
the great
logfile in the
sky @jpignata

Kafka

Kafka is a persistent publish/
subscribe messaging system
designed to broker high-
throughput, data streams for
multiple consumers.

Kafka is a persistent, publish/subscribe

messaging system
designed to broker high-throughput data streams for multiple consumers.

Front End Front End Service

Kafka

Data
Warehouse Search Monitoring

Producers

Brokers

Consumers

Push

Pull

require "kafka"

producer = Kafka::Producer.new
consumer = Kafka::Consumer.new
message = Kafka::Message.new("Some data")

producer.send(message)
consumer.consume

=> [#<Kafka::Message:0x007fee51f83a80
@payload="Some data" ...>]

require "kafka"

producer = Kafka::Producer.new
consumer = Kafka::Consumer.new
message = Kafka::Message.new("Some data")

producer.send(message)
consumer.consume

=> [#<Kafka::Message:0x007fee51f83a80
@payload="Some data" ...>]

WHY?

Log Aggregators

Message Queues

Message
Queues

Log
Aggregators

H
igh Throughput

Low Latency

High Latency

Lo
w

 T
hr

ou
gh

pu
t

Message
Queues Kafka

Log
Aggregators

H
igh Throughput

Low Latency

High Latency

Lo
w

 T
hr

ou
gh

pu
t

Apache Kafka is a

persistent,

publish/subscribe messaging system designed to broker high-throughput data streams for multiple consumers.

$ ls -l /opt/kafka/logs/page_views-0/
-rw-r--r-- 1 kafka kafka 536870926 Jul 25 21:17 00000000215822159191.kafka
-rw-r--r-- 1 kafka kafka 536870922 Jul 25 23:27 00000000216359030117.kafka
-rw-r--r-- 1 kafka kafka 536871053 Jul 26 01:38 00000000216895901039.kafka
-rw-r--r-- 1 kafka kafka 536871062 Jul 26 03:51 00000000217432772092.kafka
-rw-r--r-- 1 kafka kafka 536871084 Jul 26 06:09 00000000217969643154.kafka
-rw-r--r-- 1 kafka kafka 368959329 Jul 26 08:38 00000000218506514238.kafka

$ ls -l /opt/kafka/log/analytics-5/
-rw-r--r-- 1 kafka kafka 536871090 Jul 26 04:58 00000000032212266086.kafka
-rw-r--r-- 1 kafka kafka 536871130 Jul 26 22:00 00000000032749137176.kafka
-rw-r--r-- 1 kafka kafka 536870939 Jul 27 15:49 00000000033286008306.kafka
-rw-r--r-- 1 kafka kafka 536871063 Jul 28 01:28 00000000033822879245.kafka
-rw-r--r-- 1 kafka kafka 424050131 Jul 28 21:18 00000000034359750308.kafka

TOPIC

page_views
ad_clicks

service_logs

PARTITION

0..n

producer.send(Message.new(“hi”))

7 0 3633523372 hi

Size "Magic" CRC Payload

4 1 4 n bytes

%w(hi hi hi hello goodday hi).each do |payload|
 producer.send(Message.new(payload))
end

hi

hello

hi

goodday

hi

hi

0 11 22

33 47 63

$ ls -l /opt/kafka/logs/page_views-0/
-rw-r--r-- 1 kafka kafka 536870926 Jul 25 21:17 00000000215822159191.kafka

{
 topic: page_views,
 partition: 0,
 offset: 215822159191
}

producer = Kafka::Producer.new(
 topic: "letters",
 partition: 0
)

%w(a b c d e).each do |letter|
 message = Kafka::Message.new(letter)
 producer.send(message)
end

consumer = Kafka::Consumer.new(
 offset: 10,
 topic: “letters”,
 partition: 0
)

consumer.offset
=> 10

consumer.consume.map(&:payload)
=> [“b”, “c”, “d”, “e”]

consumer.offset
=> 50

$ ls -l /opt/kafka/logs/page_views-0/
-rw-r--r-- 1 kafka kafka 536870926 Jul 25 21:17 00000000215822159191.kafka
-rw-r--r-- 1 kafka kafka 536870922 Jul 25 23:27 00000000216359030117.kafka
-rw-r--r-- 1 kafka kafka 536871053 Jul 26 01:38 00000000216895901039.kafka
-rw-r--r-- 1 kafka kafka 536871062 Jul 26 03:51 00000000217432772092.kafka
-rw-r--r-- 1 kafka kafka 536871084 Jul 26 06:09 00000000217969643154.kafka
-rw-r--r-- 1 kafka kafka 368959329 Jul 26 08:38 00000000218506514238.kafka

$ ls -l /opt/kafka/log/analytics-5/
-rw-r--r-- 1 kafka kafka 536871090 Jul 26 04:58 00000000032212266086.kafka
-rw-r--r-- 1 kafka kafka 536871130 Jul 26 22:00 00000000032749137176.kafka
-rw-r--r-- 1 kafka kafka 536870939 Jul 27 15:49 00000000033286008306.kafka
-rw-r--r-- 1 kafka kafka 536871063 Jul 28 01:28 00000000033822879245.kafka
-rw-r--r-- 1 kafka kafka 424050131 Jul 28 21:18 00000000034359750308.kafka

Kafka is a persistent, publish/subscribe messaging system designed to broker high-throughput data streams for

multiple consumers.

34
58
105
154
211
301
331
397
454
508
550
609

{ Topic, Partition }

Consumer
Offset: 105

Consumer
Offset: 0

Consumer
Offset: 508

0

...

ServiceRedis
Document
Document
DocumentLog

Files
Postgres

Hadoop Search Monitoring ...Email
Document
Document
Document
Archive

Data
Warehouse

...

Front End
Services

ServiceRedis
Document
Document
DocumentLog

Files
Postgres

Document
Document
Document

...

Front End
Services

Kafka

Hadoop Search Monitoring ...Email
Archive

Data
Warehouse

Kafka is a persistent, publish/subscribe messaging system designed to broker

high-throughput,

data streams for multiple consumers.

API Simplicity

Broker Consumer Producer

Messages

Messages

Linear Disk Access

“[it’s] widely underappreciated: in modern systems, as demonstrated in the figure,
random access to memory is typically slower than sequential access to disk. Note that
random reads from disk are more than 150,000 times slower than sequential access”

Adam Jacobs “The Pathologies of Big Data.”
ACM Queue, July 2009

Page Cache

$ free
 total used free shared buffers cached
Mem: 7450 7296 154 0 150 4916
-/+ buffers/cache: 2229 5220
Swap: 0 0 0

Write Behind

Read Ahead

sendfile(2)

pread(file, buffer, size, offset);

// do something with the buffer

write(socket, buffer, size);

Application

Read
Buffer

NIC

fs
12

3 4

User System

Socket
Buffer

sendfile(socket, file, offset, size);

Read
Buffer

NIC

fs
1

3

System

Socket
Buffer

2

Durability
Concessions

Stateless
Broker

Simple Schema-less
Log Format

RECAP

Kafka is a persistent, publish/
subscribe messaging system
designed to broker high-
throughput, data streams for
multiple consumers.

Messaging System

•Cherry pick characteristics of log
aggregation systems (performance)
and message queues (semantics)

Persistent

•Maintain a rolling time-based
window of the stream

•Don’t fear the filesystem

High-Throughput

•Performance over features and
durability

•Rely on operating system features

•Eschew user-land caching

Multiple Consumers

•Push data in, pull data out

•Support parallel consumers with
varying rates from offline to
realtime

Publishing content to feeds based upon events

Data warehouse ETL of event data

Spam flagging of user-generated content

System monitoring

Full text search

Trigger email newsletters

Message Requirements

1) Provide each message as a uniform JSON payload containing:
• Event name
• Timestamp of the event’s occurrence
• Actor User ID and created_at timestamp
• Attributes

2) Transmit messages to Kafka asynchronously

3) Maximize producer performance by batching messages
 together when possible

EventHandler KafkaLog Controller

fire(event)

write(events)

fire(event)

flush

Model

fire(event)
fire(event)

Producer

send(messages)

EventHandler KafkaLog Controller

fire(event)

write(events)

fire(event)

flush

Model

fire(event)
fire(event)

Producer

send(messages)

class KafkaLog
 include Singleton

 def initialize
 @queue = Queue.new
 end

 def write(messages)
 @queue.push(messages)
 end

 def start(producer)
 Thread.new do
 while batch = @queue.pop
 producer.batch do
 batch.each do |message|
 producer.send(Kafka::Message.new(message))
 end
 end
 end
 end
 end
end

EventHandler KafkaLog Controller

fire(event)

write(events)

fire(event)

flush

Model

fire(event)
fire(event)

Producer

send(messages)

class EventHandler
 def initialize(logger)
 @logger = logger
 @messages = []
 end

 def fire(event, user, attributes={})
 payload = {
 event: event,
 timestamp: Time.now.to_f,
 attributes: attributes,
 user: {
 id: user.id,
 created_at: user.created_at.to_f
 }
 }

 @messages.push(payload.to_json)
 end

 def flush
 @logger.write(@messages) if @messages.present?
 end
end

EventHandler KafkaLog Controller

fire(event)

write(events)

fire(event)

flush

Model

fire(event)
fire(event)

Producer

send(messages)

class ApplicationController < ActionController::Base
 after_filter :flush_events_to_log

 def event_handler
 @event_handler ||= EventHandler.new(KafkaLog.instance)
 end

 def flush_events_to_log
 @event_handler.flush
 end
end

class PostsController < ApplicationController
 def create
 @post = Post.new(params[:posts])

 if @post.save
 event_handler.fire("post.create", current_user,
 id: @post.id,
 title: @post.title,
 body: @post.body
)
 end
 end
end

class PostsController < ApplicationController
 def show
 @post = Post.find(params[:id])

 event_handler.fire("post.show", current_user,
 id: @post.id,
 title: @post.title
)
 end
end

config/initializers/kafka_log.rb

producer = Kafka::Producer.new(topic: “blog_log”)
KafkaLog.instance.start(producer)

 desc "Tail from the Kafka log file"
 task :tail, [:topic] => :environment do |task, args|
 topic = args[:topic].to_s
 consumer = Kafka::Consumer.new(topic: topic)

 puts "==> #{topic} <=="

 consumer.loop do |messages|
 messages.each do |message|
 json = JSON.parse(message.payload)
 puts JSON.pretty_generate(json), "\n"
 end
 end
 end
end

THANK YOU!
Slides
https://speakerdeck.com/u/jpignata/p/kafka-the-great-logfile-in-the-sky

Video of Presentation @ Pivotal Labs
http://www.livestream.com/pivotallabs/video?clipId=pla_edbd81df-89ec-4933-8295-42bf91a9d301

Demo Application Repo
http://github.com/jpignata/kafka-demo/

Apache Incubator: Kafka
http://incubator.apache.org/kafka/

Kafka Papers & Presentations
https://cwiki.apache.org/KAFKA/kafka-papers-and-presentations.html

Kafka Design
http://incubator.apache.org/kafka/design.html

Kafka: A Distributed Messaging System for Log Processing
http://research.microsoft.com/en-us/um/people/srikanth/netdb11/netdb11papers/netdb11-final12.pdf

IEEE Data Engineering Bulletin (July, 2012): Big Data War Stories
http://sites.computer.org/debull/A12june/A12JUN-CD.pdf

@jpignata

https://speakerdeck.com/u/jpignata/p/the-great-logfile-in-the-sky
https://speakerdeck.com/u/jpignata/p/the-great-logfile-in-the-sky
https://speakerdeck.com/u/jpignata/p/the-great-logfile-in-the-sky
https://speakerdeck.com/u/jpignata/p/the-great-logfile-in-the-sky
http://www.livestream.com/pivotallabs/video?clipId=pla_edbd81df-89ec-4933-8295-42bf91a9d301
http://www.livestream.com/pivotallabs/video?clipId=pla_edbd81df-89ec-4933-8295-42bf91a9d301
http://github.com/jpignata/kafka-demo/
http://github.com/jpignata/kafka-demo/
http://github.com/jpignata/kafka-demo/
http://github.com/jpignata/kafka-demo/
http://incubator.apache.org/kafka/
http://incubator.apache.org/kafka/
https://cwiki.apache.org/KAFKA/kafka-papers-and-presentations.html
https://cwiki.apache.org/KAFKA/kafka-papers-and-presentations.html
http://incubator.apache.org/kafka/design.html
http://incubator.apache.org/kafka/design.html
http://research.microsoft.com/en-us/um/people/srikanth/netdb11/netdb11papers/netdb11-final12.pdf
http://research.microsoft.com/en-us/um/people/srikanth/netdb11/netdb11papers/netdb11-final12.pdf
http://sites.computer.org/debull/A12june/A12JUN-CD.pdf
http://sites.computer.org/debull/A12june/A12JUN-CD.pdf

