


BI Style Analytics 
with Spark

Justin Langseth / Farzad Aref
Spark Summit 2014, San Francisco, CA







data



data





data





visualizations



visualizations
Word

Zoomdata

CloudWord
 Cloud

Zoomdata





data visualizations





devices



devices



 









data visualizations devices







architecture

Spark It (Optional)

DataBricks
Local

Embedded

Data Connector
Engine

Data Cache Data Profiler Data Transformer Data Controller

Data Fusion Fabric

Connector 
Library

Connector 
Studio

Stream Math
Library

Math
Studio

Visualization  
Library

Visualization
Studio

Stream Processing
Engine

Visualization
Engine

Mobile Gestural

Browser Widget

Zoomdata User

JavaScript  
Embed

iFrame  
Embed

Custom Application

Data Connector
Hadoop

NextGen SQL
No SQL
RawCSV

Cloud Connector
JSON API

Real-Time Stream 
Connector

Kinesis
Twitter

Search Connectors
SOLR/Lucene
Elasticsearch



architecture

Spark It (Optional)

DataBricks
Local

Embedded

Data Connector
Engine

Data Cache Data Profiler Data Transformer Data Controller

Data Fusion Fabric

Connector 
Library

Connector 
Studio

Stream Math
Library

Math
Studio

Visualization  
Library

Visualization
Studio

Stream Processing
Engine

Visualization
Engine

Mobile Gestural

Browser Widget

Zoomdata User

JavaScript  
Embed

iFrame  
Embed

Custom Application

Data Connector
Hadoop

NextGen SQL
No SQL
RawCSV

Cloud Connector
JSON API

Real-Time Stream 
Connector

Kinesis
Twitter

Search Connectors
SOLR/Lucene
Elasticsearch



Why we’re excited  
about Spark
●  Distributed and fast! (in memory)
●  Flexible (Java / Scala / SQL / Python)
●  Rich math library (MLlib,GraphX, Bagel)



We use Spark for 
●  Holding small datasets
●  Holding aggregated datasets
●  Data fusion across disparate sources
●  Complex math



Benefits of  
Spark for us
●  We can point it to any flat file (S3 / HDFS)
●  Level the playing field for slow / untuned databases
●   Fuse data and join across disparate data sources  

(SQL / noSQL / Hadoop / Search / Cloud)



Benefits of  
DataBricks for us
●  One-step cluster setup
●   Rich Math Studio to allow for complex calculations 

across different sources
●  Direct access to RDDs



Some of our  
innovations
●  Progressive loading into Spark (RDS/SQL sources)
●  Spark analytics without SQL (w/Java, not Shark)
●  Data sharpening via microqueries (non Spark’d sources)
●  Sample to full (Spark’d sources)



Current challenges  
and next steps
●  Evaluate Spark 1.0
●  Sharing Spark contexts
●  Sharing RDDs across contexts



Initial SparkSQL /  
Schema RDD findings
●  Offset is not implemented
●  Partitioned parquet files are not supported
●   SparkSQL doesn’t allow for fetching field names and types  

for parquet files. We had to use com.twitter.parquet-tools  
to do this



Initial SparkSQL /  
Schema RDD findings
●   Can’t find escape symbol for SQL reserved words
●   “INT96” parquet type is not implemented in Spark,  

but Impala stores timestamps using this type
●   Looks like persisting of parquet files in memory is not  

implemented in Spark. This can be a performance issue



killer demo


