Chicago 2015
CQL: This is not the SQL
you are looking for

y - “1 9
F'\ ﬂL Aaron Ploetz

}w. ; \s,

DATASTAX®

Wait... CQL is not SQL?

CQL3 introduced in Cassandra 1.1.

CQL is beneficial to new users who have a relational background
(which is most of us).

However similar, CQL is NOT a direct implementation of SQL.
New users leave themselves open to issues and frustration when
they use CQL with SQL-based expectations.

$ whoami

Aaron Ploetz

@APloetz | = .
Lead Database Engineer ~Acculyn

Using Cassandra since version 0. 8

Contributor to the Cassandra tag on =l stack
overflow

2014/15 DataStax MVP for Apache Cassandra

DATASTAX®

DATASTAX®

SQL features/keywords not present in CQL

Differences between CQL and SQL keywords

Secondary Indexes

Anti-Patterns

A~ WOIN=-

Questions

DATASTAX®

SQL features/keywords not present in CQL

JOINs
LIKE
Subqueries
Aggregation
Arithmetic
IExcept for counters and collections.

DATASTAX®

Differences between CQL and SQL keywords

WHERE
PRIMARY KEY

ORDER BY

IN

DISTINCT

COUNT

LIMIT

INSERT vs. UPDATE (“upsert’)

DATASTAX®

WHERE

Only supports AND, IN, =, >, >= < <=,
ISome only function under certain conditions.
IAlso: CONTAINS, CONTAINS KEY for indexed collections.
IDoes not exist: OR, !=

Conditions can only operate on PRIMARY KEY components, and
in the defined order of the keys.

DATASTAX ®

WHERE (cont)

CREATE TABLE shipcrewregistry
(shipname text, lastname text, firstname
text, citizenid uuid,

aliases set<text>, PRIMARY KEY
(shipname, lastname, firstname,
citizenid));

SELECT * FROM shipcrewregistry WHERE
shipname='Serenity’;

Start with partition key(s); cannot skip PRIMARY KEY
components.

DATASTAX®

ALLOW FILTERING

Actually | lied, you can skip primary key components if you apply
the ALLOW FILTERING clause.
SELECT * FROM shipcrewregistry WHERE

lastname="Washburne';

DATASTAX®

ALLOW FILTERING (cont)

SELECT * FROM shipcrewregistry WHERE
lasthame="Washburne' ALLOW FILTERING;

But | don't recommend that.

ALLOW FILTERING pulls back all rows and then applies your
WHERE conditions.

‘The folks at DataStax have proposed some alternate names...
Bottom line, if you are using ALLOW FILTERING, you are doing it
wrong.

DATASTAX®

PRIMARY KEY

PRIMARY KEYs function differently between Cassandra and
relational databases.
Cassandra uses primary keys to determine data distribution and
on-disk sort order.
IPartition keys are the equivalent of “old school” row keys.
IClustering keys determine on-disk sort order within a
partitioning key.

DATASTAX®

ORDER BY

One of the most misunderstood aspects of CQL.

Can only order by clustering columns, in the key order of the
clustering columns listed in the table definition (CLUSTERING
ORDER).

Which means, that you really don't need ORDER BY.

S0 what does it do? It can reverse the sort direction (ASCending
vs. DESCending) of the first clustering column.

PRIMARY KEY / ORDER BY Example: DATASTAX:
Table Definition

CREATE TABLE postsByUserYear
(userid text, year bigint, tag text, posttime

timestamp, content text, postid UUID,
PRIMARY KEY ((userid, year), posttime,

tag)) WITH CLUSTERING ORDER BY
(posttime desc, tag asc);

PRIMARY KEY / ORDER BY Example: DRTASTAX
Queries

SELECT * FROM postsByUserYear WHERE userid="2’;

SELECT * FROM postsByUserYear ORDER BY
posttime;

SELECT * FROM postsByUserYear WHERE userid="2'
AND year=2015 ORDER BY posttime DESC;

SELECT * FROM postsByUserYear WHERE userid="2'

AND year=2015 ORDER BY tag;

DATASTAX®

IN

Can only operate on the last partition key and/or the last clustering
key.
IAnd only when the first partition/clustering keys are restricted
by an equals relation.
Does not perform well...especially with large clusters.

DATASTAX®

Testlng IN

DiADE nunn:n
THE DIRECTOR'S CUT
THE ORK NTURE

text, type text, ts
timestamp, name text, data text, PRIMARY KEY (id));

DATASTAX®

Testing IN (cont)

pladerunners
('‘B26354','B26354');

DATASTAX®

DISTINCT

Returns a list of the queried partition keys.

Can only operate on partition key column(s).

In Cassandra DISTINCT returns the partition (row) keys, so it is a
fairly light operation (relative to the size of the cluster and/or data
set).

Whereas in the relational world, DISTINCT is a very resource
Intensive operation.

DATASTAX®

COUNT

Counts the number of rows returned, dependent on the WHERE
clause.

Does not aggregate.

Similar to its RDBMs counterpart.

Can be (inadvertently) restricted by LIMIT.

Resource intensive command; especially because it has to scan
each row in the table (which may be on different nodes), and apply
the WHERE conditions.

DATASTAX®

Limit

Limits your query to N rows (where N is a positive integer).

SELECT * FROM bladerunners LIMIT 2;

Does not allow you to specify a start point.
IYou cannot use LIMIT to “page” through your result set.

DATASTAX®

Cassandra “Upserts”

Under the hood, INSERT and UPDATE are treated the same by
Cassandra.

Colloquially known as an “Upsert.”

Both INSERT and UPDATE operations require the complete
PRIMARY KEY.

DATASTAX®

So why the different syntax?

Flexibility. Some situations call for one or the other.

Counter columns/tables can only be incremented with an
UPDATE.

INSERTs can save you some dev time in the application layer if
your PRIMARY KEY changes.

DATASTAX®

“Upsert” example

UPDATE bladerunners SET data='This guy
Is a one-man slaughterhouse.',name="Harry
Bryant',ts='2015-03-30 14:47:00-0600",type="Captain’
WHERE id='"B16442";

UPDATE bladerunners SET data = 'Drink
some for me, huh pal?' WHERE id="B16442";

DATASTAX®

“Upsert” example (cont)

INSERT INTO bladerunners (id, type, ts, data, name)
VALUES ('‘B29591','Blade Runner*,"’2015-03-30
14:34:00-0600',"Captain Bryant would like a
word.','Eduardo Gaff');

INSERT INTO bladerunners (id,data) VALUES
('B29591','It"s too bad she won't live. But then again,
who does?’);

DATASTAX®

Secondary Indexes

Cassandra provides secondary indexes to allow queries on non-
partition key columns.

In 2.1.X you can even create indexes on collections and user
defined types.

Designed for convenience, not for performance.

Does not perform well on high-cardinality columns.

Extremely low cardinality is also not a good idea.

Low performance on a frequently updated column.

In my opinion, try to avoid using them all together.

DATASTAX®

Anti-Patterns

Multi-Key queries: IN
Secondary Index queries
DELETESs or INSERTing null values

DATASTAX®

Summary

While CQL is designed to make use of our previous experience
using SQL, it is important to remember that the two do not behave
the same.

Even if you are at an expert level in SQL, read the CQL
documentation before making any assumptions.

DATASTAX®

Additional Reading

Getting Started with Time Series Data Modeling —
Patrick McFadin

SELECT — DataStax CQL 3.1 documentation

Counting Keys in Cassandra —
Richard Low

Cassandra High Availability
Robbie Strickland

Cassandra High

Availability

—Question-

Questions? —

".."

&

