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Why we’re excited  
about Spark
●  Distributed and fast! (in memory)
●  Flexible (Java / Scala / SQL / Python)
●  Rich math library (MLlib,GraphX, Bagel)



We use Spark for 
●  Holding small datasets
●  Holding aggregated datasets
●  Data fusion across disparate sources
●  Complex math



Benefits of  
Spark for us
●  We can point it to any flat file (S3 / HDFS)
●  Level the playing field for slow / untuned databases
●   Fuse data and join across disparate data sources  

(SQL / noSQL / Hadoop / Search / Cloud)



Benefits of  
DataBricks for us
●  One-step cluster setup
●   Rich Math Studio to allow for complex calculations 

across different sources
●  Direct access to RDDs



Some of our  
innovations
●  Progressive loading into Spark (RDS/SQL sources)
●  Spark analytics without SQL (w/Java, not Shark)
●  Data sharpening via microqueries (non Spark’d sources)
●  Sample to full (Spark’d sources)



Current challenges  
and next steps
●  Evaluate Spark 1.0
●  Sharing Spark contexts
●  Sharing RDDs across contexts



Initial SparkSQL /  
Schema RDD findings
●  Offset is not implemented
●  Partitioned parquet files are not supported
●   SparkSQL doesn’t allow for fetching field names and types  

for parquet files. We had to use com.twitter.parquet-tools  
to do this



Initial SparkSQL /  
Schema RDD findings
●   Can’t find escape symbol for SQL reserved words
●   “INT96” parquet type is not implemented in Spark,  

but Impala stores timestamps using this type
●   Looks like persisting of parquet files in memory is not  

implemented in Spark. This can be a performance issue



killer demo


