the great
logfile in the

d

sky ©

)

QF

ol

groupme

-l

. 11:45 AM b dalns vl ' SKI TRIP!

—— =]

Home Brunch Club K3 members

Chris: Guys, it's FRIDAY!!!
Where should we go tonight?
Brandon: 2
Steak and
eggs @ Le
Barricou.
Time to plan
) next week's
destination.

Jeremy: How about Veselka?
I heard they have good specials.
aon, 4:17 PM @

Kevin: I'm down. | have been there ﬂ
before!
Kevin: How about Walter A
Foods? | hear it's good.

Tara:‘WaIter Foo-ds Vis E Tara: Awesome! | get out
amazing! Their chorizo at 7. See you guys there.
scramble is my favorite! 420 PV

< Y

O 2. Geadl

Katka is a persistent publish/
subscribe messaging system
designed to broker high-
throughput, data streams for
multiple consumers.

Kafka is a persistent, publish/subscribe

messaging system

designed to broker high-throughput data streams for multiple consumers.

Push

_

Puli

require "kafka"

producer = Kafka: :Producer.new
consumer = Kafka::Consumer.new
message = Kafka::Message.new("Some data”)

producer.send(message)
consumer.consume

L#<Kafka: :Message:0x007fee51183a80
@payload="Some data” ...>]

require "kafka”

producer = Kafka::Producer.ne{® & &
consiyer = Kafka::Consumer.new =
messag Kafka::Message.negh W & data”)

producer.send(message) /:“fﬁgx\q"mwgy -
consumer.consume R N | P

[#<Kafka: :Message: o e |
@payload="Some data” . “

Log Aggregators

Message Queues

Low Latency

High Throughput

indybnoayl mom

High Latency

Low Latency

High Throughput

indybnoayl mom

High Latency

$ 1s -1 /opt/
“rw-r--r-—- 1
“rw-r-—-r--— -
“rw-r--r-—- 1
“rw-r-—-r--— -
“rw-r--r-—- 1
“rw-r-—-r--— -

$ 1s -1 /opt/
“rw-r--r-—- 1
“rw-r-—-r--— -
“rw-r--r-—- 7
“rw-r-—-r--— -
“rw-r--r-—- 7

ka/logs/page_views-0/
536870926 Jul
536870922 Jul

Kda
Kd
Ka
Kd
Ka

Kd

kaf
kaf
kaf
kaf
kaf

kaf

Kda
Kd
Ka
Kd
Ka

Kd

536871
536871

536871

053 Jul
062 Jul
084 Jul

368959329 Jul

ka/log/analytics-5/

536871090 Jul
536871130 Jul
536870939 Jul
536871063 Jul

Ka
Kd
Ka
Kd

Ka

kaf
kaf
kaf
kaf

kaf

Ka
Kd
Ka
Kd

Ka

424050131 Jul

000000002
00000002
000000002
00000002
000000002
00000002

5822159191.
6359030117.
6895901039.
1432772092.
7969643154.
8506514238.

00000000032212266086.
00000000032749137176.
00000000033286008306.
00000000033822879245.
00000000V034359750308.

page_vVv1ews
ad_clicks
service_logs

PARTITION

producer.send(Message.new(“h1”))

Size "Magic" CRC Payload

B

4 1 4 n bytes

sWw(hi hi hi hello goodday hi).each do |payload]
producer.send(Message.new(payload))
end

$ 1s -1 /opt/kafka/logs/page_views-0/
-rw—-r--r-—- 1 kafka kafka 536870926 Jul 25 21:17 00000000215822159191 .kafka

{
topic: DAage_VI1ews,
partition: 0,
of fset: 215822159191

producer = Kafka: :Producer.new(
topic: "letters”,
partition: 0

)

w(a b ¢ d e).each do |letter]
message = Kafka::Message.new(letter)
producer.send(message)

end

consumer = Kafka::Consumer.new(
of fset: 10,
topic: “letters”,
partition: 0

)

consumer.offset
10

consumer.consume.map(&:payload)
[“b”, “C”, “d”’ “e”:l

consumer.offset
50

$ 1s -1 /opt/
“rw-r--r-—- 1
“rw-r--r—- 1
“rw-r--r-- -
“rw-r-—-r-—- 1
“rw-r--r-—- |
“rw-r--r-—- 1

$ 1s -1 /opt/
“rw-r--r-- -
“rw-r-—-r-—- 1
“rw-r--r-—- |
“rw-r--r-—- 1
“rw-r--r-—- 1

kaf
kaf
kaf
kaf
kaf
kaf

kaf

kaf
kaf
kaf
kaf
kaf

kaf

ka/logs/page_views-0/

Kd
Kd
Kd
Kd
Kd

Kd

ka/log/analytics-5/

Kd
Kd
Kd
Kd

Kd

kaf
kaf
kaf
kaf
kaf

kaf

kaf
kaf
kaf
kaf

kaf

Kd
Kd
Kd
Kd

53687
53687°

Ka 53687°

Kd

536870926
536870922

053
062
084

368959329

Jul
Jul
Jul
Jul
Jul
Jul

Ka 536871090 Jul
Ka 536871130 Jul
Ka 536870939 Jul
Ka 536871063 Jul

Ka 424050131 Jul

25
25
26
26
26
26

26
26
217
28
28

21 :
23:
: 38
03:
06:
08:

0

04 :
22
15:
: 28

0

21:

17
27

51
09
38

58
00
49

18

000000002
00000002
00000002
00000002
000000002
000000002

5822159191.
6359030117.
6895901039.
1432772092.
7969643154.
8506514238.

00000000032212266086.
00000000V32749137176.
0000000V033286008306.
00000000033822879245.
00000000V034359750308.

kaf
kaf
kaf
kaf
kaf

kaf

kaf
kaf
kaf
kaf

kaf

Kd
Kd
Kd
Kd
Kd

Kd

Kd
Kd
Kd
Kd

Kd

Kafka is a persistent, publish/subscribe messaging system designed to broker high-throughput data streams for

multiple consumers

{ Topic, Partition }

Kafka is a persistent, publish/subscribe messaging system designed to broker

high-throughput

data streams for multiple consumers.

—==activemq = Kafka (batch 50) ——Kafka (batch 1) =rabbitmq ~==activemq = Kafka ~==rabbitmq
500000

400000 - \[- rwwwwwwmw
300000 - '
200000 - .
100000 |
AMAAMMEERE e

()
¥
L]
~
L]
9]
-T4)
4]
b
F)
=

messages/sec

500 990 1480 500 99() 1480

accumulated produced messages in MB accumulated consumed messages in MB

icity

API Simpl

Linear Disk Access

Comparing Random and Sequential Access in Disk and Memory

Random, disk 316 values/sec
Sequential, disk 53.2M values/sec
Random, SSD 1024 values/sec
Sequential, SSD 42 2M values/sec
Random, memory 36.7M values/sec
Sequential, memory 358.2M values/sec

10 100 1000 10 10 107 1

Note; Disk tests were carried out on a freshly booted machine (a Windows 2003 server with 64-GB RAM and

eight 15 000-RPM SAS disks in RAIDS configuration) to eliminate the effect of operating-system disk caching.
SSD test used a latest-generation Intel high-performance SATA SSD,

“lit’s] widely underappreciated: in modern systems, as demonstrated in the figure,
random access to memory is typically slower than sequential access to disk. Note that
random reads from disk are more than 150,000 times slower than sequential access”

Adam Jacobs “The Pathologies of Big Data.”
ACM Queue, July 2009

Page Cache

$ free

total used free shared buffers cached
Mem: 7450 7296 154 0 150 4916
-/+ buffers/cache: 2229 5220

Swap: 0 0 0

Write Behind
Read Ahead

sendfile(2)

pread(file, buffer, size, offset);
// do something with the buffer

write(socket, buffer, size);

Application

sendfile(socket, file, offset, size);

Socket |
Buffer |

Durability
Concessions

Stateless
Broker

Simple Schema-less
Log Format

Katka is a persistent, publish/
subscribe messaging system
designed to broker high-
throughput, data streams for
multiple consumers.

Messaging System

® Cherry pick characteristics of log
aggregation systems (performance)
and message queues (semantics)

Persistent

® Maintain a rolling time-based
window of the stream

® Don’t fear the filesystem

High-Throughput

® Performance over features and
durability

® Rely on operating system features

® Eschew user-land caching

Multiple Consumers

® Push data in, pull data out

® Support parallel consumers with
varying rates from offline to
realtime

BACKLOG

Newly published blog posts are added to the author's activity m

feed (jp)
= Newly published blog posts are added to the author's friends’ Start
news feeds
Read blog posts are added to a user's activity feed Start
= Newly published blog posts are added to the data warehouse Start
- Read blog posts create an event in the data warehouse Start
= Flag blog posts whose contents match a configurable set of Start
watch words
Flag any user creating blog posts greater than a configurable Start
expected frequency
> & Monitor blog post publishes per second in Nagios Start

Send nightly digest to users of blog posts that his or her friends Start
have read but the user has not

Blog post contents are full-text searchable Start

Read blog posts increment that post's score by a configurable Start
score increment in the full text index

> & Make this all work performantly at high traffic volumes too, btw. Start

Publishing content to feeds based upon events
Data warehouse ETL of event data

Spam flagging of user-generated content
System monitoring

Full text search

Trigger email newsletters

Message Requirements

1) Provide each message as a uniform JSON payload containing:
Event name

Timestamp of the event’s occurrence

Actor User ID and created_at timestamp

Attributes

2) Transmit messages to Kaftka asynchronously

3) Maximize producer performance by batching messages
together when possible

‘ Model \

‘ Controller \

fire(event)

‘ EventHandler \

‘ Kafkalog \

‘ Producer \

! fire(event ! ! !		
: event) . : :		
: fire(event) >: : E		

| | | |
! fire(event) ! ! !
; > ! !
| | | |
| | | |

i d

E flush >E write(events) >E send(messages) >E
| | | |
| | | |
| | | :

‘ Model \

‘ Controller \

‘ EventHandler \

‘ Kafkalog \

‘ Producer \

| | | |
| | | |
| | | :
| | |

! fire(event) ! ! !
T relevent = ! ;
! ire(even ! !

| = | |
: fire(event) >: E E
| |

| | | |
! fire(event) ! ! !
; = | |
| | | |
| | | :
| | - |

t send(messages

E flush >E write(events) >E (ges) >E
| | | |
| | | |
| | | :

class KafkalLog
include Singleton

def initialize
@queue = Queue.new
end

def write(messages)
@queue.push(messages)
end

def start(producer)
Thread.new do
while batch = @queue.pop
producer.batch do
batch.each do |message|
producer.send(Kafka: :Message.new(message))
end
end
end
end
end
end

d---------------------------
m A
m
()
O
(4v]
(V)]
(/p]
(())
£
o)
o
O)
o (/p]
—
m lllllllllllllllllllllllllll
= A
A’
m
)
C
()
>
Q
()
jd
-
5 S
©
C
S\ 1 ____
2 A AN AN A A
>
Ll
= = = =
c| C| €| <
| O O O L
> > > > 2]
o 2| 9| | 3
[T
o o ¢ ¢
U= Y= =] Y=

Controller

‘ Model \

class EventHandler
def initialize(logger)

@logger = logger
@messages = []
end

def fire(event, user, attributes={})
payload = {
event: event,
timestamp: Time.now.to_f,
attributes: attributes,

user: {
1d: user.1id,
created_at: user.created_at.to_f
X
3
@messages.push(payload.to_json)
end
def flush

@logger.write(@messages) 1f @messages.present?
end
end

‘ Model \

‘ Controller \

‘ EventHandler \

‘ Kafkalog \

‘ Producer \

| | | |
| | | |
| | | :
| | |

! fire(event) ! ! !
T relevent = ! ;
! ire(even ! !

| = | |
: fire(event) >: E E
| |

| | | |
! fire(event) ! ! !
; = | |
| | | |
| | | :
| | - |

t send(messages

E flush >E write(events) >E (ges) >E
| | | |
| | | |
| | | :

class ApplicationController < ActionController: :Base
after_filter :flush_events_to_log

def event_handler
@event_handler ||= EventHandler.new(Kafkalog.1instance)
end

def flush_events_to_log
@event_handler.flush
end
end

class PostsController < ApplicationController
def create
@post = Post.new(params[:posts])

1f @post.save
event_handler.fire("post.create”, current_user,
1d: @post.1d,
title: @post.title,
body: @post.body
)
end
end
end

class PostsController < ApplicationController
def show
@post = Post.find(params[:1d])

event_handler.fire("post.show”, current_user,
1d: @post. 1d,
title: @post.title
)
end
end

config/initializers/kafka_log.rb

producer = Kafka: :Producer.new(topic: “blog_log”)
KafkalLog.1nstance.start(producer)

desc "Tail from the Kafka log file”

task :tail, [:topic] => :environment do |task, args]|
topic = args[:topic].to_s
consumer = Kafka::Consumer.new(topic: topic)

puts "==> #{topic} <=="

consumer.loop do |messages|
messages.each do |message|
json = JSON.parse(message.payload)
puts JSON.pretty_generate(json), "\n"
end
end
end
end

THANK YOU! & @jpignate

Slides
https://speakerdeck.com/u/jpignata/p/kafka-the-great-logfile-in-the-sky

Video of Presentation @ Pivotal Labs
http://www.livestream.com/pivotallabs/video?clipId=pla edbd81df-89ec-4933-8295-42bf91a9d391

Demo Application Repo
http: ithub.com/jpignata/kafka-demo

Apache Incubator: Kafka
http://incubator.apache.org/kafka/

Kafka Papers & Presentations
https://cwiki.apache.org/KAFKA/kafka-papers-and-presentations.html

Kafka Design
http://incubator.apache.org/kafka/design.html

Kafka: A Distributed Messaging System for Log Processing
http://research.microsoft.com/en-us/um/people/srikanth/netdbl11/netdbll1papers/netdbl1-finall2.pdf

IEEE Data Engineering Bulletin (July, 2012): Big Data War Stories
http://sites.computer.org/debull/A12june/A12JUN-CD. pdf

https://speakerdeck.com/u/jpignata/p/the-great-logfile-in-the-sky
https://speakerdeck.com/u/jpignata/p/the-great-logfile-in-the-sky
https://speakerdeck.com/u/jpignata/p/the-great-logfile-in-the-sky
https://speakerdeck.com/u/jpignata/p/the-great-logfile-in-the-sky
http://www.livestream.com/pivotallabs/video?clipId=pla_edbd81df-89ec-4933-8295-42bf91a9d301
http://www.livestream.com/pivotallabs/video?clipId=pla_edbd81df-89ec-4933-8295-42bf91a9d301
http://github.com/jpignata/kafka-demo/
http://github.com/jpignata/kafka-demo/
http://github.com/jpignata/kafka-demo/
http://github.com/jpignata/kafka-demo/
http://incubator.apache.org/kafka/
http://incubator.apache.org/kafka/
https://cwiki.apache.org/KAFKA/kafka-papers-and-presentations.html
https://cwiki.apache.org/KAFKA/kafka-papers-and-presentations.html
http://incubator.apache.org/kafka/design.html
http://incubator.apache.org/kafka/design.html
http://research.microsoft.com/en-us/um/people/srikanth/netdb11/netdb11papers/netdb11-final12.pdf
http://research.microsoft.com/en-us/um/people/srikanth/netdb11/netdb11papers/netdb11-final12.pdf
http://sites.computer.org/debull/A12june/A12JUN-CD.pdf
http://sites.computer.org/debull/A12june/A12JUN-CD.pdf

