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require "kafka"

producer = Kafka::Producer.new
consumer = Kafka::Consumer.new
message  = Kafka::Message.new("Some data")

producer.send(message)
consumer.consume

=> [#<Kafka::Message:0x007fee51f83a80 
@payload="Some data" ...>]
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WHY?



Log Aggregators



Message Queues
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Apache Kafka is a 

persistent, 

publish/subscribe messaging system designed to broker high-throughput data streams for multiple consumers.

$ ls -l /opt/kafka/logs/page_views-0/
-rw-r--r-- 1 kafka kafka 536870926 Jul 25 21:17 00000000215822159191.kafka
-rw-r--r-- 1 kafka kafka 536870922 Jul 25 23:27 00000000216359030117.kafka
-rw-r--r-- 1 kafka kafka 536871053 Jul 26 01:38 00000000216895901039.kafka
-rw-r--r-- 1 kafka kafka 536871062 Jul 26 03:51 00000000217432772092.kafka
-rw-r--r-- 1 kafka kafka 536871084 Jul 26 06:09 00000000217969643154.kafka
-rw-r--r-- 1 kafka kafka 368959329 Jul 26 08:38 00000000218506514238.kafka

$ ls -l /opt/kafka/log/analytics-5/
-rw-r--r-- 1 kafka kafka 536871090 Jul 26 04:58 00000000032212266086.kafka
-rw-r--r-- 1 kafka kafka 536871130 Jul 26 22:00 00000000032749137176.kafka
-rw-r--r-- 1 kafka kafka 536870939 Jul 27 15:49 00000000033286008306.kafka
-rw-r--r-- 1 kafka kafka 536871063 Jul 28 01:28 00000000033822879245.kafka
-rw-r--r-- 1 kafka kafka 424050131 Jul 28 21:18 00000000034359750308.kafka



TOPIC



page_views
ad_clicks

service_logs



PARTITION



0..n



producer.send(Message.new(“hi”))

7 0 3633523372 hi

Size "Magic" CRC Payload

4 1 4 n bytes



%w(hi hi hi hello goodday hi).each do |payload|
  producer.send(Message.new(payload))
end

hi

hello

hi

goodday

hi

hi

0 11 22

33 47 63



$ ls -l /opt/kafka/logs/page_views-0/
-rw-r--r-- 1 kafka kafka 536870926 Jul 25 21:17 00000000215822159191.kafka

{ 
  topic:     page_views,
  partition: 0,
  offset:    215822159191
}



producer = Kafka::Producer.new(
  topic:     "letters",
  partition: 0
)

%w(a b c d e).each do |letter|
  message = Kafka::Message.new(letter)
  producer.send(message)
end



consumer = Kafka::Consumer.new(
  offset:    10,
  topic:     “letters”,
  partition: 0
)

consumer.offset
=> 10

consumer.consume.map(&:payload)
=> [“b”, “c”, “d”, “e”]

consumer.offset
=> 50



$ ls -l /opt/kafka/logs/page_views-0/
-rw-r--r-- 1 kafka kafka 536870926 Jul 25 21:17 00000000215822159191.kafka
-rw-r--r-- 1 kafka kafka 536870922 Jul 25 23:27 00000000216359030117.kafka
-rw-r--r-- 1 kafka kafka 536871053 Jul 26 01:38 00000000216895901039.kafka
-rw-r--r-- 1 kafka kafka 536871062 Jul 26 03:51 00000000217432772092.kafka
-rw-r--r-- 1 kafka kafka 536871084 Jul 26 06:09 00000000217969643154.kafka
-rw-r--r-- 1 kafka kafka 368959329 Jul 26 08:38 00000000218506514238.kafka

$ ls -l /opt/kafka/log/analytics-5/
-rw-r--r-- 1 kafka kafka 536871090 Jul 26 04:58 00000000032212266086.kafka
-rw-r--r-- 1 kafka kafka 536871130 Jul 26 22:00 00000000032749137176.kafka
-rw-r--r-- 1 kafka kafka 536870939 Jul 27 15:49 00000000033286008306.kafka
-rw-r--r-- 1 kafka kafka 536871063 Jul 28 01:28 00000000033822879245.kafka
-rw-r--r-- 1 kafka kafka 424050131 Jul 28 21:18 00000000034359750308.kafka



Kafka is a persistent, publish/subscribe messaging system designed to broker high-throughput data streams for 

multiple consumers.
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Kafka is a persistent, publish/subscribe messaging system designed to broker

high-throughput,

data streams for multiple consumers.



API Simplicity
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Linear Disk Access

“[it’s] widely underappreciated: in modern systems, as demonstrated in the figure, 
random access to memory is typically slower than sequential access to disk. Note that 
random reads from disk are more than 150,000 times slower than sequential access”

Adam Jacobs “The Pathologies of Big Data.”
ACM Queue, July 2009



Page Cache



$ free
             total       used       free     shared    buffers     cached
Mem:          7450       7296        154          0        150       4916
-/+ buffers/cache:       2229       5220
Swap:            0          0          0



Write Behind

Read Ahead



sendfile(2)



pread(file, buffer, size, offset); 

// do something with the buffer

write(socket, buffer, size);
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sendfile(socket, file, offset, size);



Read 
Buffer

NIC

fs
1

3

System

Socket 
Buffer

2



Durability 
Concessions



Stateless
Broker



Simple Schema-less 
Log Format



RECAP



Kafka is a persistent, publish/
subscribe messaging system 
designed to broker high-
throughput,  data streams for 
multiple consumers.



Messaging System

•Cherry pick characteristics of log 
aggregation systems (performance) 
and message queues (semantics)



Persistent

•Maintain a rolling time-based 
window of the stream

•Don’t fear the filesystem



High-Throughput

•Performance over features and 
durability

•Rely on operating system features

•Eschew user-land caching



Multiple Consumers

•Push data in, pull data out

•Support parallel consumers with 
varying rates from offline to 
realtime







Publishing content to feeds based upon events

Data warehouse ETL of event data

Spam flagging of user-generated content

System monitoring

Full text search

Trigger email newsletters



Message Requirements

1) Provide each message as a uniform JSON payload containing:
•  Event name
•  Timestamp of the event’s occurrence
•  Actor User ID and created_at timestamp
•  Attributes

2) Transmit messages to Kafka asynchronously

3) Maximize producer performance by batching messages   
  together when possible
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class KafkaLog
  include Singleton

  def initialize
    @queue = Queue.new
  end

  def write(messages)
    @queue.push(messages)
  end

  def start(producer)
    Thread.new do
      while batch = @queue.pop
        producer.batch do
          batch.each do |message|
            producer.send(Kafka::Message.new(message))
          end
        end
      end
    end
  end
end
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class EventHandler
  def initialize(logger)
    @logger   = logger
    @messages = []
  end

  def fire(event, user, attributes={})
    payload = {
      event:      event,
      timestamp:  Time.now.to_f,
      attributes: attributes,
      user: {
        id:         user.id,
        created_at: user.created_at.to_f
      }
    }

    @messages.push(payload.to_json)
  end

  def flush
    @logger.write(@messages) if @messages.present?
  end
end
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class ApplicationController < ActionController::Base 
 after_filter :flush_events_to_log
 
 def event_handler
   @event_handler ||= EventHandler.new(KafkaLog.instance)
  end

 def flush_events_to_log
   @event_handler.flush
 end
end



class PostsController < ApplicationController
  def create
    @post = Post.new(params[:posts])
    
    if @post.save
      event_handler.fire("post.create", current_user, 
        id:    @post.id,
        title: @post.title,
        body:  @post.body
      )
    end
  end
end



class PostsController < ApplicationController
  def show
    @post = Post.find(params[:id])

    event_handler.fire("post.show", current_user, 
      id:    @post.id,
      title: @post.title
    )
  end
end



# config/initializers/kafka_log.rb

producer = Kafka::Producer.new(topic: “blog_log”)
KafkaLog.instance.start(producer)



  desc "Tail from the Kafka log file"
  task :tail, [:topic] => :environment do |task, args|
    topic    = args[:topic].to_s
    consumer = Kafka::Consumer.new(topic: topic)

    puts "==> #{topic} <=="

    consumer.loop do |messages|
      messages.each do |message|
        json = JSON.parse(message.payload)
        puts JSON.pretty_generate(json), "\n"
      end
    end
  end
end



THANK YOU!
Slides
https://speakerdeck.com/u/jpignata/p/kafka-the-great-logfile-in-the-sky

Video of Presentation @ Pivotal Labs
http://www.livestream.com/pivotallabs/video?clipId=pla_edbd81df-89ec-4933-8295-42bf91a9d301

Demo Application Repo
http://github.com/jpignata/kafka-demo/

Apache Incubator: Kafka
http://incubator.apache.org/kafka/

Kafka Papers & Presentations
https://cwiki.apache.org/KAFKA/kafka-papers-and-presentations.html

Kafka Design
http://incubator.apache.org/kafka/design.html

Kafka: A Distributed Messaging System for Log Processing
http://research.microsoft.com/en-us/um/people/srikanth/netdb11/netdb11papers/netdb11-final12.pdf

IEEE Data Engineering Bulletin (July, 2012): Big Data War Stories
http://sites.computer.org/debull/A12june/A12JUN-CD.pdf
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