
 
 
Apache Kafka 0.8 basic training

Michael G. Noll, Verisign
mnoll@verisign.com / @miguno

July 2014

https://twitter.com/miguno
https://twitter.com/miguno

Verisign Public 2

Update 2015-08-01: 

Shameless plug! Since publishing this Kafka training deck about a year ago  
I joined Confluent Inc. as their Developer Evangelist.

Confluent is the US startup founded in 2014 by the creators of Apache Kafka
who developed Kafka while at LinkedIn (see Forbes about Confluent). Next to
building the world’s best stream data platform we are also providing
professional Kafka trainings, which go even deeper as well as beyond my
extensive training deck below.  

http://www.confluent.io/training  

I can say with confidence that these are the best and most effective Apache
Kafka trainings available on the market. But you don’t have to take my word
for it – feel free to take a look yourself and reach out to us if you’re interested. 

 —Michael

http://confluent.io/
http://confluent.io/
http://www.forbes.com/sites/alexkonrad/2015/07/08/confluent-raises-24-million-for-data-streams/
http://www.forbes.com/sites/alexkonrad/2015/07/08/confluent-raises-24-million-for-data-streams/
http://www.confluent.io/product
http://www.confluent.io/training
http://www.confluent.io/training
http://www.confluent.io/training
http://www.confluent.io/training
http://www.confluent.io/training
http://www.confluent.io/training
http://www.confluent.io/training
http://www.confluent.io/training

Verisign Public

Kafka?

• Part 1: Introducing Kafka
• “Why should I stay awake for the full duration of this workshop?”

• Part 2: Kafka core concepts
• Topics, partitions, replicas, producers, consumers, brokers

• Part 3: Operating Kafka
• Architecture, hardware specs, deploying, monitoring, P&S tuning

• Part 4: Developing Kafka apps
• Writing to Kafka, reading from Kafka, testing, serialization, compression, example apps

• Part 5: Playing with Kafka using Wirbelsturm
• Wrapping up

3

Verisign Public

Part 1: Introducing Kafka

4

Verisign Public

Overview of Part 1: Introducing Kafka

• Kafka?
• Kafka adoption and use cases in the wild

• At LinkedIn
• At other companies

• How fast is Kafka, and why?
• Kafka + X for processing

• Storm, Samza, Spark Streaming, custom apps

5

Verisign Public

Kafka?

• http://kafka.apache.org/
• Originated at LinkedIn, open sourced in early 2011
• Implemented in Scala, some Java
• 9 core committers, plus ~ 20 contributors

6

https://kafka.apache.org/committers.html
https://github.com/apache/kafka/graphs/contributors

http://kafka.apache.org/
http://kafka.apache.org/
https://kafka.apache.org/committers.html
https://kafka.apache.org/committers.html
https://github.com/apache/kafka/graphs/contributors
https://github.com/apache/kafka/graphs/contributors

Verisign Public

Kafka?

• LinkedIn’s motivation for Kafka was:
• “A unified platform for handling all the real-time data feeds a large company might have.”

• Must haves
• High throughput to support high volume event feeds.
• Support real-time processing of these feeds to create new, derived feeds.
• Support large data backlogs to handle periodic ingestion from offline systems.
• Support low-latency delivery to handle more traditional messaging use cases.
• Guarantee fault-tolerance in the presence of machine failures.

7

http://kafka.apache.org/documentation.html#majordesignelements

http://kafka.apache.org/documentation.html%23majordesignelements
http://kafka.apache.org/documentation.html%23majordesignelements

Verisign Public

Kafka @ LinkedIn, 2014

8

https://twitter.com/SalesforceEng/status/466033231800713216/photo/1
http://www.hakkalabs.co/articles/site-reliability-engineering-linkedin-kafka-service

(Numbers have increased since.)

https://twitter.com/SalesforceEng/status/466033231800713216/photo/1
https://twitter.com/SalesforceEng/status/466033231800713216/photo/1
http://www.hakkalabs.co/articles/site-reliability-engineering-linkedin-kafka-service

Verisign Public

Data architecture @ LinkedIn, Feb 2013

9

http://gigaom.com/2013/12/09/netflix-open-sources-its-data-traffic-cop-suro/

(Numbers are aggregated 
 across all their clusters.)

http://gigaom.com/2013/12/09/netflix-open-sources-its-data-traffic-cop-suro/
http://gigaom.com/2013/12/09/netflix-open-sources-its-data-traffic-cop-suro/

Verisign Public

Kafka @ LinkedIn, 2014

• Multiple data centers, multiple clusters
• Mirroring between clusters / data centers

• What type of data is being transported through Kafka?
• Metrics: operational telemetry data
• Tracking: everything a LinkedIn.com user does
• Queuing: between LinkedIn apps, e.g. for sending emails 

• To transport data from LinkedIn’s apps to Hadoop, and back
• In total ~ 200 billion events/day via Kafka

• Tens of thousands of data producers, thousands of consumers
• 7 million events/sec (write), 35 million events/sec (read) <<< may include replicated events
• But: LinkedIn is not even the largest Kafka user anymore as of 2014

10

http://www.hakkalabs.co/articles/site-reliability-engineering-linkedin-kafka-service
http://www.slideshare.net/JayKreps1/i-32858698

http://search-hadoop.com/m/4TaT4qAFQW1

http://www.hakkalabs.co/articles/site-reliability-engineering-linkedin-kafka-service
http://www.hakkalabs.co/articles/site-reliability-engineering-linkedin-kafka-service
http://www.slideshare.net/JayKreps1/i-32858698
http://www.slideshare.net/JayKreps1/i-32858698
http://search-hadoop.com/m/4TaT4qAFQW1
http://search-hadoop.com/m/4TaT4qAFQW1

Verisign Public

Kafka @ LinkedIn, 2014

11

https://kafka.apache.org/documentation.html#java

“For reference, here are the stats on one of 
 LinkedIn's busiest clusters (at peak):

 15 brokers
 15,500 partitions (replication factor 2)
400,000 msg/s inbound
 70 MB/s inbound
 400 MB/s outbound”

https://kafka.apache.org/documentation.html%23java
https://kafka.apache.org/documentation.html%23java

Verisign Public

Staffing: Kafka team @ LinkedIn

• Team of 8+ engineers
• Site reliability engineers (Ops): at least 3
• Developers: at least 5

• SRE’s as well as DEV’s are on call 24x7

12

https://kafka.apache.org/committers.html
http://www.hakkalabs.co/articles/site-reliability-engineering-linkedin-kafka-service

http://www.hakkalabs.co/articles/site-reliability-engineering-linkedin-kafka-service
http://www.hakkalabs.co/articles/site-reliability-engineering-linkedin-kafka-service
http://www.hakkalabs.co/articles/site-reliability-engineering-linkedin-kafka-service
http://www.hakkalabs.co/articles/site-reliability-engineering-linkedin-kafka-service

Verisign Public

Kafka adoption and use cases

• LinkedIn: activity streams, operational metrics, data bus
• 400 nodes, 18k topics, 220B msg/day (peak 3.2M msg/s), May 2014

• Netflix: real-time monitoring and event processing
• Twitter: as part of their Storm real-time data pipelines
• Spotify: log delivery (from 4h down to 10s), Hadoop
• Loggly: log collection and processing
• Mozilla: telemetry data
• Airbnb, Cisco, Gnip, InfoChimps, Ooyala, Square, Uber, …

13

https://cwiki.apache.org/confluence/display/KAFKA/Powered+By

https://cwiki.apache.org/confluence/display/KAFKA/Powered+By
https://cwiki.apache.org/confluence/display/KAFKA/Powered+By

Verisign Public

Kafka @ Spotify

14

https://www.jfokus.se/jfokus14/preso/Reliable-real-time-processing-with-Kafka-and-Storm.pdf (Feb 2014)

https://www.jfokus.se/jfokus14/preso/Reliable-real-time-processing-with-Kafka-and-Storm.pdf
https://www.jfokus.se/jfokus14/preso/Reliable-real-time-processing-with-Kafka-and-Storm.pdf

Verisign Public

How fast is Kafka?

• “Up to 2 million writes/sec on 3 cheap machines”
• Using 3 producers on 3 different machines, 3x async replication

• Only 1 producer/machine because NIC already saturated

• Sustained throughput as stored data grows
• Slightly different test config than 2M writes/sec above.

• Test setup
• Kafka trunk as of April 2013, but 0.8.1+ should be similar.
• 3 machines: 6-core Intel Xeon 2.5 GHz, 32GB RAM, 6x 7200rpm SATA, 1GigE

15

http://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines

http://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
http://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines

Verisign Public

Why is Kafka so fast?

• Fast writes:
• While Kafka persists all data to disk, essentially all writes go to the  

page cache of OS, i.e. RAM.
• Cf. hardware specs and OS tuning (we cover this later)

• Fast reads:
• Very efficient to transfer data from page cache to a network socket
• Linux: sendfile() system call

• Combination of the two = fast Kafka!
• Example (Operations): On a Kafka cluster where the consumers are mostly

caught up you will see no read activity on the disks as they will be serving
data entirely from cache.

16

http://kafka.apache.org/documentation.html#persistence

http://kafka.apache.org/documentation.html%23persistence

Verisign Public

Why is Kafka so fast?

• Example: Loggly.com, who run Kafka & Co. on Amazon AWS
• “99.99999% of the time our data is coming from disk cache and RAM; only

very rarely do we hit the disk.”
• “One of our consumer groups (8 threads) which maps a log to a customer

can process about 200,000 events per second draining from 192 partitions
spread across 3 brokers.”

• Brokers run on m2.xlarge Amazon EC2 instances backed by provisioned IOPS

17

http://www.developer-tech.com/news/2014/jun/10/why-loggly-loves-apache-kafka-how-unbreakable-infinitely-scalable-messaging-makes-log-management-better/

http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
http://www.developer-tech.com/news/2014/jun/10/why-loggly-loves-apache-kafka-how-unbreakable-infinitely-scalable-messaging-makes-log-management-better/
http://www.developer-tech.com/news/2014/jun/10/why-loggly-loves-apache-kafka-how-unbreakable-infinitely-scalable-messaging-makes-log-management-better/

Verisign Public

Kafka + X for processing the data?

• Kafka + Storm often used in combination, e.g. Twitter 

• Kafka + custom
• “Normal” Java multi-threaded setups
• Akka actors with Scala or Java, e.g. Ooyala  

• Recent additions:
• Samza (since Aug ’13) – also by LinkedIn
• Spark Streaming, part of Spark (since Feb ’13)

• Kafka + Camus for Kafka->Hadoop ingestion

18

https://cwiki.apache.org/confluence/display/KAFKA/Powered+By

https://cwiki.apache.org/confluence/display/KAFKA/Powered+By
https://cwiki.apache.org/confluence/display/KAFKA/Powered+By

Verisign Public

Part 2: Kafka core concepts

19

Verisign Public

Overview of Part 2: Kafka core concepts

• A first look
• Topics, partitions, replicas, offsets
• Producers, brokers, consumers
• Putting it all together

20

Verisign Public

A first look

• The who is who
• Producers write data to brokers.
• Consumers read data from brokers.
• All this is distributed.

• The data
• Data is stored in topics.
• Topics are split into partitions, which are replicated.

21

Verisign Public

A first look

22

http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/

http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/
http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/

Verisign Public

Broker(s)

Topics

23

new

Producer A1
Producer A2

Producer An
…

Producers always append to “tail”
(think: append to a file)

…

Kafka prunes “head” based on age or max size or “key”

Older msgs Newer msgs

Kafka topic

• Topic: feed name to which messages are published
• Example: “zerg.hydra”

Verisign Public

Broker(s)

Topics

24

new

Producer A1
Producer A2

Producer An
…

Producers always append to “tail”
(think: append to a file)

…

Older msgs Newer msgs

Consumer group C1 Consumers use an “offset pointer” to
track/control their read progress

(and decide the pace of consumption)
Consumer group C2

Verisign Public

Topics

• Creating a topic
• CLI

• API 
https://github.com/miguno/kafka-storm-starter/blob/develop/src/main/scala/
com/miguno/kafkastorm/storm/KafkaStormDemo.scala

• Auto-create via auto.create.topics.enable = true

• Modifying a topic
• https://kafka.apache.org/documentation.html#basic_ops_modify_topic

• Deleting a topic: DON’T in 0.8.1.x!

25

$ kafka-topics.sh --zookeeper zookeeper1:2181 --create --topic zerg.hydra \ 
 --partitions 3 --replication-factor 2 \ 
 --config x=y

https://github.com/miguno/kafka-storm-starter/blob/develop/src/main/scala/com/miguno/kafkastorm/storm/KafkaStormDemo.scala
https://github.com/miguno/kafka-storm-starter/blob/develop/src/main/scala/com/miguno/kafkastorm/storm/KafkaStormDemo.scala
https://kafka.apache.org/documentation.html%23basic_ops_modify_topic
https://kafka.apache.org/documentation.html%23basic_ops_modify_topic

Verisign Public

Partitions

26

• A topic consists of partitions.
• Partition: ordered + immutable sequence of messages  

 that is continually appended to

Verisign Public

Partitions

27

• #partitions of a topic is configurable
• #partitions determines max consumer (group) parallelism

• Cf. parallelism of Storm’s KafkaSpout via builder.setSpout(,,N)

• Consumer group A, with 2 consumers, reads from a 4-partition topic
• Consumer group B, with 4 consumers, reads from the same topic

Verisign Public

Partition offsets

28

• Offset: messages in the partitions are each assigned a
unique (per partition) and sequential id called the offset

• Consumers track their pointers via (offset, partition, topic) tuples

Consumer group C1

Verisign Public

Replicas of a partition

29

• Replicas: “backups” of a partition
• They exist solely to prevent data loss.
• Replicas are never read from, never written to.

• They do NOT help to increase producer or consumer parallelism!
• Kafka tolerates (numReplicas - 1) dead brokers before losing data

• LinkedIn: numReplicas == 2 ! 1 broker can die

Verisign Public

Topics vs. Partitions vs. Replicas

30

http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/

http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/
http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/

Verisign Public

Inspecting the current state of a topic

• --describe the topic

• Leader: brokerID of the currently elected leader broker
• Replica ID’s = broker ID’s

• ISR = “in-sync replica”, replicas that are in sync with the leader 

• In this example:
• Broker 0 is leader for partition 1.
• Broker 1 is leader for partitions 0 and 2.
• All replicas are in-sync with their respective leader partitions.

31

$ kafka-topics.sh --zookeeper zookeeper1:2181 --describe --topic zerg.hydra 
Topic:zerg2.hydra PartitionCount:3 ReplicationFactor:2 Configs:
 Topic: zerg2.hydra Partition: 0 Leader: 1 Replicas: 1,0 Isr: 1,0
 Topic: zerg2.hydra Partition: 1 Leader: 0 Replicas: 0,1 Isr: 0,1
 Topic: zerg2.hydra Partition: 2 Leader: 1 Replicas: 1,0 Isr: 1,0

Verisign Public

Let’s recap

• The who is who
• Producers write data to brokers.
• Consumers read data from brokers.
• All this is distributed.

• The data
• Data is stored in topics.
• Topics are split into partitions which are replicated.

32

Verisign Public

Putting it all together

33

http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/

http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/
http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/

Verisign Public

Side note (opinion)

• Drawing a conceptual line from Kafka to Clojure's core.async

• Cf. talk "Clojure core.async Channels", by Rich Hickey, at ~ 31m54  
http://www.infoq.com/presentations/clojure-core-async

34

http://www.infoq.com/presentations/clojure-core-async
http://www.infoq.com/presentations/clojure-core-async

Verisign Public

Part 3: Operating Kafka

35

Verisign Public

Overview of Part 3: Operating Kafka

• Kafka architecture
• Kafka hardware specs
• Deploying Kafka
• Monitoring Kafka

• Kafka apps
• Kafka itself
• ZooKeeper
• "Auditing" Kafka (not: security audit)

• P&S tuning
• Ops-related Kafka references

36

Verisign Public

Kafka architecture

• Kafka brokers
• You can run clusters with 1+ brokers.
• Each broker in a cluster must have  

a unique broker.id.

37

Verisign Public

Kafka architecture

• Kafka requires ZooKeeper
• LinkedIn runs (old) ZK 3.3.4, 

but latest 3.4.5 works, too.

• ZooKeeper
• v0.8: used by brokers and consumers, but not by producers.

• Brokers: general state information, leader election, etc.
• Consumers: primarily for tracking message offsets (cf. later)

• v0.9: used by brokers only
• Consumers will use special Kafka topics instead of ZooKeeper

• Will substantially reduce the load on ZooKeeper for large deployments

38

Verisign Public

Kafka broker hardware specs @ LinkedIn

• Solely dedicated to running Kafka, run nothing else.
• 1 Kafka broker instance per machine

• 2x 4-core Intel Xeon (info outdated?)
• 64 GB RAM (up from 24 GB)

• Only 4 GB used for Kafka broker, remaining 60 GB for page cache
• Page cache is what makes Kafka fast

• RAID10 with 14 spindles
• More spindles = higher disk throughput
• Cache on RAID, with battery backup
• Before H/W upgrade: 8x SATA drives (7200rpm), not sure about RAID

• 1 GigE (?) NICs

• EC2 example: m2.2xlarge @ $0.34/hour, with provisioned IOPS
39

Verisign Public

ZooKeeper hardware specs @ LinkedIn

• ZooKeeper servers
• Solely dedicated to running ZooKeeper, run nothing else.

• 1 ZooKeeper instance per machine
• SSD’s dramatically improve performance

• In v0.8.x, brokers and consumers must talk to ZK. In large-scale
environments (many consumers, many topics and partitions) this means
ZK can become a bottleneck because it processes requests serially. And
this processing depends primarily on I/O performance.

• 1 GigE (?) NICs

• ZooKeeper in LinkedIn’s architecture
• 5-node ZK ensembles = tolerates 2 dead nodes
• 1 ZK ensemble for all Kafka clusters within a data center

• LinkedIn runs multiple data centers, with multiple Kafka clusters

40

Verisign Public

Deploying Kafka

• Puppet module
• https://github.com/miguno/puppet-kafka
• Hiera-compatible, rspec tests, Travis CI setup (e.g. to test against multiple

versions of Puppet and Ruby, Puppet style checker/lint, etc.)

• RPM packaging script for RHEL 6
• https://github.com/miguno/wirbelsturm-rpm-kafka
• Digitally signed by yum@michael-noll.com
• RPM is built on a Wirbelsturm-managed build server

• Public (Wirbelsturm) S3-backed yum repo
• https://s3.amazonaws.com/yum.miguno.com/bigdata/

41

https://github.com/miguno/puppet-kafka
https://github.com/miguno/puppet-kafka
https://github.com/miguno/puppet-kafka
https://github.com/miguno/wirbelsturm-rpm-kafka
https://github.com/miguno/wirbelsturm-rpm-kafka
https://s3.amazonaws.com/yum.miguno.com/bigdata/
https://s3.amazonaws.com/yum.miguno.com/bigdata/

Verisign Public

Deploying Kafka

• Hiera example

42

Verisign Public

Operating Kafka

• Typical operations tasks include:
• Adding or removing brokers

• Example: ensure a newly added broker actually receives data, which
requires moving partitions from existing brokers to the new broker

• Kafka provides helper scripts (cf. below) but still manual work involved
• Balancing data/partitions to ensure best performance
• Add new topics, re-configure topics

• Example: Increasing #partitions of a topic to increase max parallelism
• Apps management: new producers, new consumers

• See Ops-related references at the end of this part

43

Verisign Public

Lessons learned from operating Kafka at LinkedIn

• Biggest challenge has been to manage hyper growth
• Growth of Kafka adoption: more producers, more consumers, …
• Growth of data: more LinkedIn.com users, more user activity, …

• Typical tasks at LinkedIn
• Educating and coaching Kafka users.
• Expanding Kafka clusters, shrinking clusters.
• Monitoring consumer apps – “Hey, my stuff stopped. Kafka’s fault!”

44

http://www.hakkalabs.co/articles/site-reliability-engineering-linkedin-kafka-service

http://www.hakkalabs.co/articles/site-reliability-engineering-linkedin-kafka-service
http://www.hakkalabs.co/articles/site-reliability-engineering-linkedin-kafka-service

Verisign Public

Kafka security

• Original design was not created with security in mind.
• Discussion started in June 2014 to add security features.

• Covers transport layer security, data encryption at rest, non-repudiation, A&A, …
• See [DISCUSS] Kafka Security Specific Features

• At the moment there's basically no security built-in.

45

http://grokbase.com/t/kafka/users/14632grgzw/discuss-kafka-security-specific-features

Verisign Public

Monitoring Kafka

46

Verisign Public

Monitoring Kafka

• Nothing fancy built into Kafka (e.g. no UI) but see:
• https://cwiki.apache.org/confluence/display/KAFKA/System+Tools
• https://cwiki.apache.org/confluence/display/KAFKA/Ecosystem

47

Kafka Offset MonitorKafka Web Console

https://cwiki.apache.org/confluence/display/KAFKA/System+Tools
https://cwiki.apache.org/confluence/display/KAFKA/System+Tools
https://cwiki.apache.org/confluence/display/KAFKA/System+Tools
https://github.com/otoolep/stormkafkamon
https://github.com/otoolep/stormkafkamon

Verisign Public

Monitoring Kafka

• Use of standard monitoring tools recommended
• Graphite

• Puppet module: https://github.com/miguno/puppet-graphite
• Java API, also used by Kafka: http://metrics.codahale.com/

• JMX
• https://kafka.apache.org/documentation.html#monitoring

• Collect logging files into a central place
• Logstash/Kibana and friends
• Helps with troubleshooting, debugging, etc. – notably if you can correlate

logging data with numeric metrics

48

https://github.com/miguno/puppet-graphite
https://github.com/miguno/puppet-graphite
https://github.com/miguno/puppet-graphite
http://metrics.codahale.com/
http://metrics.codahale.com/
https://kafka.apache.org/documentation.html%23monitoring
https://kafka.apache.org/documentation.html%23monitoring

Verisign Public

Monitoring Kafka apps

• Almost all problems are due to:
1. Consumer lag
2. Rebalancing <<< we cover this later in part 4

49

Verisign Public

Monitoring Kafka apps: consumer lag

• Lag is a consumer problem
• Too slow, too much GC, losing connection to ZK or Kafka, …
• Bug or design flaw in consumer
• Operational mistakes: e.g. you brought up 6 servers in parallel, each one in

turn triggering rebalancing, then hit Kafka's rebalance limit; 
cf. rebalance.max.retries (default: 4) & friends

50

Broker(s)

new

Producer A1
Producer A2

Producer An
…

…

Older msgs Newer msgs

Consumer group C1

Lag = how far your consumer is behind the producers

Verisign Public

Monitoring Kafka itself (1 of 3)

• Under-replicated partitions
• For example, because a broker is down.
• Means cluster runs in degraded state.

• FYI: LinkedIn runs with replication factor of 2 => 1 broker can die.

• Offline partitions
• Even worse than under-replicated partitions!
• Serious problem (data loss) if anything but 0 offline partitions.

51

Verisign Public

Monitoring Kafka itself (1 of 3)

• Data size on disk
• Should be balanced across disks/brokers
• Data balance even more important than partition balance
• FYI: New script in v0.8.1 to balance data/partitions across brokers

• Broker partition balance
• Count of partitions should be balanced evenly across brokers
• See new script above.

52

Verisign Public

Monitoring Kafka itself (1 of 3)

• Leader partition count
• Should be balanced across brokers so that each broker gets the same

amount of load
• Only 1 broker is ever the leader of a given partition, and only this broker is

going to talk to producers + consumers for that partition
• Non-leader replicas are used solely as safeguards against data loss

• Feature in v0.8.1 to auto-rebalance the leaders and partitions in case a
broker dies, but it does not work that well yet (SRE's still have to do this
manually at this point).

• Network utilization
• Maxed network one reason for under-replicated partitions
• LinkedIn don't run anything but Kafka on the brokers, so network max is

due to Kafka. Hence, when they max the network, they need to add more
capacity across the board.

53

Verisign Public

Monitoring ZooKeeper

• Ensemble (= cluster) availability
• LinkedIn run 5-node ensembles = tolerates 2 dead
• Twitter run 13-node ensembles = tolerates 6 dead

• Latency of requests
• Metric target is 0 ms when using SSD’s in ZooKeeper machines.

• Why? Because SSD’s are so fast they typically bring down latency below ZK’s
metric granularity (which is per-ms).

• Outstanding requests
• Metric target is 0.
• Why? Because ZK processes all incoming requests serially. Non-zero

values mean that requests are backing up.

54

Verisign Public

"Auditing" Kafka
LinkedIn's way to detect data loss etc.

55

Verisign Public

“Auditing” Kafka

• LinkedIn's way to detect data loss etc. in Kafka
• Not part of open source stack yet. May come in the future.
• In short: custom producer+consumer app that is hooked into monitoring.

• Value proposition
• Monitor whether you're losing messages/data.
• Monitor whether your pipelines can handle the incoming data load.

56

http://www.hakkalabs.co/articles/site-reliability-engineering-linkedin-kafka-service

http://www.hakkalabs.co/articles/site-reliability-engineering-linkedin-kafka-service
http://www.hakkalabs.co/articles/site-reliability-engineering-linkedin-kafka-service
http://www.hakkalabs.co/articles/site-reliability-engineering-linkedin-kafka-service

Verisign Public

LinkedIn's Audit UI: a first look

• Example 1: Count discrepancy
• Caused by messages failing to

reach a downstream Kafka cluster

• Example 2: Load lag

57

Verisign Public

“Auditing” Kafka

• Every producer is also writing messages into a special topic about
how many messages it produced, every 10mins.

• Example: "Over the last 10mins, I sent N messages to topic X.”
• This metadata gets mirrored like any other Kafka data.

• Audit consumer
• 1 audit consumer per Kafka cluster
• Reads every single message out of “its” Kafka cluster. It then calculates

counts for each topic, and writes those counts back into the same special
topic, every 10mins.

• Example: "I saw M messages in the last 10mins for topic X in THIS cluster”
• And the next audit consumer in the next, downstream cluster does the

same thing.

58

Verisign Public

“Auditing” Kafka

• Monitoring audit consumers
• Completeness check

• "#msgs according to producer == #msgs seen by audit consumer?"
• Lag

• "Can the audit consumers keep up with the incoming data rate?"
• If audit consumers fall behind, then all your tracking data falls behind as

well, and you don't know how many messages got produced.

59

Verisign Public

“Auditing” Kafka

• Audit UI
• Only reads data from that special "metrics/monitoring" topic, but

this data is reads from every Kafka cluster at LinkedIn.
• What they producers said they wrote in.
• What the audit consumers said they saw.

• Shows correlation graphs (producers vs. audit consumers)
• For each tier, it shows how many messages there were in each topic

over any given period of time.
• Percentage of how much data got through (from cluster to cluster).
• If the percentage drops below 100%, then emails are sent to Kafka

SRE+DEV as well as their Hadoop ETL team because that stops the
Hadoop pipelines from functioning properly.

60

Verisign Public

LinkedIn's Audit UI: a closing look

• Example 1: Count discrepancy
• Caused by messages failing to

reach a downstream Kafka cluster

• Example 2: Load lag

61

Verisign Public

Kafka performance tuning

62

Verisign Public

OS tuning

• Kernel tuning
• Don’t swap! vm.swappiness = 0 (RHEL 6.5 onwards: 1)
• Allow more dirty pages but less dirty cache.

• LinkedIn have lots of RAM in servers, most of it is for page cache (60 of
64 GB). They let dirty pages built up, but cache should be available as
Kafka does lots of disk and network I/O.

• See vm.dirty_*_ratio & friends

• Disk throughput
• Longer commit interval on mount points. (ext3 or ext4?)

• Normal interval for ext3 mount point is 30s (?) between flushes; LinkedIn:
120s. They can tolerate losing 2mins worth of data (because of partition
replicas) so they rather prefer higher throughput here.

• More spindles (RAID10 w/ 14 disks)

63

Verisign Public

Java/JVM tuning

• Biggest issue: garbage collection
• And, most of the time, the only issue

• Goal is to minimize GC pause times
• Aka “stop-the-world” events – apps are halted until GC finishes

64

Verisign Public

Java garbage collection in Kafka @ Spotify

65

https://www.jfokus.se/jfokus14/preso/Reliable-real-time-processing-with-Kafka-and-Storm.pdf

Before tuning After tuning

https://www.jfokus.se/jfokus14/preso/Reliable-real-time-processing-with-Kafka-and-Storm.pdf
https://www.jfokus.se/jfokus14/preso/Reliable-real-time-processing-with-Kafka-and-Storm.pdf

Verisign Public

Java/JVM tuning

• Good news: use JDK7u51 or later and have a quiet life!
• LinkedIn: Oracle JDK, not OpenJDK

• Silver bullet is new G1 “garbage-first” garbage collector
• Available since JDK7u4.
• Substantial improvement over all previous GC’s, at least for Kafka.

66

$ java -Xms4g -Xmx4g -XX:PermSize=48m -XX:MaxPermSize=48m
 -XX:+UseG1GC
 -XX:MaxGCPauseMillis=20
 -XX:InitiatingHeapOccupancyPercent=35

Verisign Public

Kafka configuration tuning

• Often not much to do beyond using the defaults, yay. ☺

• Key candidates for tuning:

67

num.io.threads should be >= #disks (start testing with == #disks)
num.network.threads adjust it based on (concurrent) #producers, #consumers,

and replication factor

Verisign Public

Kafka usage tuning – lessons learned from others

• Don't break things up into separate topics unless the data in them is
truly independent.

• Consumer behavior can (and will) be extremely variable, don’t assume you
will always be consuming as fast as you are producing.

• Keep time related messages in the same partition.
• Consumer behavior can extremely variable, don't assume the lag on all

your partitions will be similar.
• Design a partitioning scheme, so that the owner of one partition can stop

consuming for a long period of time and your application will be minimally
impacted (for example, partition by transaction id)

68

http://grokbase.com/t/kafka/users/145qtx4z1c/topic-partitioning-strategy-for-large-data

http://grokbase.com/t/kafka/users/145qtx4z1c/topic-partitioning-strategy-for-large-data
http://grokbase.com/t/kafka/users/145qtx4z1c/topic-partitioning-strategy-for-large-data

Verisign Public

Ops-related references

• Kafka FAQ
• https://cwiki.apache.org/confluence/display/KAFKA/FAQ

• Kafka operations
• https://kafka.apache.org/documentation.html#operations

• Kafka system tools
• https://cwiki.apache.org/confluence/display/KAFKA/System+Tools
• Consumer offset checker, get offsets for a topic, print metrics via JMX to console, read from topic A

and write to topic B, verify consumer rebalance

• Kafka replication tools
• https://cwiki.apache.org/confluence/display/KAFKA/Replication+tools
• Caveat: Some sections of this document are slightly outdated.
• Controlled shutdown, preferred leader election tool, reassign partitions tool

• Kafka tutorial
• http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-

single-node/

69

https://cwiki.apache.org/confluence/display/KAFKA/FAQ
https://cwiki.apache.org/confluence/display/KAFKA/FAQ
https://kafka.apache.org/documentation.html%23operations
https://kafka.apache.org/documentation.html%23operations
https://cwiki.apache.org/confluence/display/KAFKA/System+Tools
https://cwiki.apache.org/confluence/display/KAFKA/System+Tools
https://cwiki.apache.org/confluence/display/KAFKA/Replication+tools
https://cwiki.apache.org/confluence/display/KAFKA/Replication+tools
http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/
http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/

Verisign Public

Part 4: Developing Kafka apps

70

Verisign Public

Overview of Part 4: Developing Kafka apps

• Writing data to Kafka with producers
• Example producer
• Producer types (async, sync)
• Message acking and batching of messages
• Write operations behind the scenes – caveats ahead!

• Reading data from Kafka with consumers
• High-level consumer API and simple consumer API
• Consumer groups
• Rebalancing

• Testing Kafka
• Serialization in Kafka
• Data compression in Kafka
• Example Kafka applications
• Dev-related Kafka references

71

Verisign Public

Writing data to Kafka

72

Verisign Public

Writing data to Kafka

• You use Kafka “producers” to write data to Kafka brokers.
• Available for JVM (Java, Scala), C/C++, Python, Ruby, etc.
• The Kafka project only provides the JVM implementation.

• Has risk that a new Kafka release will break non-JVM clients. 

• A simple example producer:

• Full details at:
• https://cwiki.apache.org/confluence/display/KAFKA/0.8.0+Producer+Example

73

https://cwiki.apache.org/confluence/display/KAFKA/0.8.0+Producer+Example
https://cwiki.apache.org/confluence/display/KAFKA/0.8.0+Producer+Example
https://cwiki.apache.org/confluence/display/KAFKA/0.8.0+Producer+Example

Verisign Public

Producers

• The Java producer API is very simple.
• We’ll talk about the slightly confusing details next. ☺

74

Verisign Public

Producers

• Two types of producers: “async” and “sync”

• Same API and configuration, but slightly different semantics.
• What applies to a sync producer almost always applies to async, too.
• Async producer is preferred when you want higher throughput.

• Important configuration settings for either producer type:

75

client.id identifies producer app, e.g. in system logs
producer.type async or sync

request.required.acks acking semantics, cf. next slides

serializer.class configure encoder, cf. slides on Avro usage

metadata.broker.list cf. slides on bootstrapping list of brokers

Verisign Public

Sync producers

• Straight-forward so I won’t cover sync producers here
• Please go to https://kafka.apache.org/documentation.html

• Most important thing to remember: producer.send() will block!

76

https://kafka.apache.org/documentation.html
https://kafka.apache.org/documentation.html

Verisign Public

Async producer

• Sends messages in background = no blocking in client.
• Provides more powerful batching of messages (see later).
• Wraps a sync producer, or rather a pool of them.

• Communication from async->sync producer happens via a queue.
• Which explains why you may see kafka.producer.async.QueueFullException

• Each sync producer gets a copy of the original async producer config,
including the request.required.acks setting (see later).

• Implementation details: Producer, async.AsyncProducer,
async.ProducerSendThread, ProducerPool, async.DefaultEventHandler#send()

77

https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/producer/Producer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/producer/async/AsyncProducer.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/producer/async/ProducerSendThread.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/producer/ProducerPool.scala
https://github.com/kafka-dev/kafka/blob/master/core/src/main/scala/kafka/producer/async/DefaultEventHandler.scala

Verisign Public

Async producer

• Caveats
• Async producer may drop messages if its queue is full.

• Solution 1: Don’t push data to producer faster than it is able to send to brokers.
• Solution 2: Queue full == need more brokers, add them now! Use this solution in

favor of solution 3 particularly if your producer cannot block (async producers).
• Solution 3: Set queue.enqueue.timeout.ms to -1 (default). Now the producer

will block indefinitely and will never willingly drop a message.
• Solution 4: Increase queue.buffering.max.messages (default: 10,000).

• In 0.8 an async producer does not have a callback for send() to register
error handlers. Callbacks will be available in 0.9.

78

Verisign Public

Producers

• Two aspects worth mentioning because they significantly influence
Kafka performance: 

1. Message acking
2. Batching of messages

79

Verisign Public

1) Message acking

• Background:
• In Kafka, a message is considered committed when “any required” ISR (in-

sync replicas) for that partition have applied it to their data log.
• Message acking is about conveying this “Yes, committed!” information back

from the brokers to the producer client.
• Exact meaning of “any required” is defined by request.required.acks.

• Only producers must configure acking
• Exact behavior is configured via request.required.acks, which determines

when a produce request is considered completed.
• Allows you to trade latency (speed) <-> durability (data safety).
• Consumers: Acking and how you configured it on the side of producers do not

matter to consumers because only committed messages are ever given out to
consumers. They don’t need to worry about potentially seeing a message that
could be lost if the leader fails.

80

Verisign Public

1) Message acking

• Typical values of request.required.acks
• 0: producer never waits for an ack from the broker.

• Gives the lowest latency but the weakest durability guarantees.

• 1: producer gets an ack after the leader replica has received the data.
• Gives better durability as the we wait until the lead broker acks the request. Only msgs that were

written to the now-dead leader but not yet replicated will be lost.

• -1: producer gets an ack after all ISR have received the data.
• Gives the best durability as Kafka guarantees that no data will be lost as long as at least one ISR

remains.

• Beware of interplay with request.timeout.ms!
• "The amount of time the broker will wait trying to meet the `request.required.acks`

requirement before sending back an error to the client.”
• Caveat: Message may be committed even when broker sends timeout error to client (e.g.

because not all ISR ack’ed in time). One reason for this is that the producer
acknowledgement is independent of the leader-follower replication, and ISR’s send their
acks to the leader, the latter of which will reply to the client.

81

be
tte

r
la

te
nc

y
be

tte
r

du
ra

bi
lit

y

Verisign Public

2) Batching of messages

• Batching improves throughput
• Tradeoff is data loss if client dies before pending messages have been sent.

• You have two options to “batch” messages in 0.8:
1. Use send(listOfMessages).

• Sync producer: will send this list (“batch”) of messages right now. Blocks!
• Async producer: will send this list of messages in background “as usual”, i.e.

according to batch-related configuration settings. Does not block! 

2. Use send(singleMessage) with async producer.

• For async the behavior is the same as send(listOfMessages).

82

Verisign Public

2) Batching of messages

• Option 1: How send(listOfMessages) works behind the scenes

• The original list of messages is partitioned (randomly if the default partitioner
is used) based on their destination partitions/topics, i.e. split into smaller
batches.

• Each post-split batch is sent to the respective leader broker/ISR (the
individual send()’s happen sequentially), and each is acked by its
respective leader broker according to request.required.acks.

83

partitioner.class p6 p1 p4 p4 p6

p4 p4

p6 p6

p1

p4 p4

p6 p6

p1

Current leader ISR (broker) for partition 4send()

Current leader ISR (broker) for partition 6send()

…and so on…

Verisign Public

2) Batching of messages

• Option 2: Async producer
• Standard behavior is to batch messages
• Semantics are controlled via producer configuration settings

• batch.num.messages

• queue.buffering.max.ms + queue.buffering.max.messages
• queue.enqueue.timeout.ms

• And more, see producer configuration docs.

• Remember: Async producer simply wraps sync producer!
• But the batch-related config settings above have no effect on “true”

sync producers, i.e. when used without a wrapping async producer.

84

http://kafka.apache.org/documentation.html%23producerconfigs

Verisign Public

FYI: upcoming producer configuration changes

85

Kafka 0.8 Kafka 0.9 (unreleased)
metadata.broker.list bootstrap.servers
request.required.acks acks
batch.num.messages batch.size
message.send.max.retries retries

(This list is not complete, see Kafka docs for details.)

http://kafka.apache.org/documentation.html%23producerconfigs

Verisign Public

Write operations behind the scenes

• When writing to a topic in Kafka, producers write directly to the
partition leaders (brokers) of that topic

• Remember: Writes always go to the leader ISR of a partition!

• This raises two questions:
• How to know the “right” partition for a given topic?
• How to know the current leader broker/replica of a partition?

86

Verisign Public

• In Kafka, a producer – i.e. the client – decides to which target partition
a message will be sent.

• Can be random ~ load balancing across receiving brokers.
• Can be semantic based on message “key”, e.g. by user ID or domain

name.
• Here, Kafka guarantees that all data for the same key will go to the same

partition, so consumers can make locality assumptions.

• But there’s one catch with line 2 (i.e. no key) in Kafka 0.8.

1) How to know the “right” partition when sending?

87

Verisign Public

Keyed vs. non-keyed messages in Kafka 0.8

• If a key is not specified:

• Producer will ignore any configured partitioner.
• It will pick a random partition from the list of available partitions and stick to it for some

time before switching to another one = NOT round robin or similar!
• Why? To reduce number of open sockets in large Kafka deployments (KAFKA-1017).
• Default: 10mins, cf. topic.metadata.refresh.interval.ms

• See implementation in DefaultEventHandler#getPartition()

• If there are fewer producers than partitions at a given point of time, some partitions
may not receive any data. How to fix if needed?

• Try to reduce the metadata refresh interval topic.metadata.refresh.interval.ms

• Specify a message key and a customized random partitioner.

• In practice it is not trivial to implement a correct “random” partitioner in Kafka 0.8.
• Partitioner interface in Kafka 0.8 lacks sufficient information to let a partitioner select a random

and available partition. Same issue with DefaultPartitioner.

88

https://issues.apache.org/jira/browse/KAFKA-1017
http://mail-archives.apache.org/mod_mbox/kafka-dev/201310.mbox/%3CCAFbh0Q0aVh+vqxfy7H-+MnRFBt6BnyoZk1LWBoMspwSmTqUKMg@mail.gmail.com%3E

Verisign Public

Keyed vs. non-keyed messages in Kafka 0.8

• If a key is specified:

• Key is retained as part of the msg, will be stored in the broker.
• One can design a partition function to route the msg based on key.
• The default partitioner assigns messages to a partition based on

their key hashes, via key.hashCode % numPartitions.
• Caveat:

• If you specify a key for a message but do not explicitly wire in a custom
partitioner via partitioner.class, your producer will use the default
partitioner.

• So without a custom partitioner, messages with the same key will still end up in
the same partition! (cf. default partitioner’s behavior above)

89

Verisign Public

2) How to know the current leader of a partition?

• Producers: broker discovery aka bootstrapping
• Producers don’t talk to ZooKeeper, so it’s not through ZK.
• Broker discovery is achieved by providing producers with a “bootstrapping”

broker list, cf. metadata.broker.list
• These brokers inform the producer about all alive brokers and where to find

current partition leaders. The bootstrap brokers do use ZK for that.

• Impacts on failure handling
• In Kafka 0.8 the bootstrap list is static/immutable during producer run-time.

This has limitations and problems as shown in next slide.
• The current bootstrap approach will improve in Kafka 0.9. This change will

make the life of Ops easier.

90

Verisign Public

Bootstrapping in Kafka 0.8

• Scenario: N=5 brokers total, 2 of which are for bootstrap

• Do’s:
• Take down one bootstrap broker (e.g. broker2), repair it, and bring it back.
• In terms of impacts on broker discovery, you can do whatever you want to

brokers 3-5.
• Don’ts:

• Stop all bootstrap brokers 1+2. If you do, the producer stops working!
• To improve operational flexibility, use VIP’s or similar for values in
metadata.broker.list.

91

broker1 broker2 broker3 broker4 broker5

Verisign Public

Reading data from Kafka

92

Verisign Public

Reading data from Kafka

• You use Kafka “consumers” to write data to Kafka brokers.
• Available for JVM (Java, Scala), C/C++, Python, Ruby, etc.
• The Kafka project only provides the JVM implementation.

• Has risk that a new Kafka release will break non-JVM clients. 

• Examples will be shown later in the “Example Kafka apps” section.
• Three API options for JVM users:

1. High-level consumer API <<< in most cases you want to use this one!

2. Simple consumer API

3. Hadoop consumer API 

• Most noteworthy: The “simple” API is anything but simple. ☺
• Prefer to use the high-level consumer API if it meets your needs (it should).
• Counter-example: Kafka spout in Storm 0.9.2 uses simple consumer API to integrate

well with Storm’s model of guaranteed message processing.

93

https://kafka.apache.org/documentation.html%23highlevelconsumerapi
https://kafka.apache.org/documentation.html%23simpleconsumerapi

Verisign Public

Reading data from Kafka

• Consumers pull from Kafka (there’s no push)
• Allows consumers to control their pace of consumption.
• Allows to design downstream apps for average load, not peak load (cf. Loggly talk)

• Consumers are responsible to track their read positions aka “offsets”
• High-level consumer API: takes care of this for you, stores offsets in ZooKeeper
• Simple consumer API: nothing provided, it’s totally up to you
• What does this offset management allow you to do?

• Consumers can deliberately rewind “in time” (up to the point where Kafka prunes), e.g. to
replay older messages.

• Cf. Kafka spout in Storm 0.9.2.

• Consumers can decide to only read a specific subset of partitions for a given topic.
• Cf. Loggly’s setup of (down)sampling a production Kafka topic to a manageable volume for testing

• Run offline, batch ingestion tools that write (say) from Kafka to Hadoop HDFS every hour.
• Cf. LinkedIn Camus, Pinterest Secor

94

http://www.youtube.com/watch?v=LpNbjXFPyZ0
http://www.youtube.com/watch?v=LpNbjXFPyZ0
http://www.youtube.com/watch?v=LpNbjXFPyZ0
http://www.youtube.com/watch?v=LpNbjXFPyZ0

Verisign Public

Reading data from Kafka

• Important consumer configuration settings

95

group.id assigns an individual consumer to a “group”
zookeeper.connect to discover brokers/topics/etc., and to store consumer

state (e.g. when using the high-level consumer API)
fetch.message.max.bytes number of message bytes to (attempt to) fetch for each

partition; must be >= broker’s message.max.bytes

Verisign Public

Reading data from Kafka

• Consumer “groups”
• Allows multi-threaded and/or multi-machine consumption from Kafka topics.
• Consumers “join” a group by using the same group.id
• Kafka guarantees a message is only ever read by a single consumer in a group.

• Kafka assigns the partitions of a topic to the consumers in a group so that each partition is
consumed by exactly one consumer in the group.

• Maximum parallelism of a consumer group: #consumers (in the group) <= #partitions

96

Verisign Public

Guarantees when reading data from Kafka

• A message is only ever read by a single consumer in a group.
• A consumer sees messages in the order they were stored in the log.
• The order of messages is only guaranteed within a partition.

• No order guarantee across partitions, which includes no order guarantee per-topic.
• If total order (per topic) is required you can consider, for instance:

• Use #partition = 1. Good: total order. Bad: Only 1 consumer process at a time.
• “Add” total ordering in your consumer application, e.g. a Storm topology.

• Some gotchas:
• If you have multiple partitions per thread there is NO guarantee about the order you

receive messages, other than that within the partition the offsets will be sequential.
• Example: You may receive 5 messages from partition 10 and 6 from partition 11, then 5

more from partition 10 followed by 5 more from partition 10, even if partition 11 has data
available.

• Adding more processes/threads will cause Kafka to rebalance, possibly changing
the assignment of a partition to a thread (whoops).

97

Verisign Public

Rebalancing: how consumers meet brokers

• Remember?

• The assignment of brokers – via the partitions of a topic – to
consumers is quite important, and it is dynamic at run-time.

98

Verisign Public

Rebalancing: how consumers meet brokers

• Why “dynamic at run-time”?
• Machines can die, be added, …
• Consumer apps may die, be re-configured, added, …

• Whenever this happens a rebalancing occurs.
• Rebalancing is a normal and expected lifecycle event in Kafka.
• But it’s also a nice way to shoot yourself or Ops in the foot.

• Why is this important?
• Most Ops issues are due to 1) rebalancing and 2) consumer lag.
• So Dev + Ops must understand what goes on.

99

Verisign Public

Rebalancing: how consumers meet brokers

• Rebalancing?
• Consumers in a group come into consensus on which consumer is

consuming which partitions ! required for distributed consumption
• Divides broker partitions evenly across consumers, tries to reduce the

number of broker nodes each consumer has to connect to
• When does it happen? Each time:

• a consumer joins or leaves a consumer group, OR
• a broker joins or leaves, OR
• a topic “joins/leaves” via a filter, cf. createMessageStreamsByFilter()

• Examples:
• If a consumer or broker fails to heartbeat to ZK ! rebalance!
• createMessageStreams() registers consumers for a topic, which results

in a rebalance of the consumer-broker assignment.

100

Verisign Public

Testing Kafka apps

101

Verisign Public

Testing Kafka apps

• Won’t have the time to cover testing in this workshop.
• Some hints:

• Unit-test your individual classes like usual
• When integration testing, use in-memory instances of Kafka and ZK
• Test-drive your producers/consumers in virtual Kafka clusters via

Wirbelsturm
• Starting points:

• Kafka’s own test suite
• 0.8.1: https://github.com/apache/kafka/tree/0.8.1/core/src/test
• trunk: https://github.com/apache/kafka/tree/trunk/core/src/test/

• Kafka tests in kafka-storm-starter
• https://github.com/miguno/kafka-storm-starter/

102

https://github.com/apache/kafka/tree/0.8.1/core/src/test
https://github.com/apache/kafka/tree/0.8.1/core/src/test
https://github.com/apache/kafka/tree/trunk/core/src/test/
https://github.com/apache/kafka/tree/trunk/core/src/test/
https://github.com/miguno/kafka-storm-starter/
https://github.com/miguno/kafka-storm-starter/

Verisign Public

Serialization in Kafka

103

Verisign Public

Serialization in Kafka

• Kafka does not care about data format of msg payload
• Up to developer (= you) to handle serialization/deserialization

• Common choices in practice: Avro, JSON

104

(Code above is from the High Level Consumer API)

Verisign Public

Serialization in Kafka: using Avro

• One way to use Avro in Kafka is via Twitter Bijection.
• https://github.com/twitter/bijection

• Approach: Convert pojo to byte[], then send byte[] to Kafka.
• Bijection in Scala:

• Bijection in Java: https://github.com/twitter/bijection/wiki/Using-bijection-from-java  

• Full Kafka/Bijection example:
• KafkaSpec in kafka-storm-starter

• Alternatives to Bijection:
• e.g. https://github.com/miguno/kafka-avro-codec

105

https://github.com/twitter/bijection
https://github.com/twitter/bijection
https://github.com/twitter/bijection/wiki/Using-bijection-from-java
https://github.com/twitter/bijection/wiki/Using-bijection-from-java
https://github.com/twitter/bijection/wiki/Using-bijection-from-java
https://github.com/miguno/kafka-storm-starter/blob/develop/src/test/scala/com/miguno/kafkastorm/integration/KafkaSpec.scala
https://github.com/miguno/kafka-avro-codec
https://github.com/miguno/kafka-avro-codec
https://github.com/miguno/kafka-avro-codec

Verisign Public

Data compression in Kafka

106

Verisign Public

Data compression in Kafka

• Again, no time to cover compression in this training.
• But worth looking into!
• Interplay with batching of messages, e.g. larger batches typically achieve

better compression ratios.

• Details about compression in Kafka:
• https://cwiki.apache.org/confluence/display/KAFKA/Compression
• Blog post by Neha Narkhede, Kafka committer @ LinkedIn: http://

geekmantra.wordpress.com/2013/03/28/compression-in-kafka-gzip-or-
snappy/

107

https://cwiki.apache.org/confluence/display/KAFKA/Compression
https://cwiki.apache.org/confluence/display/KAFKA/Compression
http://geekmantra.wordpress.com/2013/03/28/compression-in-kafka-gzip-or-snappy/
http://geekmantra.wordpress.com/2013/03/28/compression-in-kafka-gzip-or-snappy/
http://geekmantra.wordpress.com/2013/03/28/compression-in-kafka-gzip-or-snappy/

Verisign Public

Example Kafka applications

108

Verisign Public

kafka-storm-starter

• Written by yours truly
• https://github.com/miguno/kafka-storm-starter

109

$ git clone https://github.com/miguno/kafka-storm-starter
$ cd kafka-storm-starter

Now ready for mayhem!

(Must have JDK 6 installed.)

https://github.com/miguno/kafka-storm-starter
https://github.com/miguno/kafka-storm-starter
https://github.com/miguno/kafka-storm-starter

Verisign Public

kafka-storm-starter: run the test suite

110

$./sbt test

• Will run unit tests plus end-to-end tests of Kafka, Storm, and Kafka-
Storm integration.

Verisign Public

kafka-storm-starter: run the KafkaStormDemo app

111

$./sbt run

• Starts in-memory instances of ZooKeeper, Kafka, and Storm. Then
runs a Storm topology that reads from Kafka.

Verisign Public

Kafka related code in kafka-storm-starter

• KafkaProducerApp
• https://github.com/miguno/kafka-storm-starter/blob/develop/src/main/scala/

com/miguno/kafkastorm/kafka/KafkaProducerApp.scala

• KafkaConsumerApp
• https://github.com/miguno/kafka-storm-starter/blob/develop/src/main/scala/

com/miguno/kafkastorm/kafka/KafkaConsumerApp.scala

• KafkaSpec: test-drives producer and consumer above
• https://github.com/miguno/kafka-storm-starter/blob/develop/src/test/scala/

com/miguno/kafkastorm/integration/KafkaSpec.scala

112

https://github.com/miguno/kafka-storm-starter/blob/develop/src/main/scala/com/miguno/kafkastorm/kafka/KafkaProducerApp.scala
https://github.com/miguno/kafka-storm-starter/blob/develop/src/main/scala/com/miguno/kafkastorm/kafka/KafkaProducerApp.scala
https://github.com/miguno/kafka-storm-starter/blob/develop/src/main/scala/com/miguno/kafkastorm/kafka/KafkaConsumerApp.scala
https://github.com/miguno/kafka-storm-starter/blob/develop/src/main/scala/com/miguno/kafkastorm/kafka/KafkaConsumerApp.scala
https://github.com/miguno/kafka-storm-starter/blob/develop/src/test/scala/com/miguno/kafkastorm/integration/KafkaSpec.scala
https://github.com/miguno/kafka-storm-starter/blob/develop/src/test/scala/com/miguno/kafkastorm/integration/KafkaSpec.scala

Verisign Public

Dev-related references

• Kafka documentation
• Kafka FAQ
• Kafka tutorials

• http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-
apache-kafka-cluster-on-a-single-node/

• Code examples
• https://github.com/miguno/kafka-storm-starter/

113

http://kafka.apache.org/documentation.html
https://cwiki.apache.org/confluence/display/KAFKA/FAQ
https://cwiki.apache.org/confluence/display/KAFKA/FAQ
http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/
http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/
https://github.com/miguno/kafka-storm-starter/
https://github.com/miguno/kafka-storm-starter/

Verisign Public

Part 5: Playing with Kafka using Wirbelsturm
1-click Kafka deployments

114

Verisign Public

Deploying Kafka via Wirbelsturm

• Written by yours truly
• https://github.com/miguno/wirbelsturm

115

$ git clone https://github.com/miguno/wirbelsturm.git
$ cd wirbelsturm
$./bootstrap
$ vi wirbelsturm.yaml # uncomment Kafka section
$ vagrant up zookeeper1 kafka1

(Must have Vagrant 1.6.1+ and VirtualBox 4.3+ installed.)

https://github.com/miguno/wirbelsturm

Verisign Public

What can I do with Wirbelsturm?

• Get a first impression of Kafka
• Test-drive your producer apps and consumer apps
• Test failure handling

• Stop/kill brokers, check what happens to producers or consumers.
• Stop/kill ZooKeeper instances, check what happens to brokers.

• Use as sandbox environment to test/validate deployments
• “What will actually happen when I run this reassign partition tool?”
• "What will actually happen when I delete a topic?"
• “Will my Hiera changes actually work?”

• Reproduce production issues, share results with Dev
• Also helpful when reporting back to Kafka project and mailing lists.

• Any further cool ideas? ☺

116

Verisign Public

Wrapping up

117

Verisign Public

Where to find help

• No (good) Kafka book available yet.
• Kafka documentation

• http://kafka.apache.org/documentation.html
• https://cwiki.apache.org/confluence/display/KAFKA/Index

• Kafka ecosystem, e.g. Storm integration, Puppet
• https://cwiki.apache.org/confluence/display/KAFKA/Ecosystem

• Mailing lists
• http://kafka.apache.org/contact.html

• Code examples
• examples/ directory in Kafka, https://github.com/apache/kafka/
• https://github.com/miguno/kafka-storm-starter/

118

http://kafka.apache.org/documentation.html
http://kafka.apache.org/documentation.html
https://cwiki.apache.org/confluence/display/KAFKA/Index
https://cwiki.apache.org/confluence/display/KAFKA/Index
https://cwiki.apache.org/confluence/display/KAFKA/Ecosystem
https://cwiki.apache.org/confluence/display/KAFKA/Ecosystem
http://kafka.apache.org/contact.html
http://kafka.apache.org/contact.html
https://github.com/miguno/kafka-storm-starter/
https://github.com/miguno/kafka-storm-starter/
https://github.com/miguno/kafka-storm-starter/
https://github.com/miguno/kafka-storm-starter/
https://github.com/miguno/kafka-storm-starter/

© 2014 VeriSign, Inc. All rights reserved. VERISIGN and other trademarks, service marks, and designs are registered or unregistered trademarks of
VeriSign, Inc. and its subsidiaries in the United States and in foreign countries. All other trademarks are property of their respective owners.

