216

Note:

• For tarball installations, execute the command from the install_location/bin directory.
• If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the

host, then you must specify credentials.
• -- separates an option and argument that could be mistaken for a option.
• The timeout type:

• read
• range
• write
• counterwrite
• cascontention
• truncate
• streamingsocket
• misc, such as general rpc_timeout_in_ms

Synopsis Legend
In the synopsis section of each statement, formatting has the following meaning:

• Uppercase means literal
• Lowercase means not literal
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

A semicolon that terminates CQL statements is not included in the synopsis.

Description
The nodetool gettimeout command sets the specified timeout in milliseconds. Use "0" to disable a
timeout. Several timeouts are available.

Examples

$ nodetool -u cassandra -pw cassandra settimeout read 100

nodetool settraceprobability
Sets the probability for tracing a request.

Sets the probability for tracing a request.

Synopsis

$ nodetool <options> settraceprobability -- <value>

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -- separates an option and argument that could be mistaken for a option.

Cassandra tools

217

• value is a probability between 0 and 1.

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
Probabilistic tracing is useful to determine the cause of intermittent query performance problems by
identifying which queries are responsible. This option traces some or all statements sent to a cluster.
Tracing a request usually requires at least 10 rows to be inserted.

A probability of 1.0 will trace everything whereas lesser amounts (for example, 0.10) only sample a certain
percentage of statements. Care should be taken on large and active systems, as system-wide tracing
will have a performance impact. Unless you are under very light load, tracing all requests (probability
1.0) will probably overwhelm your system. Start with a small fraction, for example, 0.001 and increase
only if necessary. The trace information is stored in a system_traces keyspace that holds two tables –
sessions and events, which can be easily queried to answer questions, such as what the most time-
consuming query has been since a trace was started. Query the parameters map and thread column in the
system_traces.sessions and events tables for probabilistic tracing information.

To discover the current trace probability setting, use nodetool gettraceprobability.

nodetool snapshot
Take a snapshot of one or more keyspaces, or of a table, to backup data.

Take a snapshot of one or more keyspaces, or of a table, to backup data.

Synopsis

$ nodetool <options> snapshot
 (-cf <table> | --column-family <table>)
 (-kc <ktlist> | --kc.list <ktlist> | -kt <ktlist> | --kt-list <ktlist>)
 (-sf | --skip-flush)
 (-t <tag> | --tag <tag>)
 -- (<keyspace>) | (<keyspace> ...)

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -cf, or --column-family, followed by the name of the table to be backed up.
• -kc, --kc.list, -kt, or --kt-list, followed by a list of keyspace.table names to be back up, ktlist.
• -sf or --skip-flush, executes the snapshot without flushing the tables first (Cassandra 3.4 and later)
• -t or --tag, followed by the snapshot name.
• -- separates an option and argument that could be mistaken for a option.
• keyspace is a single keyspace name that is required when using the -cf option
• keyspace_list is one or more optional keyspace names, separated by a space.

Cassandra tools

218

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
Use this command to back up data using a snapshot. See the examples below for various options.

Cassandra flushes the node before taking a snapshot, takes the snapshot, and stores the data in the
snapshots directoryof each keyspace in the data directory. If you do not specify the name of a snapshot
directory using the -t option, Cassandra names the directory using the timestamp of the snapshot, for
example 1391460334889. Follow the procedure for taking a snapshot before upgrading Cassandra. When
upgrading, backup all keyspaces. For more information about snapshots, see Apache documentation.

Example: All keyspaces
Take a snapshot of all keyspaces on the node. On Linux, in the Cassandra bin directory, for example:

$ nodetool snapshot

The following message appears:

Requested creating snapshot(s) for [all keyspaces] with snapshot name
 [1391464041163]
Snapshot directory: 1391464041163

Because you did not specify a snapshot name, Cassandra names snapshot directories using the
timestamp of the snapshot. If the keyspace contains no data, empty directories are not created.

Example: Single keyspace snapshot
Assuming you created the keyspace cycling, took a snapshot of the keyspace and named the snapshot
2015.07.17.:

$ nodetool snapshot -t 2015.07.17 cycling

The following output appears:

Requested creating snapshot(s) for [cycling] with snapshot name [2015.07.17]
Snapshot directory: 2015.07.17

Assuming the cycling keyspace contains two tables, cyclist_name and upcoming_calendar, taking a
snapshot of the keyspace creates multiple snapshot directories named 2015.07.17. A number of .db files
containing the data are located in these directories. For example, from the installation directory:

$ cd data/data/cycling/cyclist_name-a882dca02aaf11e58c7b8b496c707234/
snapshots/2015.07.17
$ ls

la-1-big-CompressionInfo.db la-1-big-Index.db la-1-big-TOC.txt
la-1-big-Data.db la-1-big-Statistics.db la-1-big-Digest.adler32
la-1-big-Filter.db la-1-big-Summary.db manifest.json

$ cd data/data/cycling/cyclist_name-a882dca02aaf11e58c7b8b496c707234/
snapshots/2015.07.17

http://wiki.apache.org/cassandra/Operations#Backing_up_data

Cassandra tools

219

$ ls

la-1-big-CompressionInfo.db la-1-big-Index.db la-1-big-TOC.txt
la-1-big-Data.db la-1-big-Statistics.db la-1-big-Digest.adler32
la-1-big-Filter.db la-1-big-Summary.db manifest.json

Example: Multiple keyspaces snapshot
Assuming you created a keyspace named mykeyspace in addition to the cycling keyspace, take a
snapshot of both keyspaces.

$ nodetool snapshot mykeyspace cycling

The following message appears:

Requested creating snapshot(s) for [mykeyspace, cycling] with snapshot name
 [1391460334889]
Snapshot directory: 1391460334889

Example: Single table snapshot
Take a snapshot of only the cyclist_name table in the cycling keyspace.

$ nodetool snapshot --table cyclist_name cycling

Requested creating snapshot(s) for [cycling] with snapshot name
 [1391461910600]
Snapshot directory: 1391461910600

Cassandra creates the snapshot directory named 1391461910600 that contains
the backup data of cyclist_name table in data/data/cycling/cyclist_name-
a882dca02aaf11e58c7b8b496c707234/snapshots, for example.

Example: List of different keyspace.tables snapshot
Take a snapshot of several tables in different keyspaces, such as the cyclist_name table in the cycling
keyspace and the sample_times table in the test keyspace. The keyspace.table list should be comma-
delimited with no spaces.

$ nodetool snapshot -kt cycling.cyclist_name,test.sample_times

Requested creating snapshot(s) for [cycling.cyclist_name,test.sample_times]
 with snapshot name [1431045288401]
Snapshot directory: 1431045288401

nodetool status
Provide information about the cluster, such as the state, load, and IDs.

Provide information about the cluster, such as the state, load, and IDs.

Synopsis

$ nodetool <options> status (-r | --resolve-ip) -- <keyspace>

• Options are:

• (-h | --host) <host name> | <ip address>

Cassandra tools

220

• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -r, or --resolve-ip, means to provide node names instead of IP addresses.
• -- separates an option and argument that could be mistaken for a option.
• keyspace is a keyspace name.

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
The status command provides the following information:

• Status - U (up) or D (down)

Indicates whether the node is functioning or not.
• State - N (normal), L (leaving), J (joining), M (moving)

The state of the node in relation to the cluster.
• Address

The node's URL.
• Load - updates every 90 seconds

The amount of file system data under the cassandra data directory after excluding all content in the
snapshots subdirectories. Because all SSTable data files are included, any data that is not cleaned up,
such as TTL-expired cell or tombstoned data) is counted.

• Tokens

The number of tokens set for the node.
• Owns

The percentage of the data owned by the node per data center times the replication factor. For
example, a node can own 33% of the ring, but show 100% if the replication factor is 3.

Attention: If your cluster uses keyspaces having different replication strategies or replication factors,
specify a keyspace when you run nodetool status to get meaningful ownership information.

• Host ID

The network ID of the node.
• Rack

The rack or, in the case of Amazon EC2, the availability zone of the node.

Example

This example shows the output from running nodetool status.

$ nodetool status mykeyspace

Datacenter: datacenter1
=======================
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving

Cassandra tools

221

-- Address Load Tokens Owns Host ID
 Rack
UN 127.0.0.1 47.66 KB 1 33.3% aaa1b7c1-6049-4a08-ad3e-3697a0e30e10
 rack1
UN 127.0.0.2 47.67 KB 1 33.3% 1848c369-4306-4874-afdf-5c1e95b8732e
 rack1
UN 127.0.0.3 47.67 KB 1 33.3% 49578bf1-728f-438d-b1c1-d8dd644b6f7f
 rack1

nodetool statusbackup
Provide the status of backup

Synopsis

$ nodetool <options> statusbackup

Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

Synopsis Legend
In the synopsis section of each statement, formatting has the following meaning:

• Uppercase means literal
• Lowercase means not literal
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

A semicolon that terminates CQL statements is not included in the synopsis.

Description
Provides the status of backup.

nodetool statusbinary
Provide the status of native transport.

Provide the status of native transport.

Synopsis

$ nodetool <options> statusbinary

Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

Cassandra tools

222

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
Provides the status of the binary protocol, also known as the native transport.

nodetool statusgossip
Provide the status of gossip.

Synopsis

$ nodetool <options> statusgossip

Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
Provides the status of gossip.

nodetool statushandoff
Provides the status of hinted handoff.

Synopsis

$ nodetool <options> statushandoff

Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

Cassandra tools

223

Synopsis Legend
In the synopsis section of each statement, formatting has the following meaning:

• Uppercase means literal
• Lowercase means not literal
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

A semicolon that terminates CQL statements is not included in the synopsis.

Description
Provides the status of hinted handoff.

nodetool statusthrift
Provide the status of the Thrift server.

Provide the status of the Thrift server.

Synopsis

$ nodetool <options> statusthrift

Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

nodetool stop
Stops the compaction process.

Stops the compaction process.

Synopsis

$ nodetool <options> stop -- <compaction_type>

Table: Options

Short Long Description

-h --host Hostname or IP address

-id --compaction-id Compaction ID

Cassandra tools

224

Short Long Description

-p --port Port number

-pwf --password-file Password file path

-pw --password Password

-u --username User name

Note:

• For tarball installations, execute the command from the install_location/bin directory.
• If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the

host, then you must specify credentials.
• nodetool stop operates on a single node in the cluster if -h is not used to identify one or more other

nodes. If the node from which you issue the command is the intended target, you do not need the -h
option to identify the target; otherwise, for remote invocation, identify the target node, or nodes, using -
h.

• Valid compaction types: COMPACTION, VALIDATION, CLEANUP, SCRUB, INDEX_BUILD

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
Stops all compaction operations from continuing to run. This command is typically used to stop a
compaction that has a negative impact on the performance of a node. After the compaction stops,
Cassandra continues with the remaining operations in the queue. Eventually, Cassandra restarts the
compaction.

In Cassandra 2.2 and later, a single compaction operation can be stopped with the -id option. Run
nodetool compactionstats to find the compaction ID.

nodetool stopdaemon
Stops the cassandra daemon.

Stops the cassandra daemon.

Synopsis

$ nodetool <options> stopdaemon

Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable

Cassandra tools

225

• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

nodetool tablehistograms
Provides statistics about a table that could be used to plot a frequency function.

Provides statistics about a table that could be used to plot a frequency function.

Synopsis

$ nodetool <options> tablehistograms -- <keyspace>.<table>

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -- separates an option from an argument that could be mistaken for a option.
• keyspace is the name of a keyspace.
• table is the name of a table.
• <keyspace>.<table> or <keyspace> <table> can be used to designate the table.

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
The nodetool tablehistograms command provides statistics about a table, including read/write
latency, partition size, column count, and number of SSTables. The report covers all operations since the
last time nodetool tablehistograms was run in the current session. The use of the metrics-core
library in Cassandra 2.1 and later makes the output more informative and easier to understand.

Example
For example, to get statistics about the libout table in the libdata keyspace, use this command:

$ %CASSANDRA_HOME%/bin/nodetool tablehistograms libdata libout

Output is:

libdata/libout histograms
Percentile SSTables Write Latency Read Latency Partition Size
 Cell Count
 (micros) (micros) (bytes)

50% 0.00 39.50 36.00 1597
 42

Cassandra tools

226

75% 0.00 49.00 55.00 1597
 42
95% 0.00 95.00 82.00 8239
 258
98% 0.00 126.84 110.42 17084
 446
99% 0.00 155.13 123.71 24601
 770
Min 0.00 3.00 3.00 1110
 36
Max 0.00 50772.00 314.00 126934
 3973

The output shows the percentile rank of read and write latency values, the partition size, and the cell count
for the table.

nodetool tablestats
Provides statistics about tables.

Provides statistics about tables.

Synopsis

$ nodetool <options> tablestats -i -- (<keyspace>.<table> ...) -H

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -- separates an option from an argument that could be mistaken for a option.
• i ignores the following tables, providing only information about other Cassandra tables
• keyspace.table is one or more keyspace and table names in dot notation.
• H converts bytes to a human readable form: kilobytes (KB), megabytes (MB), gigabytes (GB), or

terabytes (TB). (Cassandra 2.1.1)

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
The nodetool tablestats command provides statistics about one or more tables. You use dot
notation to specify one or more keyspace and table names. If you do not specify a keyspace and table,
Cassandra provides statistics about all tables. If you use the -i option, Cassandra provides statistics about
all tables except the given ones. The use of the metrics-core library in Cassandra 2.1 and later makes the
output more informative and easier to understand.

This table describes the nodetool tablestats output.

Cassandra tools

227

Table: nodetool tablestats output

Name of
statistic

Example
value

Brief
description

Related information

Keyspace libdata Name of the
keyspace

Keyspace and table

Read count 11207 Number of
requests to
read tables
in the libdata
keyspace
since startup

Read latency 0.047. . .
ms

Latency
reading the
tables in
the libdata
keyspace

Write count 17598 Number of
requests
to update
tables in
the libdata
keyspace
since startup

Write latency 0.053. . .
ms

Latency
writing tables
in the libdata
keyspace

Pending tasks 0 Tasks in the
queue for
reads, writes,
and cluster
operations of
tables in the
keyspace

Table libout Name of the
Cassandra
table

SSTable count 3 Number of
SSTables
containing
data from the
table

How to use the SSTable counts metric

Space used
(live), bytes:

9592399 Space used
by the table
(depends
on operating
system)

Space used
(total), bytes:

9592399 Same as
above

Same as above

/en/glossary/doc/glossary/gloss_keyspace.html
/en/cql/3.3/cql/cql_reference/cql_storage_options_c.html
/en/glossary/doc/glossary/gloss_table.html
/en/glossary/doc/glossary/gloss_sstable.html

Cassandra tools

228

Name of
statistic

Example
value

Brief
description

Related information

Space used
by snapshots
(total), bytes:

0 Same
occupied by
backup data

SSTable
compression
ratio

0.367. . . Fraction
of data-
representation
size resulting
from
compression

Types of compression option)

Memtable cell
count

1022550 Number of
cells (storage
engine rows
x columns)
of data in the
memtable

Cassandra memtable structure in memory

Memtable data
size, bytes

32028148 Size of the
memtable
data

Same as above

Memtable switch
count

3 Number of
times a full
memtable
was
swapped
for an
empty one
(Increases
each
time the
memtable
for a table
is flushed to
disk)

How memtables are measured article

Local read count 11207 Number of
local read
requests for
the libout
table since
startup

Local read
latency

0.048 ms Round
trip time in
milliseconds
to complete
a request
to read the
libout table

Factors that affect read latency

Local write
count

17598 Number
of local
requests to
update the

/en/cql/3.3/cql/cql_reference/compressSubprop.html
/en/glossary/doc/glossary/gloss_memtable.html
http://thelastpickle.com/blog/2011/05/04/How-are-Memtables-measured.html

Cassandra tools

229

Name of
statistic

Example
value

Brief
description

Related information

libout the
table since
startup

Local write
latency

0.054 ms Round
trip time in
milliseconds
to complete
an update
to the libout
table

Factors that affect write latency

Pending tasks 0 Number of
read, write,
and cluster
operations
that are
pending

Bloom filter false
positives

0 Number
of false
positives,
which occur
when the
bloom filter
said the row
existed, but
it actually
did not exist
in absolute
numbers

Tuning bloom filters

Bloom filter false
ratio

0.00000 Fraction of
all bloom
filter checks
resulting in a
false positive

Same as above

Bloom filter
space used,
bytes

11688 Size of bytes
of the bloom
filter data

Same as above

Compacted
partition
minimum bytes

1110 Lower size
limit for the
partition
being
compacted in
memory

Used to calculate what the approximate row cache size
should be. Multiply the reported row cache size, which is
the number of rows in the cache, by the compacted row
mean size for every table and sum them.

Compacted
partition
maximum bytes

126934 Upper size
limit for
compacted
table rows.

Configurable in the cassandra.yaml in_memory_compaction
_limit_in_mb

Cassandra tools

230

Name of
statistic

Example
value

Brief
description

Related information

Compacted
partition mean
bytes

2730 The average
size of
compacted
table rows

Average
live cells per
slice (last five
minutes)

0.0 Average
of cells
scanned
by single
key queries
during the
last five
minutes

Average
tombstones per
slice (last five
minutes)

0.0 Average of
tombstones
scanned
by single
key queries
during the
last five
minutes

Examples
This example shows an excerpt of the output of the command after flushing a table of library data to disk.

$ nodetool tablestats libdata.libout
Keyspace: libdata
 Read Count: 11207
 Read Latency: 0.047931114482020164 ms.
 Write Count: 17598
 Write Latency: 0.053502954881236506 ms.
 Pending Flushes: 0
 Table: libout
 SSTable count: 3
 Space used (live), bytes: 9088955
 Space used (total), bytes: 9088955
 Space used by snapshots (total), bytes: 0
 SSTable Compression Ratio: 0.36751363892150946
 Memtable cell count: 0
 Memtable data size, bytes: 0
 Memtable switch count: 3
 Local read count: 11207
 Local read latency: 0.048 ms
 Local write count: 17598
 Local write latency: 0.054 ms
 Pending flushes: 0
 Bloom filter false positives: 0
 Bloom filter false ratio: 0.00000
 Bloom filter space used, bytes: 11688
 Compacted partition minimum bytes: 1110
 Compacted partition maximum bytes: 126934
 Compacted partition mean bytes: 2730
 Average live cells per slice (last five minutes): 0.0
 Average tombstones per slice (last five minutes): 0.0

Using the human-readable option

Cassandra tools

231

Using the human-readable -H option provides output in easier-to-read units than bytes. For example:

$ nodetool tablestats demodb.nhanes -H
Keyspace: demodb
 Read Count: 0
 Read Latency: NaN ms.
 Write Count: 20050
 Write Latency: 0.08548014962593516 ms.
 Pending Flushes: 0
 Table: nhanes
 SSTable count: 1
 Space used (live): 13.75 MB
 Space used (total): 13.75 MB
 Space used by snapshots (total): 0 bytes
 SSTable Compression Ratio: 0.3064650643762481
 Memtable cell count: 0
 Memtable data size: 0 bytes
 Memtable switch count: 1
 Local read count: 0
 Local read latency: NaN ms
 Local write count: 20050
 Local write latency: 0.085 ms
 Pending flushes: 0
 Bloom filter false positives: 0
 Bloom filter false ratio: 0.00000
 Bloom filter space used: 23.73 KB
 Compacted partition minimum bytes: 1.87 KB
 Compacted partition maximum bytes: 2.69 KB
 Compacted partition mean bytes: 2.26 KB
 Average live cells per slice (last five minutes): 0.0
 Maximum live cells per slice (last five minutes): 0.0
 Average tombstones per slice (last five minutes): 0.0
 Maximum tombstones per slice (last five minutes): 0.0

nodetool toppartitions
Sample and print the most active partitions for a given column family.

Synopsis

$ nodetool <options> toppartitions <keyspace> <table> <duration> ...

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -a <samplers> comma separated list of samplers to use (default: all)
• -k <topCount> number of the top partitions to list (default: 10)
• -s <size> capacity of stream summary, closer to the actual cardinality of partitions will yield more

accurate results (default: 256)
• keyspace is a keyspace name
• cfname is a column family name
• duration in milliseconds

Cassandra tools

232

Synopsis Legend
In the synopsis section of each statement, formatting has the following meaning:

• Uppercase means literal
• Lowercase means not literal
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

A semicolon that terminates CQL statements is not included in the synopsis.

Description
The nodetool toppartitions command samples and prints the most active partitions during the
duration specified. A keyspace and column family must be specified, as well as a duration in milliseconds.

Examples
Sample the most active partitions for the table test.users for 1,000 milliseconds

nodetool toppartitions test users 1000

Output is produced, similar to the following:

Cassandra tools

233

nodetool tpstats
Provides usage statistics of thread pools.

Provides usage statistics of thread pools.

Synopsis

$ nodetool <options> tpstats

options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password>
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

Description
Cassandra is based on a Staged Event Driven Architecture (SEDA). Different tasks are separated into
stages that are connected by a messaging service. Stages have a queue and thread pool. Some stages
skip the messaging service and queue tasks immediately on a different stage if it exists on the same node.
The queues can back up if executing at the next stage is too busy. Having a queue get backed up can
cause performance bottlenecks. nodetool tpstats provides statistics about the number of active,
pending, and completed tasks for each stage of Cassandra operations by thread pool. A high number of
pending tasks for any pool can indicate performance problems, as described in http://wiki.apache.org/
cassandra/Operations#Monitoring.

Run the nodetool tpstatscommand on a local node for get thread pool statistics.

This table describes key indicators:

Table: nodetool tpstats output

Name of
statistic

Task Related information

AntiEntropyStageRepair consistency Nodetool repair

CacheCleanupExecutorClears the cache

CommitlogArchiverArchives commitlog

CompactionExecutorRuns compaction

CounterMutationStageLocal counter changes Will back up if the write rate
exceeds the mutation rate. A
high pending count will be seen
if consistency level is set to
ONE and there is a high counter
increment workload.

http://wiki.apache.org/cassandra/Operations#Monitoring
http://wiki.apache.org/cassandra/Operations#Monitoring

Cassandra tools

234

Name of
statistic

Task Related information

GossipStage Handle gossip rounds every second Out of sync schemas can
cause issues. nodetool
resetlocalschema may need
to be used.

HintedHandoff Send missed mutations to other nodes Usually symptom of a problem
elsewhere. Use nodetool
disablehandoff and run
repair.

InternalResponseStageRespond to non-client initiated messages, including
bootstrapping and schema checking

MemtableFlushWriterWrites memtable contents to disk Will back up if the queue
is overrunning the disk I/O
capabilities. Sorting can also
cause issues if the queue has a
high load associated with a small
number of flushes. Cause can
be huge rows with large column
names or inserting too many
values into a CQL collection. For
disk issues, add nodes or tune
configuration.

MemtablePostFlushOperations after flushing the memtable Discard commit log files and flush
secondary indexes.

MemtableReclaimMemoryMakes unused memory available

MigrationStage Make schema changes

MiscStage Miscellaneous operations Snapshotting, replicating data
after node remove completed.

MutationStage Local writes A high number of pending
write requests indicates a
problem handling them. Adding
a node, tuning hardware and
configuration, or updating data
models will improve handling.

PendingRangeCalculatorCalculate pending ranges per bootstraps and
departed nodes

Developer notes

ReadRepairStageA digest query and update of replicas of a key Fast providing good connectivity
between replicas exists. If
pending grows too large, attempt
to lower the rate for high-read
tables by altering the table to use
a smaller read_repair_chance
value, like 0.11.

ReadStage Local reads Performing a local read. Also
includes deserializing data from
row cache. Pending values can
cause increased read latency.

https://issues.apache.org/jira/secure/attachment/12564093/5135-v2.txt
http://wiki.apache.org/cassandra/DigestQueries

Cassandra tools

235

Name of
statistic

Task Related information

Generally resolved by adding
nodes or tuning the system.

RequestResponseStageHandle responses from other nodes

ValidationExecutorValidates schema

Table: Droppable Messages

Message Type Stage Notes

BINARY n/a This is deprecated and no longer
has any use

_TRACE n/a (special) Used for recording traces
(nodetool settraceprobability)
Has a special executor (1 thread,
1000 queue depth) that throws
away messages on insertion
instead of within the execute

MUTATION MutationStage If a write message is
processed after its timeout
(write_request_timeout_in_ms) it
either sent a failure to the client or
it met its requested consistency
level and will relay on hinted
handoff and read repairs to do the
mutation if it succeeded.

COUNTER_MUTATION MutationStage If a write message is
processed after its timeout
(write_request_timeout_in_ms) it
either sent a failure to the client or
it met its requested consistency
level and will relay on hinted
handoff and read repairs to do the
mutation if it succeeded.

READ_REPAIR MutationStage Times out after
write_request_timeout_in_ms

READ ReadStage Times out after
read_request_timeout_in_ms. No
point in servicing reads after that
point since it would of returned
error to client

RANGE_SLICE ReadStage Times out after
range_request_timeout_in_ms.

PAGED_RANGE ReadStage Times out after
request_timeout_in_ms.

REQUEST_RESPONSE RequestResponseStage Times out after
request_timeout_in_ms.
Response was completed and

http://www.pythian.com/blog/guide-to-cassandra-thread-pools/#MutationStage
http://www.pythian.com/blog/guide-to-cassandra-thread-pools/#MutationStage
http://www.pythian.com/blog/guide-to-cassandra-thread-pools/#MutationStage
http://www.pythian.com/blog/guide-to-cassandra-thread-pools/#ReadStage
http://www.pythian.com/blog/guide-to-cassandra-thread-pools/#ReadStage
http://www.pythian.com/blog/guide-to-cassandra-thread-pools/#ReadStage
http://www.pythian.com/blog/guide-to-cassandra-thread-pools/#RequestResponseStage

Cassandra tools

236

sent back but not before the
timeout

Example
Run the command every two seconds.

$ nodetool -h labcluster tpstats

Example output is:

Pool Name Active Pending Completed Blocked All
 time blocked
CounterMutationStage 0 0 0 0
 0
ReadStage 0 0 103 0
 0
RequestResponseStage 0 0 0 0
 0
MutationStage 0 0 13234794 0
 0
ReadRepairStage 0 0 0 0
 0
GossipStage 0 0 0 0
 0
CacheCleanupExecutor 0 0 0 0
 0
AntiEntropyStage 0 0 0 0
 0
MigrationStage 0 0 11 0
 0
ValidationExecutor 0 0 0 0
 0
CommitLogArchiver 0 0 0 0
 0
MiscStage 0 0 0 0
 0
MemtableFlushWriter 0 0 126 0
 0
MemtableReclaimMemory 0 0 126 0
 0
PendingRangeCalculator 0 0 1 0
 0
MemtablePostFlush 0 0 1468 0
 0
CompactionExecutor 0 0 254 0
 0
InternalResponseStage 0 0 1 0
 0
HintedHandoff 0 0 0

Message type Dropped
RANGE_SLICE 0
READ_REPAIR 0
PAGED_RANGE 0
BINARY 0
READ 0
MUTATION 180
_TRACE 0
REQUEST_RESPONSE 0
COUNTER_MUTATION 0

Cassandra tools

237

nodetool truncatehints
Truncates all hints on the local node, or truncates hints for the one or more endpoints.

Truncates all hints on the local node, or truncates hints for the one or more endpoints.

Synopsis

$ nodetool <options> truncatehints -- (<endpoint> ...)

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -- separates an option and argument that could be mistaken for a option.
• endpoint is one or more endpoint IP addresses or host names which hints are to be deleted.

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

nodetool upgradesstables
Rewrites SSTables for tables that are not running the current version of Cassandra.

Rewrites SSTables for tables that are not running the current version of Cassandra.

Synopsis

$ nodetool <options> upgradesstables
 (-a | --include-all-sstables)
 -- <keyspace> (<table> ...)

• Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

• -a or --include-all-sstables, followed by the snapshot name.
• -- separates an option and argument that could be mistaken for a option.
• keyspace a keyspace name.
• table is one or more table names, separated by a space.

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable

Cassandra tools

238

• Orange (and) means not literal, indicates scope

Description
Rewrites SSTables on a node that are incompatible with the current version. Use this command when
upgrading your server or changing compression options.

nodetool verify
Verify (check data checksum for) one or more tables.

Verify (check data checksum for) one or more tables.

Synopsis

$ nodetool [options] verify [(-e | --extended-verify)] [--] [<keyspace>
 <tables>...]

Table: Options

Short Long Description

-h --host Hostname or IP address

-p --port Port number

-pwf --password-file Password file path

-pw --password Password

-u --username User name

Note:

• For tarball installations, execute the command from the install_location/bin directory.
• If a username and password for RMI authentication are set explicitly in the cassandra-env.sh file for the

host, then you must specify credentials.
• nodetool verify operates on a single node in the cluster if -h is not used to identify one or more

other nodes. If the node from which you issue the command is the intended target, you do not need the
-h option to identify the target; otherwise, for remote invocation, identify the target node, or nodes, using
-h.

Synopsis Legend
In the synopsis section of each statement, formatting has the following meaning:

• Uppercase means literal
• Lowercase means not literal
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

A semicolon that terminates CQL statements is not included in the synopsis.

Description
The nodetool verify command checks the data checksum for one or more specified tables. An
optional argument, -e or --extended-verify, will verify each cell data, whereas without the option, only
the SSTable checksums are verified.

Cassandra tools

239

Examples

$ nodetool -u cassandra -pw cassandra verify cycling cyclist_name

nodetool version
Provides the version number of Cassandra running on the specified node.

Provides the version number of Cassandra running on the specified node.

Synopsis

$ nodetool <options> version

Options are:

• (-h | --host) <host name> | <ip address>
• (-p | --port) <port number>
• (-pw | --password) <password >
• (-u | --username) <user name>
• (-pwf <passwordFilePath | --password-file <passwordFilePath>)

Synopsis Legend
• Angle brackets (< >) mean not literal, a variable
• Italics mean optional
• The pipe (|) symbol means OR or AND/OR
• Ellipsis (...) means repeatable
• Orange (and) means not literal, indicates scope

The cassandra utility
In Cassandra 3.2 and later, start-up parameters can be specified in the jvm.options file (package or tarball installations) or run from the command line in tarball installations.

In Cassandra 3.2 and later, start-up parameters can be specified in the jvm.options file (package or
tarball installations) or run from the command line in tarball installations.

Note: If you are using Cassandra 3.1, see the Cassandra 3.0 documentation.

You can also use the jvm.options file to pass additional options, such as maximum and minimum heap
size, to the Java virtual machine rather than setting them in the environment.

Usage
Add the following to the jvm.options file:

JVM_OPTS="$JVM_OPTS -D[PARAMETER]"

For Tarball installations, you can run this tool from the command line:

$ cassandra [OPTIONS]

Examples:

• Command line: $ bin/cassandra -Dcassandra.load_ring_state=false
• jvm.options: JVM_OPTS="$JVM_OPTS -Dcassandra.load_ring_state=false"

The Example section contains more examples.

/en/cassandra/3.0/cassandra/tools/toolsCUtility.html

Cassandra tools

240

Command line only options

Option Description

-f Start the cassandra process in foreground. The default is to start as background
process.

-h Help.

-p filename Log the process ID in the named file. Useful for stopping Cassandra by killing its PID.

-v Print the version and exit.

Start-up parameters
The -D option specifies the start-up parameters in both the command line and cassandra-env.sh file.

cassandra.auto_bootstrap=false

Facilitates setting auto_bootstrap to false on initial set-up of the cluster. The next time you start the cluster,
you do not need to change the cassandra.yaml file on each node to revert to true.

cassandra.available_processors=number_of_processors

In a multi-instance deployment, multiple Cassandra instances will independently assume that all CPU
processors are available to it. This setting allows you to specify a smaller set of processors.

cassandra.boot_without_jna=true

If JNA fails to initialize, Cassandra fails to boot. Use this command to boot Cassandra without JNA.

cassandra.config=directory

The directory location of the cassandra.yaml file. The default location depends on the type of installation.

cassandra.initial_token=token

Use when virtual nodes (vnodes) are not used. Sets the initial partitioner token for a node the first time the
node is started. (Default: disabled)

Note: Vnodes are highly recommended as they automatically select tokens.

cassandra.join_ring=true|false

Set to false to start Cassandra on a node but not have the node join the cluster. (Default: true) You can use
nodetool join and a JMX call to join the ring afterwards.

cassandra.load_ring_state=true|false

Set to false to clear all gossip state for the node on restart. (Default: true)

cassandra.metricsReporterConfigFile=file

Enable pluggable metrics reporter. See Pluggable metrics reporting in Cassandra 2.0.2.

cassandra.native_transport_port=port

Set the port on which the CQL native transport listens for clients. (Default: 9042)

cassandra.partitioner=partitioner

Set the partitioner. (Default: org.apache.cassandra.dht.Murmur3Partitioner)

cassandra.replace_address=listen_address or broadcast_address of dead node

To replace a node that has died, restart a new node in its place specifying the listen_address or
broadcast_address that the new node is assuming. The new node must not have any data in its data
directory, that is, it must be in the same state as before bootstrapping.

Note: The broadcast_address defaults to the listen_address except when using the Ec2MultiRegionSnitch.

cassandra.replayList=table

Allow restoring specific tables from an archived commit log.

cassandra.ring_delay_ms=ms

http://www.datastax.com/dev/blog/pluggable-metrics-reporting-in-cassandra-2-0-2

Cassandra tools

241

Defines the amount of time a node waits to hear from other nodes before formally joining the ring. (Default:
1000ms)

cassandra.rpc_port=port

Set the port for the Thrift RPC service, which is used for client connections. (Default: 9160).

cassandra.ssl_storage_port=port

Set the SSL port for encrypted communication. (Default: 7001)

cassandra.start_native_transport=true|false

Enable or disable the native transport server. See start_native_transport in cassandra.yaml. (Default:
true)

cassandra.start_rpc=true/false

Enable or disable the Thrift RPC server. (Default: true)

cassandra.storage_port=port

Set the port for inter-node communication. (Default: 7000)

cassandra.triggers_dir=directory

Set the default location for the triggers JARs.

cassandra.write_survey=true

For testing new compaction and compression strategies. It allows you to experiment with different strategies
and benchmark write performance differences without affecting the production workload. See Testing
compaction and compression on page 160.

consistent.rangemovement=true

True makes bootstrapping behavior effective.

Example
Clear gossip state when starting a node:

• Command line: $ bin/cassandra -Dcassandra.load_ring_state=false
• jvm.options: JVM_OPTS="$JVM_OPTS -Dcassandra.load_ring_state=false"

Start Cassandra on a node and do not join the cluster:

• Command line: bin/cassandra -Dcassandra.join_ring=false
• jvm.options: JVM_OPTS="$JVM_OPTS -Dcassandra.join_ring=false"

Replacing a dead node:

• Command line: bin/cassandra -Dcassandra.replace_address=10.91.176.160
• jvm.options: JVM_OPTS="$JVM_OPTS -Dcassandra.replace_address=10.91.176.160"

The cassandra-stress tool
A Java-based stress testing utility for basic benchmarking and load testing a Cassandra cluster.

The cassandra-stress tool is a Java-based stress testing utility for basic benchmarking and load
testing a Cassandra cluster.

Data modeling choices can greatly affect application performance. Significant load testing over several
trials is the best method for discovering issues with a particular data model. The cassandra-stress
tool is an effective tool for populating a cluster and stress testing CQL tables and queries. Use the
cassandra-stress to:

• Quickly determine how a schema performs.
• Understand how your database scales.

Cassandra tools

242

• Optimize your data model and settings.
• Determine production capacity.

The cassandra-stress tool also supports a YAML-based profile for defining specific schema with
potential compaction strategies, cache settings, and types. Sample files are located in:

• Package installations: /usr/share/docs/cassandra/examples
• Tarball installations: install_location/tools/

The YAML file includes user-defined keyspace, tables, and schema. The YAML file can be used for both
read, write, and mixed workloads.

When started without a YAML file, cassandra-stress creates a keyspace keyspace1 and tables
standard1 or counter1, depending on what type of table tested. These are automatically created the
first time you run a stress test and reused on subsequent runs. The keyspace keyspace1 can be dropped
using DROP KEYSPACE. You cannot change the default keyspace and tables names without using a
YAML file.

Usage:

• Package installations:

$ /usr/bin/cassandra-stress command [options]
• Tarball installations:

$ cd install_location/tools
$ bin/cassandra-stress command [options]

Command Description

counter_readMultiple concurrent reads of counters. The cluster must first be populated by a
counter_write test.

counter_writeMultiple concurrent updates of counters.

help Display help for a command or option.
Display help for an option: cassandra-stress help [options] For example:
cassandra-stress help -schema

legacy Legacy support mode.

mixed Interleave basic commands with configurable ratio and distribution. The cluster must first
be populated by a write test.

password Specify password for authenticating the account running cassandra-stress.

print Inspect the output of a distribution definition.

read Multiple concurrent reads. The cluster must first be populated by a write test.

user Interleave user provided queries with configurable ratio and distribution.

username Specify username for authenticating the account running cassandra-stress.

write Multiple concurrent writes against the cluster.

Important: Additional sub options are available for each option in the following table. Format:

$ cassandra-stress help option

/en/cql/3.3/cql/cql_reference/drop_keyspace_r.html

Cassandra tools

243

OptionDescription

-
col

Column details, such as size and count distribution, data generator, names, and comparator.

Usage
 -col [n=DIST(?)] [slice] [super=?] [comparator=?] [timestamp=?]
 [size=DIST(?)]

-
errors

How to handle errors when encountered during stress.

Usage
 -errors [retries=?] [ignore]

-
insert

Insert specific options relating to various methods for batching and splitting partition updates.

Usage
 -col [n=DIST(?)] [slice] [super=?] [comparator=?] [timestamp=?]
 [size=DIST(?)]

-
log

Where to log progress and the interval to use.

Usage
 -log [level=?] [no-summary] [file=?] [interval=?]

-
mode

Thrift or CQL with options.

Usage
 -mode thrift [smart]
or
 -mode native [unprepared] cql3 [compression=?] [port=?]
or
 -mode simplenative [prepared] cql3 [port=?]

-
node

Nodes to connect to.

Usage
 -node [whitelist] [file=?] []

-
pop

Population distribution and intra-partition visit order.

Usage
 -pop seq=? [no-wrap] [read-lookback=DIST(?)] [contents=?]
or
 -pop [dist=DIST(?)] [contents=?]

-
port

Specify port for connecting Cassandra nodes. Port can be specified for Cassandra native protocol,
Thrift protocol or a JMX port for retrieving statistics.

Usage
 -port [native=?] [thrift=?] [jmx=?]

-
rate

Thread count, rate limit, or automatic mode (default is auto).

Usage
 -rate threads=? [limit=?]
or

Cassandra tools

244

OptionDescription

 -rate [threads>=?] [threads<=?] [auto]

-
sample

Specify the number of samples to collect for measuring latency.

Usage
 -sample [history=?] [live=?] [report=?]

-
schema

Replication settings, compression, compaction, and so on.

Usage
 -schema [replication(?)] [keyspace=?] [compaction(?)] [compression=?]

-
sendto

Specify a stress server to send this command to.

Usage
 -sendToDaemon <host>

-
transport

Custom transport factories.

Usage
 -transport [factory=?] [truststore=?] [truststore-password=?] [ssl-
protocol=?] [ssl-alg=?] [store-type=?] [ssl-ciphers=?]

-
graph

Graph results of cassandra-stress tests. Multiple tests can be graphed together.

Usage
 -graph file=? [title=?] [revision=?]

Additional command-line options can modify how cassandra-stress runs:

Command Description

cl=? Set the consistency level to use during cassandra-stress. Options are ONE,
QUORUM, LOCAL_QUORUM, EACH_QUORUM, ALL, and ANY. Default is
LOCAL_ONE.

clustering=DIST(?)Distribution clustering runs of operations of the same kind.

duration=? Specify the time to run, in seconds, minutes or hours.

err<? Specify a standard error of the mean; when this value is reached, cassandra-stress
will end. Default is 0.02.

n>? Specify a minimum number of iterations to run before accepting uncertainly convergence.

n<? Specify a maximum number of iterations to run before accepting uncertainly convergence.

n=? Specify the number of operations to run.

no-warmup Do not warmup the process, do a cold start.

ops(?) Specify what operations (inserts and/or queries) to run and the number of each. (only after
the user option)

profile=? Designate the YAML file to use with cassandra-stress. (only after the user option)

Cassandra tools

245

Command Description

truncate=? Truncate the table created during cassandra-stress. Options are never, once, or
always. Default is never.

Simple read and write examples
$ cassandra-stress write n=1000000 -rate threads=50

Insert (write) one million rows.

$ cassandra-stress read n=200000 -rate threads=50

Read two hundred thousand rows.

$ cassandra-stress read duration=3m -rate threads=50

Read rows for a duration of 3 minutes.

$ cassandra-stress read n=200000 no-warmup -rate threads=50

Read 200,000 rows without a warmup of 50,000 rows first.

$ cassandra-stress write n=1000000 username="tryout" password="authentic" -
rate threads=50

Sign in as "tryout", then insert (write) one million rows.

View schema help
$ cassandra-stress help -schema

replication([strategy=?][factor=?][<option 1..N>=?]): Define
 the replication strategy and any parameters
 strategy=? (default=org.apache.cassandra.locator.SimpleStrategy) The
 replication strategy to use
 factor=? (default=1) The
 number of replicas
keyspace=? (default=keyspace1) The
 keyspace name to use
compaction([strategy=?][<option 1..N>=?]): Define
 the compaction strategy and any parameters
 strategy=? The
 compaction strategy to use
compression=?
 Specify the compression to use for SSTable, default:no compression

Populate the database
Generally it is easier to let cassandra-stress create the basic schema and then modify it in CQL:

#Load one row with default schema
$ cassandra-stress write n=1 cl=one -mode native cql3 -log file=~/
create_schema.log

#Modify schema in CQL
$ cqlsh

#Run a real write workload

/en/cql/3.3/cql/cqlIntro.html

Cassandra tools

246

$ cassandra-stress write n=1000000 cl=one -mode native cql3 -schema
 keyspace="keyspace1" -log file=~/load_1M_rows.log

Change the replication strategy
Changes the replication strategy to NetworkTopologyStrategy.

$ cassandra-stress write n=500000 no-warmup -node existing0 -schema
 "replication(strategy=NetworkTopologyStrategy, existing=2)"

Run a mixed workload
When running a mixed workload, you must escape parentheses, greater-than and less-than signs, and
other such things. This example invokes a workload that is one-quarter writes and three-quarters reads.

$ cassandra-stress mixed ratio\(write=1,read=3\) n=100000 cl=ONE -pop
 dist=UNIFORM\(1..1000000\) -schema keyspace="keyspace1" -mode native cql3 -
rate threads\>=16 threads\<=256 -log file=~/mixed_autorate_50r50w_1M.log

Notice the following in this example:

1. The ratio requires backslash-escaped parenthesis.
2. The value of n is different than in write phase. During the write phase, n records are written. However in

the read phase, if n is too large, it is inconvenient to read all the records for simple testing. Generally, n
does not need be large when validating the persistent storage systems of a cluster.

The -pop dist=UNIFORM\(1..1000000\) portion says that of the n=100,000 operations, select the
keys uniformly distributed between 1 and 1,000,000. Use this when you want to specify more data per
node than what fits in DRAM.

3. In the rate section, the greater-than and less-than signs are escaped. If not escaped, the shell will
attempt to use them for IO redirection. Specifically, the shell will try to read from a non-existent file
called =256 and create a file called =16. The rate section tells cassandra-stress to automatically
attempt different numbers of client threads and not test less that 16 or more than 256 client threads.

Standard mixed read/write workload keyspace for a single
node
CREATE KEYSPACE "keyspace1" WITH replication = {
 'class': 'SimpleStrategy',
 'replication_factor': '1'
};
USE "keyspace1";
CREATE TABLE "standard1" (
 key blob,
 "C0" blob,
 "C1" blob,
 "C2" blob,
 "C3" blob,
 "C4" blob,
 PRIMARY KEY (key)
) WITH
 bloom_filter_fp_chance=0.010000 AND
 caching='KEYS_ONLY' AND
 comment='' AND
 dclocal_read_repair_chance=0.000000 AND
 gc_grace_seconds=864000 AND
 index_interval=128 AND
 read_repair_chance=0.100000 AND

Cassandra tools

247

 replicate_on_write='true' AND
 default_time_to_live=0 AND
 speculative_retry='99.0PERCENTILE' AND
 memtable_flush_period_in_ms=0 AND
 compaction={'class': 'SizeTieredCompactionStrategy'} AND
 compression={'class': 'LZ4Compressor'};

Split up a load over multiple cassandra-stress instances on
different nodes
This example is useful for loading into large clusters, where a single cassandra-stress load generator
node cannot saturate the cluster. In this example, $NODES is a variable whose value is a comma delimited
list of IP addresses such as 10.0.0.1,10.0.0.2, and so on.

#On Node1
$ CASSANDRA_HOME/tools/bin/cassandra-stress write n=1000000 cl=one -mode
 native cql3 -schema keyspace="keyspace1" -pop seq=1..1000000 -log file=~/
node1_load.log -node $NODES

#On Node2
$ CASSANDRA_HOME/tools/bin/cassandra-stress write n=1000000 cl=one -mode
 native cql3 -schema keyspace="keyspace1" -pop seq=1000001..2000000 -log
 file=~/node2_load.log -node $NODES

Use a YAML file to run cassandra-stress
This example uses a YAML file for the keyspace and table definitions, as well as query definition. The
keyspace name and definition are the first entries in the YAML file:

keyspace: stresscql
#
The CQL for creating a keyspace (optional if it already exists)
#
keyspace_definition: |
 CREATE KEYSPACE stresscql WITH replication = {'class': 'SimpleStrategy',
 'repl
ication_factor': 1};

The table name and definition are the next entries in the YAML file. The table definition is created using
CQL:

table: typestest

#
The CQL for creating a table you wish to stress (optional if it already
 exists
)
#
table_definition: |
 CREATE TABLE typestest (
 name text,
 choice boolean,
 date timestamp,
 address inet,
 dbl double,
 lval bigint,
 ival int,
 uid timeuuid,

Cassandra tools

248

 value blob,
 PRIMARY KEY((name,choice), date, address, dbl, lval, ival, uid)
)
 WITH compaction = { 'class':'LeveledCompactionStrategy' }
AND compression = { 'sstable_compression' : '' }
AND comment='A table of many types to test wide rows'

The population distribution can be defined for any column in the table. A number of distribution options are
available. In this example, name is set to create a uniform distribution over 10 values and lval is set to a
Gaussian distribution. The date field is set to have a uniform distribution between 20 and 40 for the entire
Cassandra cluster.:

columnspec:
 - name: name
 size: uniform(1..10)
 population: uniform(1..10) # range of unique values to select for
 name (default is 100B)
 - name: date
 cluster: uniform(20..40)
 - name: lval
 population: gaussian(1..1000)
 cluster: uniform(1..4)

The query that will be run against the defined table, simple1 for read operations, is defined at the end of
the YAML file.

queries:
 simple1:
 cql: select * from typestest where name = ? and choice = ? LIMIT 100
 fields: samerow # samerow or multirow (select arguments from the
 same row, or randomly f
rom all rows in the partition)

The command specifies the YAML file, cqlstress-example.yaml, that is used to run the tests:

$ CASSANDRA_HOME/tools/bin/cassandra-stress user profile=tools/cqlstress-
example.yamlcassandra-stress user profile=tools/cqlstress-example.yaml ops
\(simple1=1\) no-warmup cl=QUORUM

Note: Use escaping backslashes for denoting the ops value.

The simple1 operation will be completed once, no warmup is specified, and the consistency level is set to
QUORUM.

For a complete description on using these YAML files for cassandra-stress, see Improved Cassandra
2.1 Stress Tool: Benchmark Any Schema – Part 1.

Use the -graph option
In Cassandra 3.2 and later, the -graph option provides visual feedback for cassandra-stress tests. A
file must be named to build the resulting HTML file. A title and revision are optional, but revision
must be used if multiple stress tests are graphed on the same output.

$ cassandra-stress user profile=tools/cqlstress-example.yaml ops\(insert=1\) -
graph file=test.html title=test revision=test1

An interactive graph can be displayed with a web browser:

http://www.datastax.com/dev/blog/improved-cassandra-2-1-stress-tool-benchmark-any-schema
http://www.datastax.com/dev/blog/improved-cassandra-2-1-stress-tool-benchmark-any-schema

Cassandra tools

249

Interpreting the output of cassandra-stress
About the output from the running tests.

Each line reports data for the interval between the last elapsed time and current elapsed time.

Created keyspaces. Sleeping 1s for propagation.
 Sleeping 2s...
 Warming up WRITE with 50000 iterations...
 Running WRITE with 200 threads for 1000000 iteration
 type total ops, op/s, pk/s, row/s, mean, med,
 .95, .99, .999, max, time, stderr, errors, gc: #, max ms,
 sum ms, sdv ms, mb
 total, 43148, 42991, 42991, 42991, 4.6, 1.5,
 10.9, 106.1, 239.3, 255.4, 1.0, 0.00000, 0, 1, 49,
 49, 0, 612
 total, 98715, 43857, 43857, 43857, 4.6, 1.7,
 8.5, 98.6, 204.6, 264.5, 2.3, 0.00705, 0, 1, 45,
 45, 0, 619
 total, 157777, 47283, 47283, 47283, 4.1, 1.4,
 8.3, 70.6, 251.7, 286.3, 3.5, 0.02393, 0, 1, 59,
 59, 0, 611

 Results:
 op rate : 46751 [WRITE:46751]
 partition rate : 46751 [WRITE:46751]
 row rate : 46751 [WRITE:46751]
 latency mean : 4.3 [WRITE:4.3]
 latency median : 1.3 [WRITE:1.3]
 latency 95th percentile : 7.2 [WRITE:7.2]
 latency 99th percentile : 60.5 [WRITE:60.5]
 latency 99.9th percentile : 223.2 [WRITE:223.2]
 latency max : 503.1 [WRITE:503.1]
 Total partitions : 1000000 [WRITE:1000000]
 Total errors : 0 [WRITE:0]

Cassandra tools

250

 total gc count : 18
 total gc mb : 10742
 total gc time (s) : 1
 avg gc time(ms) : 73
 stdev gc time(ms) : 16
 Total operation time : 00:00:21

 END

Table: Output of cassandra-stress

Data Description

total ops Running total number of operations during the run.

op/s Number of operations per second performed during the run.

pk/s Number of partition operations per second performed during the run.

row/s Number of row operations per second performed during the run.

mean Average latency in milliseconds for each operation during that run.

med Median latency in milliseconds for each operation during that run.

.95 95% of the time the latency was less than the number displayed in the column.

.99 99% of the time the latency was less than the number displayed in the column.

.999 99.9% of the time the latency was less than the number displayed in the column.

max Maximum latency in milliseconds.

time Total operation time.

stderr Standard error of the mean. It is a measure of confidence in the average throughput
number; the smaller the number, the more accurate the measure of the cluster's
performance.

gc: # Number of garbage collections.

max ms Longest garbage collection in milliseconds.

sum ms Total of garbage collection in milliseconds.

sdv ms Standard deviation in milliseconds.

mb Size of the garbage collection in megabytes.

SSTable utilities

sstabledump
Dump the contents of the specified SSTable in JSON format

This tool outputs the contents of the specified SSTable in the JSON format.

Depending on your taks, you may wish to flush the table to disk (using nodetool flush)before dumping its
contents.

Usage:

Cassandra tools

251

• Package installations:

$ sstabledump [options] sstable_file
• Tarball installations:

$ cd install_location
$ bin/sstabledump [options] sstable_file

The file is located in the data directory and has a .db extension.

• Package installations: /var/lib/cassandra/data
• Tarball installations: install_location/data/data

Table: Options

Flag Description

-d Outputs
an
internal
representation,
one
CQL
row
per
line.

-e Limits
output
to the
list of
keys.

-k key Limits
output
to
information
about
the
row
identified
by the
specified
key.

-xkey Excludes
information
about
the
row
identified
by the
specified
key
from
output.

Cassandra tools

252

sstableexpiredblockers
The sstableexpiredblockers utility will reveal blocking SSTables that prevent an SSTable from dropping.

During compaction, Cassandra can drop entire SSTables if they contain only expired tombstones and if it
is guaranteed to not cover any data in other SSTables. This diagnostic tool outputs all SSTables that are
blocking other SSTables from being dropped.

Usage:

• Package installations: $ sstableexpiredblockers [--dry-run] keyspace table
• Tarball installations:

$ cd install_location/tools
$ bin/sstableexpiredblockers [--dry-run] keyspace table

Procedure
Choose a keyspace and table to check for any SSTables that are blocking the specified table from
dropping.

$ sstableexpiredblockers cycling cyclist_name

What to do next

sstablekeys
The sstablekeys utility dumps table keys.

The sstablekeys utility dumps table keys.

Usage:

• Package installations: $ sstablekeys sstable_name
• Tarball installations:

$ cd install_location/tools
$ bin/sstablekeys sstable_name

Procedure
1. If data has not been previously flushed to disk, manually flush it. For example:

$ nodetool flush cycling cyclist_name

2. To list the keys in an SSTable, find the name of the SSTable file.

The file is located in the data directory and has a .db extension.

• Package installations: /var/lib/cassandra/data
• Tarball installations: install_location/data/data

3. Look at keys in the SSTable data. For example, use sstablekeys followed by the path to the data.
Use the path to data for your Cassandra installation:

Package installations
$ sstablekeys /var/lib/cassandra/data/cycling/cyclist_name-
a882dca02aaf11e58c7b8b496c707234/la-1-big-Data.db

Tarball installations
$ sstablekeys install_location/data/data/cycling/cyclist_name-
a882dca02aaf11e58c7b8b496c707234/la-1-big-Data.db

Cassandra tools

253

The output appears, for example:

sstablelevelreset
The sstablelevelreset utility will reset the level to 0 on a given set of SSTables.

Reset level to 0 on a given set of SSTables that use LeveledCompactionStrategy.

Usage:

• Package installations: $ sstablelevelreset [--really-reset] keyspace table
• Tarball installations:

$ cd install_location/tools
$ bin/sstablelevelreset [--really-reset] keyspace table

The option --really-reset is a warning that Cassandra is stopped before the tool is run.

Procedure
• Stop Cassandra on the node. Choose a keyspace and table to reset to level 0.

$ sstablelevelreset --really-reset cycling cyclist_name

If the designated table is already at level 0, then no change occurs. If the SSTable is releveled, the
metadata is rewritten to designate the level to 0.

Example

sstableloader (Cassandra bulk loader)
Provides the ability to bulk load external data into a cluster, load existing SSTables into another cluster with a different number of nodes or replication strategy, and restore snapshots.

The Cassandra bulk loader, also called the sstableloader, provides the ability to:

• Bulk load external data into a cluster.
• Load existing SSTables into another cluster with a different number of nodes or replication strategy.
• Restore snapshots.

The sstableloader streams a set of SSTable data files to a live cluster; it does not simply copy the set
of SSTables to every node, but transfers the relevant part of the data to each node, conforming to the
replication strategy of the cluster. The table into which the data is loaded does not need to be empty.

If tables are repaired in a different cluster, after being loaded, the tables are not repaired.

Prerequisites

Because sstableloader uses Cassandra gossip, make sure of the following:

Cassandra tools

254

• The cassandra.yaml configuration file is in the classpath and properly configured.
• At least one node in the cluster is configured as seed.
• In the cassandra.yaml file, the following properties are properly configured for the cluster that you

are importing into:

• cluster_name
• listen_address
• storage_port
• rpc_address
• rpc_port

When using sstableloader to load external data, you must first generate SSTables.

If using DataStax Enterprise, you can use Sqoop to migrate external data to Cassandra.

Generating SSTables

SSTableWriter is the API to create raw Cassandra data files locally for bulk load into your cluster. The
Cassandra source code includes the CQLSSTableWriter implementation for creating SSTable files from
external data without needing to understand the details of how those map to the underlying storage engine.
Import the org.apache.cassandra.io.sstable.CQLSSTableWriter class, and define the schema
for the data you want to import, a writer for the schema, and a prepared insert statement, as shown in
Cassandra 2.0.1, 2.0.2, and a quick peek at 2.0.3.

Using sstableloader

Before loading the data, you must define the schema of the tables with CQL or Thrift.

To get the best throughput from SSTable loading, you can use multiple instances of sstableloader to
stream across multiple machines. No hard limit exists on the number of SSTables that sstableloader can
run at the same time, so you can add additional loaders until you see no further improvement.

If you use sstableloader on the same machine as the Cassandra node, you can't use the same network
interface as the Cassandra node. However, you can use the JMX StorageService > bulkload() call from
that node. This method takes the absolute path to the directory where the SSTables are located, and
loads them just as sstableloader does. However, because the node is both source and destination for the
streaming, it increases the load on that node. This means that you should load data from machines that are
not Cassandra nodes when loading into a live cluster.

Usage:

Package installations:

$ sstableloader [options] path_to_keyspace

Tarball installations:

$ cd install_location/bin
$ sstableloader [options] path_to_keyspace

The sstableloader bulk loads the SSTables found in the keyspace directory to the configured target cluster,
where the parent directories of the directory path are used as the target keyspace/table name.

1. Go to the location of the SSTables:

Package installations:

$ cd /var/lib/cassandra/data/Keyspace1/Standard1/

Tarball installations:

$ cd install_location/data/data/Keyspace1/Standard1/
2. To view the contents of the keyspace:

/en/datastax_enterprise/4.6/datastax_enterprise/ana/anaSqpAbt.html
http://www.datastax.com/dev/blog/cassandra-2-0-1-2-0-2-and-a-quick-peek-at-2-0-3
/en/cql/3.3/cql/cqlIntro.html

Cassandra tools

255

$ ls

Keyspace1-Standard1-jb-60-CRC.db
Keyspace1-Standard1-jb-60-Data.db
...
Keyspace1-Standard1-jb-60-TOC.txt

3. To bulk load the files, specify the path to Keyspace1/Standard1/ in the target cluster:

$ sstableloader -d 110.82.155.1 /var/lib/cassandra/data/Keyspace1/Standard1/
 ## Package installation

$ install_location/bin/sstableloader -d 110.82.155.1 /var/lib/cassandra/
data/data/Keyspace1/Standard1/ ## Tarball installation

This bulk loads all files.

Table: sstableloader options

Short option Long option Description

-alg --ssl-alg <ALGORITHM> Client SSL algorithm (default: SunX509).

-ap --auth-provider <auth
provider class name>

Allows the use of a third party auth provider. Can be
combined with -u <username> and -pw <password> if the
auth provider supports plain text credentials.

-ciphers --ssl-ciphers <CIPHER-
SUITES>

Client SSL. Comma-separated list of encryption suites.

-cph --connections-per-host
<connectionsPerHost>

Number of concurrent connections-per-host.

-d --nodes <initial_hosts> Required. Connect to a list of (comma separated) hosts for
initial cluster information.

-f --conf-path
<path_to_config_file>

Path to the cassandra.yaml path for streaming
throughput and client/server SSL.

-h --help Display help.

-i --ignore <NODES> Do not stream to this comma separated list of nodes.

-ks --keystore <KEYSTORE> Client SSL. Full path to the keystore.

-kspw --keystore-password
<KEYSTORE-PASSWORD>

Client SSL. Password for the keystore.

--no-progress Do not display progress.

-p --port <rpc port> RPC port (default: 9160 [Thrift]).

-prtcl --ssl-protocol
<PROTOCOL>

Client SSL. Connections protocol to use (default: TLS).

-pw --password <password> Password for Cassandra authentication.

-st --store-type <STORE-
TYPE>

Client SSL. Type of store.

-t --throttle <throttle> Throttle speed in Mbits (default: unlimited).

-tf --transport-factory <transport
factory>

Fully-qualified ITransportFactory class name for
creating a connection to Cassandra.

Cassandra tools

256

Short option Long option Description

-ts --truststore
<TRUSTSTORE>

Client SSL. Full path to truststore.

-tspw --truststore-password
<TRUSTSTORE-
PASSWORD>

Client SSL. Password of the truststore.

-u --username <username> User name for Cassandra authentication.

-v --verbose Verbose output.

The following cassandra.yaml options can be over-ridden from the command line:

Option in cassandra.yaml Command line example

stream_throughput_outbound_megabits_per_sec --throttle 300

server_encryption_options --ssl-protocol none

client_encryption_options --keystore-password MyPassword

sstablemetadata
The sstablemetadata utility prints metadata about a specified SSTable.

The sstablemetadata utility prints metadata about a specified SSTable. The utility displays metadata
that includes:

• sstable name
• partitioner
• RepairedAt timestamp (for incremental repairs only)
• sstable level (for Leveled Compaction only)
• number of tombstones and Dropped timestamps (in epoch time)
• number of cells and size (in bytes) per row

Such data can be useful for troubleshooting wide rows or performance degrading tombstones.

Procedure
1. Switch to the CASSANDRA_HOME directory.

2. Enter the command /tools/bin/sstablemetadata followed by the filenames of one or more
SSTables.

$ tools/bin/sstablemetadata <sstable_name filenames>

tools/bin/sstablemetadata data/data/autogeneratedtest/
transaction_by_retailer-f27e4d5078dc11e59d629d03f52e8a2b/ma-203-big-Data.db
SSTable: data/data/autogeneratedtest/transaction_by_retailer-
f27e4d5078dc11e59d629d03f52e8a2b/ma-203-big
Partitioner: org.apache.cassandra.dht.Murmur3Partitioner
Bloom Filter FP chance: 0.010000
Minimum timestamp: 1445871871053006
Maximum timestamp: 1445871953354005
SSTable max local deletion time: 2147483647
Compression ratio: -1.0
Estimated droppable tombstones: 0.0
SSTable Level: 0
Repaired at: 0
ReplayPosition(segmentId=1445871179392, position=18397674)

Cassandra tools

257

Estimated tombstone drop times:
2147483647: 7816721
Count Row Size Cell Count
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0
10 0 0
12 0 710611
14 0 0
17 0 0
20 0 0
24 0 0
29 0 0
35 0 0
42 0 0
50 0 0
60 0 0
72 0 0
86 0 0
103 0 0
124 0 0
149 0 0
179 0 0
215 0 0
258 0 0
310 81 0
372 710530 0
446 0 0
535 0 0
642 0 0
770 0 0
924 0 0
1109 0 0
1331 0 0
1597 0 0
1916 0 0
2299 0 0
2759 0 0
3311 0 0
3973 0 0
4768 0 0
5722 0 0
6866 0 0
8239 0 0
9887 0 0
11864 0 0
14237 0 0
17084 0 0
20501 0 0
24601 0 0
29521 0 0
35425 0 0
42510 0 0
51012 0 0
61214 0 0
73457 0 0
88148 0 0
105778 0 0
126934 0 0

Cassandra tools

258

152321 0 0
182785 0 0
219342 0 0
263210 0 0
315852 0 0
379022 0 0
454826 0 0
545791 0 0
654949 0 0
785939 0 0
943127 0 0
1131752 0 0
1358102 0 0
1629722 0 0
1955666 0 0
2346799 0 0
2816159 0 0
3379391 0 0
4055269 0 0
4866323 0 0
5839588 0 0
7007506 0 0
8409007 0 0
10090808 0 0
12108970 0 0
14530764 0 0
17436917 0 0
20924300 0 0
25109160 0 0
30130992 0 0
36157190 0 0
43388628 0 0
52066354 0 0
62479625 0 0
74975550 0 0
89970660 0 0
107964792 0 0
129557750 0 0
155469300 0 0
186563160 0 0
223875792 0 0
268650950 0 0
322381140 0 0
386857368 0 0
464228842 0 0
557074610 0 0
668489532 0 0
802187438 0 0
962624926 0 0
1155149911 0 0
1386179893 0 0
1663415872 0 0
1996099046 0 0
2395318855 0 0
2874382626 0
3449259151 0
4139110981 0
4966933177 0
5960319812 0
7152383774 0
8582860529 0
10299432635 0
12359319162 0
14831182994 0

Cassandra tools

259

17797419593 0
21356903512 0
25628284214 0
30753941057 0
36904729268 0
44285675122 0
53142810146 0
63771372175 0
76525646610 0
91830775932 0
110196931118 0
132236317342 0
158683580810 0
190420296972 0
228504356366 0
274205227639 0
329046273167 0
394855527800 0
473826633360 0
568591960032 0
682310352038 0
818772422446 0
982526906935 0
1179032288322 0
1414838745986 0
Estimated cardinality: 722835

sstableofflinerelevel
The sstableofflinerelevel utility will relevel SSTables.

This tool is intended to run in an offline fashion. When using the LevelledCompactionStrategy, it
is possible for the number of SSTables in level L0 to become excessively large, resulting in read latency
degrading. This is often the case when atypical write load is experienced (eg. bulk import of data, node
bootstrapping). This tool will relevel the SSTables in an optimal fashion. The --dry run flag can be used
to run in test mode and examine the tools results.

Usage:

• Package installations: $ sstableofflinerelevel [--dry-run] keyspace table
• Tarball installations:

$ cd install_location/tools
$ bin/sstableofflinerelevel [--dry-run] keyspace table

Procedure
Choose a keyspace and table to relevel.

$ sstableofflinerelevel cycling cyclist_name

sstablerepairedset
The sstablerepairedset utility will reset the level to 0 on a given set of SSTables.

This tool is intended to mark specific SSTables as repaired or unrepaired. It is used to set the
repairedAt status on a given set of SSTables. This metadata facilitates incremental repairs. It can take
in the path to an individual sstable or the path to a file containing a list of SSTables paths.

Warning: This command should only be run with Cassandra stopped.

Usage:

Cassandra tools

260

• Package installations: $ sstablerepairedset [--is-repaired | --is-unrepaired] [-f
sstable-list | sstables]

• Tarball installations:

$ cd install_location/tools
$ bin/sstablerepairedset [--is-repaired | --is-unrepaired] [-f sstable-list
 | sstables]

Procedure
•
• Choose SSTables to mark as repaired.

$ %CASSANDRA_HOME%/tools/bin/sstablerepairedset --is-repaired data/data/
cycling/cyclist_name-a882dca02aaf11e58c7b8b496c707234/la-1-big-Data.db

• Use a file to list the SSTable to mark as unrepaired.

$ %CASSANDRA_HOME%tools/bin/sstablerepairedset --is-unrepaired -f
 repairSetSSTables.txt

A file like repairSetSSTables.txt would contain a list of SSTable (.db) files, as in the following
example:

/data/data/cycling/cyclist_by_country-82246fc065ff11e5a4c58b496c707234/ma-1-
big-Data.db
/data/data/cycling/cyclist_by_birthday-8248246065ff11e5a4c58b496c707234/
ma-1-big-Data.db
/data/data/cycling/cyclist_by_birthday-8248246065ff11e5a4c58b496c707234/
ma-2-big-Data.db
/data/data/cycling/cyclist_by_age-8201305065ff11e5a4c58b496c707234/ma-1-big-
Data.db
/data/data/cycling/cyclist_by_age-8201305065ff11e5a4c58b496c707234/ma-2-big-
Data.db

Use the following command to list all the Data.db files in a keyspace:

find '/home/user/apache-cassandra-3.0.0/data/data/test/' -iname "*Data.db*"

sstablescrub
An offline version of nodetool scrub. It attempts to remove the corrupted parts while preserving non-corrupted data.

The sstablescrub utility is an offline version of nodetool scrub. It attempts to remove the corrupted
parts while preserving non-corrupted data. Because sstablescrub runs offline, it can correct errors that
nodetool scrub cannot. If an SSTable cannot be read due to corruption, it will be left on disk.

If scrubbing results in dropping rows, new SSTables become unrepaired. However, if no bad rows are
detected, the SSTable keeps its original repairedAt field, which denotes the time of the repair.

Procedure
1. Before using sstablescrub, try rebuilding the tables using nodetool scrub.

If nodetool scrub does not fix the problem, use this utility.

2. Shut down the node.

3. Run the utility:

• Package installations:

Cassandra tools

261

$ sstablescrub [options] keyspace table
• Tarball installations:

$ cd install_location
$ bin/sstablescrub [options] keyspace table

Table: Options

Flag Option Description

--debug Display stack traces.

-h --help Display help.

-m --manifest-check Only check and repair the leveled manifest, without actually scrubbing
the SSTables.

-s --skip-corrupted Skip corrupt rows in counter tables.

-v --verbose Verbose output.

sstablesplit
Use this tool to split SSTables files into multiple SSTables of a maximum designated size.

Use this tool to split SSTables files into multiple SSTables of a maximum designated size. For example,
if SizeTieredCompactionStrategy was used for a major compaction and results in a excessively large
SSTable, it's a good idea to split the table because won't get compacted again until the next huge
compaction.

Cassandra must be stopped to use this tool:

• Package installations:

$ sudo service cassandra stop
• Tarball installations:

$ ps auwx | grep cassandra
$ sudo kill pid

Usage:

• Package installations: $ sstablesplit [options] <filename> [<filename>]*
• Tarball installations:

$ cd install_location/tools/bin
sstablesplit [options] <filename> [<filename>]*

Example:

$ sstablesplit -s 40 /var/lib/cassandra/data/data/Keyspace1/Standard1/*

Table: Options

Flag Option Description

--debug Display stack traces.

-h --help Display help.

--no-snapshot Do not snapshot the SSTables before splitting.

Cassandra tools

262

Flag Option Description

-s --size <size> Maximum size in MB for the output SSTables (default: 50).

-v --verbose Verbose output.

sstableupgrade
Upgrade the SSTables in the specified table or snapshot to match the currently installed version of Cassandra.

This tool rewrites the SSTables in the specified table to match the currently installed version of Cassandra.

If restoring with sstableloader, you must upgrade your snapshots before restoring for any snapshot taken in
a major version older than the major version that Cassandra is currently running.

Usage:

• Package installations:

$ sstableupgrade [options] keyspace table [snapshot]
• Tarball installations:

$ cd install_location
$ bin/sstableupgrade [options] keyspace table [snapshot]

The snapshot option only upgrades the specified snapshot.

Table: Options

Flag Option Description

--debug Display stack traces.

-h --help Display help.

sstableutil
The sstableutil utility will list the SSTable files for a provided table.

The sstableutil will list the SSTable files for a provided table.

Usage:

• Package installations: $ sstableutil [--cleanup | --debug | --help | --opslog | --
type <arg> | --verbose] keyspace | table

• Tarball installations:

$ cd install_location$ bin/sstableutil [--cleanup | --debug | --help | --
opslog | --type <arg> | --verbose] keyspace | table

Note: Arguments for --type option are: all, tmp, or final.

Procedure
Choose a table fof which to list SSTables files.

$ sstableutil --all cycling cyclist_name

Troubleshooting

263

sstableverify
The sstableverify utility will verify the SSTable for a provided table.

The sstableverify utility will verify the SSTable for a provided table and look for errors or data corruption.

Usage:

• Package installations: $ sstableverify [--debug | --extended | --help | --verbose]
keyspace | table

• Tarball installations:

$ cd install_location$ bin/sstableverify [--debug | --extended | --help | --
verbose] keyspace | table

Procedure
Choose a table to verify.

$ sstableverify --verbose cycling cyclist_name

Troubleshooting

Peculiar Linux kernel performance problem on NUMA systems
Problems due to zone_reclaim_mode.

Problems due to zone_reclaim_mode.

The Linux kernel can be inconsistent in enabling/disabling zone_reclaim_mode. This can result in odd
performance problems:

• Random huge CPU spikes resulting in large increases in latency and throughput.
• Programs hanging indefinitely apparently doing nothing.
• Symptoms appearing and disappearing suddenly.
• After a reboot, the symptoms generally do not show again for some time.

To ensure that zone_reclaim_mode is disabled:

$ echo 0 > /proc/sys/vm/zone_reclaim_mode

Nodes appear unresponsive due to a Linux futex_wait() kernel
bug

Nodes randomly freeze and become unresponsive for an unknown reason.

Nodes randomly freeze and become unresponsive for an unknown reason.

The bug exists in RHEL 6.6, CentOS 6.6 and above.

Nodes affected by this bug have the following characteristics:

• No garbage collection activity in the logs
• No compactions in progress
• Unable to run nodetool commands
• No response on native transport, Thrift or JMX ports
• Low or close to zero CPU utilization, or

Troubleshooting

264

• High CPU utilization which eventually leads to the node becoming unresponsive

A thread dump on the node might show:

Thread 104823: (state = BLOCKED)
 - sun.misc.Unsafe.park(boolean, long) @bci=0 (Compiled frame; information
 may be imprecise)
 - java.util.concurrent.locks.LockSupport.parkNanos(java.lang.Object, long)
 @bci=20, line=226 (Compiled frame)
 - java.util.concurrent.locks.AbstractQueuedSynchronizer
$ConditionObject.awaitNanos(long) @bci=68, line=2082 (Compiled frame)
 - java.util.concurrent.LinkedBlockingQueue.poll(long,
 java.util.concurrent.TimeUnit) @bci=62, line=467 (Compiled frame)
 - java.util.concurrent.ThreadPoolExecutor.getTask() @bci=141, line=1068
 (Compiled frame)
 -
 java.util.concurrent.ThreadPoolExecutor.runWorker(java.util.concurrent.ThreadPoolExecutor
$Worker) @bci=26, line=1130 (Compiled frame)
 - java.util.concurrent.ThreadPoolExecutor$Worker.run() @bci=5, line=615
 (Interpreted frame)
 - java.lang.Thread.run() @bci=11, line=745 (Interpreted frame)

Cause
This problem is caused by a Linux futex_wait() bug that causes user processes to deadlock and hang.
A futex_wait() call (and any processes making this call) can stay blocked forever. JVM synchronization
method calls such as lock(), park() and unpark() all make futex_wait() calls at some point and
can trigger the unresponsiveness caused by this bug.

Solution
Upgrade to Linux kernels containing the get_futex_key_refs() fix, such as RHEL 6.6.z and CentOS 6.6.z.

Use the following command to check for the installed patches on a RHEL server:

$ sudo rpm -q --changelog kernel-`uname -r` | grep futex | grep ref

Sample output from this command:

- [kernel] futex: Mention key referencing differences between shared and
 private futexes (Larry Woodman) [1167405]
- [kernel] futex: Ensure get_futex_key_refs() always implies a barrier (Larry
 Woodman) [1167405]

If the patch had not been installed, the rpm command would show nothing.

For further information on distributions that contain the fix, consult the relevant vendor or distributor of the
operating system.

Reads are getting slower while writes are still fast
The cluster's IO capacity is not enough to handle the write load it is receiving.

The cluster's IO capacity is not enough to handle the write load it is receiving.

Check the SSTable counts in tablestats. If the count is continually growing, the cluster's IO capacity is not
enough to handle the write load it is receiving. Reads have slowed down because the data is fragmented
across many SSTables and compaction is continually running trying to reduce them.

Another diagnostic: check the sstable column in tablehistograms. If the 50%ile is continually growing and
the disk IO is saturated, this also indicates that the cluster's IO capacity is not able to keep up with the
write load it is receiving.

https://github.com/torvalds/linux/commit/76835b0ebf8a7fe85beb03c75121419a7dec52f0

Troubleshooting

265

In either case, adding more IO capacity, either via more machines in the cluster, or faster drives such as
SSDs, will be necessary to solve this.

If the SSTable count is relatively low (32 or less) then the amount of file cache available per machine
compared to the amount of data per machine needs to be considered, as well as the application's read
pattern. The amount of file cache can be formulated as (TotalMemory – JVMHeapSize) and if the
amount of data is greater and the read pattern is approximately random, an equal ratio of reads to the
cache:data ratio will need to seek the disk. With spinning media, this is a slow operation. You may be
able to mitigate many of the seeks by using a key cache of 100%, and a small amount of row cache
(10000-20000) if you have some hot rows and they are not extremely large.

Nodes seem to freeze after some period of time
Some portion of the JVM is being swapped out by the operating system (OS).

Some portion of the JVM is being swapped out by the operating system (OS).

Check your system.log for messages from the GCInspector. If the GCInspector is indicating that either
the ParNew or ConcurrentMarkSweep collectors took longer than 15 seconds, there is a high probability
that some portion of the JVM is being swapped out by the OS.

DataStax strongly recommends that you disable swap entirely (sudo swapoff --all). Because
Cassandra has multiple replicas and transparent failover, it is preferable for a replica to be killed
immediately when memory is low rather than go into swap. This allows traffic to be immediately redirected
to a functioning replica instead of continuing to hit the replica that has high latency due to swapping. If
your system has a lot of DRAM, swapping still lowers performance significantly because the OS swaps
out executable code so that more DRAM is available for caching disks. To make this change permanent,
remove all swap file entries from /etc/fstab.

If you insist on using swap, you can set vm.swappiness=1. This allows the kernel swap out the absolute
least used parts.

If the GCInspector isn't reporting very long GC times, but is reporting moderate times frequently
(ConcurrentMarkSweep taking a few seconds very often) then it is likely that the JVM is experiencing
extreme GC pressure and will eventually OOM. See Nodes are dying with OOM errors on page 265.

Nodes are dying with OOM errors
Nodes are dying with OutOfMemory exceptions.

Nodes are dying with OutOfMemory exceptions.

Check for these typical causes:

Row cache is too large, or is caching large rows

Row cache is generally a high-end optimization. Try disabling it and see if the OOM problems continue.

There is a large user query running on the node which takes up all the heap

In production, understand and test all queries upfront to avoid arbitrary query patterns. Test to discover each
query's max response size. Paging in CQL can often prevent a query from pulling too much data at once.

If none of these seem to apply to your situation, try loading the heap dump in MAT and see which class is
consuming the bulk of the heap for clues.

.

Nodetool or JMX connections failing on remote nodes
Nodetool commands can be run locally but not on other nodes in the cluster.

Nodetool commands can be run locally but not on other nodes in the cluster.

http://www.eclipse.org/mat/

Troubleshooting

266

If you can run nodetool commands locally but not on other nodes in the ring, you may have a common
JMX connection problem that is resolved by adding an entry like the following in cassandra-env.sh on each
node:

JVM_OPTS = "$JVM_OPTS -Djava.rmi.server.hostname=public name"

Another possibility: in cassandra-env.sh for Cassandra 3.4 and later, the default settings start up JMX
only on the local node. You must edit this setting and add JMX authentication to be able to contact remote
nodes. See Jmx Security for details.

If you still cannot run nodetool commands remotely after making this configuration change, do a full
evaluation of your firewall and network security. The nodetool utility communicates through JMX on port
7199.

Handling schema disagreements
Check for and resolve schema disagreements.

Check for and resolve schema disagreements.

In the event that a schema disagreement occurs, check for and resolve schema disagreements as follows:

Procedure
1. Run the nodetool describecluster command.

$ nodetool describecluster

If any node is UNREACHABLE, you see output something like this:

$ nodetool describecluster
Snitch: org.apache.cassandra.locator.DynamicEndpointSnitch
Partitioner: org.apache.cassandra.dht.Murmur3Partitioner
Schema versions:
 UNREACHABLE: 1176b7ac-8993-395d-85fd-41b89ef49fbb: [10.202.205.203]
 9b861925-1a19-057c-ff70-779273e95aa6: [10.80.207.102]
 8613985e-c49e-b8f7-57ae-6439e879bb2a: [10.116.138.23]

2. Restart unreachable nodes.

3. Repeat steps 1 and 2 until nodetool describecluster shows that all nodes have the same
schema version number#only one schema version appears in the output.

View of ring differs between some nodes
Indicates that the ring is in a bad state.

Indicates that the ring is in a bad state.

This situation can happen when not using virtual nodes (vnodes) and there are token conflicts (for
instance, when bootstrapping two nodes simultaneously with automatic token selection.) Unfortunately, the
only way to resolve this is to do a full cluster restart. A rolling restart is insufficient since gossip from nodes
with the bad state will repopulate it on newly booted nodes.

Java reports an error saying there are too many open files
Java may not have enough open file descriptors.

Java may not have enough open file descriptors.

https://wiki.apache.org/cassandra/JmxSecurity

Troubleshooting

267

Cassandra generally needs more than the default (1024) amount of file descriptors. To increase the
number of file descriptors, change the security limits on your Cassandra nodes as described in the
Recommended Settings section of Insufficient user resource limits errors on page 267.

Another, much less likely possibility, is a file descriptor leak in Cassandra. Run lsof -n | grep java
to check that the number of file descriptors opened by Java is reasonable and report the error if the
number is greater than a few thousand.

Insufficient user resource limits errors
Insufficient resource limits may result in a number of errors in Cassandra.

Insufficient resource limits may result in a number of errors in Cassandra.

Cassandra errors
Insufficient as (address space) or memlock setting

ERROR [SSTableBatchOpen:1] 2012-07-25 15:46:02,913
 AbstractCassandraDaemon.java (line 139)
Fatal exception in thread Thread [SSTableBatchOpen:1,5,main]
java.io.IOError: java.io.IOException: Map failed at ...

Insufficient memlock settings

WARN [main] 2011-06-15 09:58:56,861 CLibrary.java (line 118) Unable to lock
 JVM memory (ENOMEM).
This can result in part of the JVM being swapped out, especially with mmapped
 I/O enabled.
Increase RLIMIT_MEMLOCK or run Cassandra as root.

Insufficient nofiles setting

WARN 05:13:43,644 Transport error occurred during acceptance of message.
org.apache.thrift.transport.TTransportException: java.net.SocketException:
Too many open files ...

Insufficient nproc setting

ERROR [MutationStage:11] 2012-04-30 09:46:08,102 AbstractCassandraDaemon.java
 (line 139)
Fatal exception in thread Thread [MutationStage:11,5,main]
java.lang.OutOfMemoryError: unable to create new native thread

Recommended settings
You can view the current limits using the ulimit -a command. Although limits can also be temporarily
set using this command, DataStax recommends making the changes permanent:

Packaged installs: Ensure that the following settings are included in the /etc/security/limits.d/
cassandra.conf file:

<cassandra_user> - memlock unlimited
<cassandra_user> - nofile 100000
<cassandra_user> - nproc 32768
<cassandra_user> - as unlimited

Tarball installs: In RHEL version 6.x, ensure that the following settings are included in the /etc/
security/limits.conf file:

<cassandra_user> - memlock unlimited
<cassandra_user> - nofile 100000
<cassandra_user> - nproc 32768
<cassandra_user> - as unlimited

Troubleshooting

268

If you run Cassandra as root, some Linux distributions such as Ubuntu, require setting the limits for root
explicitly instead of using <cassandra_user>:

root - memlock unlimited
root - nofile 100000
root - nproc 32768
root - as unlimited

For RHEL 6.x-based systems, also set the nproc limits in /etc/security/limits.d/90-nproc.conf:

<cassandra_user> - nproc 32768

For all installations, add the following line to /etc/sysctl.conf:

vm.max_map_count = 131072

To make the changes take effect, reboot the server or run the following command:

$ sudo sysctl -p

To confirm the limits are applied to the Cassandra process, run the following command where pid is the
process ID of the currently running Cassandra process:

$ cat /proc/<pid>/limits

Cannot initialize class org.xerial.snappy.Snappy
An error may occur when Snappy compression/decompression is enabled although its library is available from the classpath.

An error may occur when Snappy compression/decompression is enabled although its library is available
from the classpath.

java.util.concurrent.ExecutionException: java.lang.NoClassDefFoundError:
 Could not initialize class org.xerial.snappy.Snappy
...
Caused by: java.lang.NoClassDefFoundError: Could not initialize class
 org.xerial.snappy.Snappy
 at
 org.apache.cassandra.io.compress.SnappyCompressor.initialCompressedBufferLength
 (SnappyCompressor.java:39)

The native library snappy-1.0.4.1-libsnappyjava.so for Snappy compression is included in the
snappy-java-1.0.4.1.jar file. When the JVM initializes the JAR, the library is added to the default
temp directory. If the default temp directory is mounted with a noexec option, it results in the above
exception.

One solution is to specify a different temp directory that has already been mounted without the noexec
option, as follows:

• If you use the DSE/Cassandra command $_BIN/dse cassandra or $_BIN/cassandra, simply
append the command line:

• DSE: bin/dse cassandra -t -Dorg.xerial.snappy.tempdir=/path/to/newtmp
• Cassandra: bin/cassandra -Dorg.xerial.snappy.tempdir=/path/to/newtmp

• If starting from a package using service dse start or service cassandra start, add a system environment
variable JVM_OPTS with the value:

JVM_OPTS=-Dorg.xerial.snappy.tempdir=/path/to/newtmp

The default cassandra-env.sh looks for the variable and appends to it when starting the JVM.

DataStax Distribution of Apache Cassandra 3.x release notes

269

Firewall idle connection timeout causing nodes to lose
communication during low traffic times

Steps to configure the default idle connection timeout.

During low traffic intervals, a firewall configured with an idle connection timeout can close connections to
local nodes and nodes in other data centers. The default idle connection timeout is usually 60 minutes and
configurable by the network administrator.

Procedure
To prevent connections between nodes from timing out, set the TCP keep alive variables:

1. Get a list of available kernel variables:

$ sysctl -A | grep net.ipv4

The following variables should exist:

• net.ipv4.tcp_keepalive_time

Time of connection inactivity after which the first keep alive request is sent.
• net.ipv4.tcp_keepalive_probes

Number of keep alive requests retransmitted before the connection is considered broken.
• net.ipv4.tcp_keepalive_intvl

Time interval between keep alive probes.

2. To change these settings:

$ sudo sysctl -w net.ipv4.tcp_keepalive_time=60
 net.ipv4.tcp_keepalive_probes=3 net.ipv4.tcp_keepalive_intvl=10

This sample command changes TCP keepalive timeout to 60 seconds with 3 probes, 10 seconds gap
between each. This setting detects dead TCP connections after 90 seconds (60 + 10 + 10 + 10). There
is no need to be concerned about the additional traffic as it's negligible and permanently leaving these
settings shouldn't be an issue.

DataStax Distribution of Apache Cassandra 3.x
release notes

Release notes for the DataStax Distribution of Apache Cassandra 3.x.

Note: Cassandra is now releasing on a tick-tock schedule. For more information, see Cassandra 2.2, 3.0,
and beyond.

The latest version of DataStax Distribution of Apache Cassandra 3.x is 3.4.

The CHANGES.txt describes the changes in detail. You can view all version changes by branch or tag in
the drop-down list on the changes page.

New features, improvements, and notable changes are described in What's new?.

http://www.planetcassandra.org/blog/cassandra-2-2-3-0-and-beyond/
http://www.planetcassandra.org/blog/cassandra-2-2-3-0-and-beyond/
https://github.com/apache/cassandra/blob/cassandra-3.4/CHANGES.txt#L1-L87

	Contents
	About Apache Cassandra
	What's new?
	Understanding the architecture
	Architecture in brief
	Internode communications (gossip)
	Failure detection and recovery

	Data distribution and replication
	Consistent hashing
	Virtual nodes
	How data is distributed across a cluster (using virtual nodes)

	Data replication

	Partitioners
	Murmur3Partitioner
	RandomPartitioner
	ByteOrderedPartitioner

	Snitches
	Dynamic snitching
	SimpleSnitch
	RackInferringSnitch
	PropertyFileSnitch
	GossipingPropertyFileSnitch
	Ec2Snitch
	Ec2MultiRegionSnitch
	GoogleCloudSnitch
	CloudstackSnitch

	Database internals
	Storage engine
	How Cassandra reads and writes data
	How is data written?
	How is data maintained?
	How is data updated?
	How is data deleted?
	How are indexes stored and updated?
	How is data read?
	How do write patterns affect reads?

	Data consistency
	How are consistent read and write operations handled?
	How are Cassandra transactions different from RDBMS transactions?
	How do I accomplish lightweight transactions with linearizable consistency?
	How do I discover consistency level performance?
	How is the consistency level configured?
	How is the serial consistency level configured?
	How are read requests accomplished?
	Examples of read consistency levels

	How are write requests accomplished?
	Multiple data center write requests

	Planning a cluster deployment
	Selecting hardware for enterprise implementations
	Planning an Amazon EC2 cluster
	Estimating partition size
	Estimating usable disk capacity
	Anti-patterns in Cassandra

	Installing
	Installing the DataStax Distribution of Apache Cassandra 3.x on RHEL-based systems
	Installing DataStax Distribution of Apache Cassandra 3.x on Debian-based systems
	Installing from the binary tarball
	Configuring Cassandra without root permissions

	Installing earlier releases of DataStax Distribution of Apache Cassandra 3.x
	Uninstalling the DataStax Distribution of Apache Cassandra 3.x
	Installing on cloud providers
	Installing the JDK
	Installing Oracle JDK on RHEL-based Systems
	Installing Oracle JDK on Debian or Ubuntu Systems
	Installing OpenJDK on RHEL-based Systems
	Installing OpenJDK on Debian-based Systems

	Recommended production settings for Linux
	Install locations
	Tarball installation directories
	Package installation directories

	Configuration
	cassandra.yaml configuration file
	Cassandra include file
	Security
	Securing Cassandra
	SSL encryption
	Preparing server certificates
	Adding new trusted users
	Client-to-node encryption
	Using cqlsh with SSL encryption
	Using nodetool (JMX) with SSL
	Node-to-node encryption

	Internal authentication
	Internal authentication
	Configuring authentication
	Logging in using cqlsh

	Internal authorization
	Object permissions
	Configuring internal authorization
	Configuring firewall port access
	Enabling JMX authentication
	Configuring gossip settings
	Configuring the heap dump directory

	Configuring virtual nodes
	Enabling virtual nodes on a new cluster
	Enabling virtual nodes on an existing production cluster

	Using multiple network interfaces
	Configuring logging
	Commit log archive configuration
	Generating tokens
	Hadoop support

	Initializing a cluster
	Initializing a multiple node cluster (single data center)
	Initializing a multiple node cluster (multiple data centers)
	Starting and stopping Cassandra
	Starting Cassandra as a service
	Starting Cassandra as a stand-alone process
	Stopping Cassandra as a service
	Stopping Cassandra as a stand-alone process
	Clearing the data as a service
	Clearing the data as a stand-alone process

	Operations
	Adding or removing nodes, data centers, or clusters
	Adding nodes to an existing cluster
	Adding a data center to a cluster
	Replacing a dead node or dead seed node
	Replacing a running node
	Moving a node from one rack to another
	Decommissioning a data center
	Removing a node
	Switching snitches
	Changing keyspace replication strategy
	Edge cases for transitioning or migrating a cluster
	Adding or replacing single-token nodes

	Backing up and restoring data
	About snapshots
	Taking a snapshot
	Deleting snapshot files
	Enabling incremental backups
	Restoring from a snapshot
	Node restart method

	Restoring a snapshot into a new cluster
	Recovering from a single disk failure using JBOD

	Repairing nodes
	Hinted Handoff: repair during write path
	Read Repair: repair during read path
	Manual repair: Anti-entropy repair
	When to run anti-entropy repair

	Migrating to incremental repairs

	Monitoring Cassandra
	Monitoring a Cassandra cluster
	Compaction metrics
	Thread pool and read/write latency statistics
	Table statistics

	Tuning Java resources
	Data caching
	Configuring data caches
	Enabling and configuring caching
	Tips for efficient cache use

	Monitoring and adjusting caching

	Configuring memtable throughput
	Configuring compaction
	Compression
	When to compress data
	Configuring compression

	Testing compaction and compression
	Tuning Bloom filters
	Moving data to or from other databases
	Purging gossip state on a node

	Cassandra tools
	The nodetool utility
	assassinate
	bootstrap
	cfhistograms
	cfstats
	cleanup
	clearsnapshot
	compact
	compactionhistory
	compactionstats
	decommission
	describecluster
	describering
	disableautocompaction
	disablebackup
	disablebinary
	disablegossip
	disablehandoff
	disablehintsfordc
	disablethrift
	drain
	enableautocompaction
	enablebackup
	enablebinary
	enablegossip
	enablehandoff
	enablehintsfordc
	enablethrift
	flush
	gcstats
	getcompactionthreshold
	getcompactionthroughput
	getendpoints
	getlogginglevels
	getsstables
	getstreamthroughput
	gettimeout
	gettraceprobability
	gossipinfo
	help
	info
	invalidatecountercache
	invalidatekeycache
	invalidaterowcache
	join
	listsnapshots
	move
	netstats
	pausehandoff
	proxyhistograms
	rangekeysample
	rebuild
	rebuild_index
	refresh
	reloadtriggers
	relocatesstables
	removenode
	repair
	replaybatchlog
	resetlocalschema
	resumehandoff
	ring
	scrub
	setcachecapacity
	setcachekeystosave
	setcompactionthreshold
	setcompactionthroughput
	sethintedhandoffthrottlekb
	setlogginglevel
	setstreamthroughput
	settimeout
	settraceprobability
	snapshot
	status
	statusbackup
	statusbinary
	statusgossip
	statushandoff
	statusthrift
	stop
	stopdaemon
	tablehistograms
	tablestats
	toppartitions
	tpstats
	truncatehints
	upgradesstables
	verify
	version

	The cassandra utility
	The cassandra-stress tool
	Interpreting the output of cassandra-stress

	SSTable utilities
	sstabledump
	sstableexpiredblockers
	sstablekeys
	sstablelevelreset
	sstableloader (Cassandra bulk loader)
	sstablemetadata
	sstableofflinerelevel
	sstablerepairedset
	sstablescrub
	sstablesplit
	sstableupgrade
	sstableutil
	sstableverify

	Troubleshooting
	Peculiar Linux kernel performance problem on NUMA systems
	Nodes appear unresponsive due to a Linux futex_wait() kernel bug
	Reads are getting slower while writes are still fast
	Nodes seem to freeze after some period of time
	Nodes are dying with OOM errors
	Nodetool or JMX connections failing on remote nodes
	Handling schema disagreements
	View of ring differs between some nodes
	Java reports an error saying there are too many open files
	Insufficient user resource limits errors
	Cannot initialize class org.xerial.snappy.Snappy
	Lost communication due to firewall timeouts

	Release notes

