Big Telco, Bigger real-time demands: Moving towards Real-time analytics

Jung Ryong Lee

 IT Manager of SK Telecom, South Korea's largest wireless communications provider

Real-time analytics

Jung Ryong Lee

- IT Manager of SK Telecom, South Korea's largest wireless communications provider
- Work on commercial products (~ '12)
 - Has worked with email archived solutions
 - Has worked with IDS using In-stream processing engine
- Open source activity ('14 ~)
 - Contributor of REEF

Overview

Background

Dool time analytics in Tales

- Has worked with IDS using In-stream processing engine
- · Open source activity ('14 ~)
 - Contributor of REEF

Overview

- Background
- Real-time analytics in Telco
- Project 1 High speed data processing
 - Issues & solutions
 - Performance
- Project 2 In-stream processing
- Lessons Learned

Background

- Telco data characteristics
 - Huge amount of data daily

- Performance
- Project 2 In-stream processing
- Lessons Learned

Background

- Telco data characteristics
 - Huge amount of data daily
 - 40 TB/day
 - 15 PB (estimated by the end of 2014)
- · Active user of Hadoop
 - Involved with 10 + Hadoop clusters
 - The largest one has 500 + nodes and a total of 900 + nodes altogether.
- Uses various commercial MPP databases for analytics

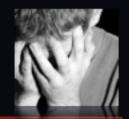
Real-time analytics in Telco

10 + Clusters

Introduce 2 projects using Spark

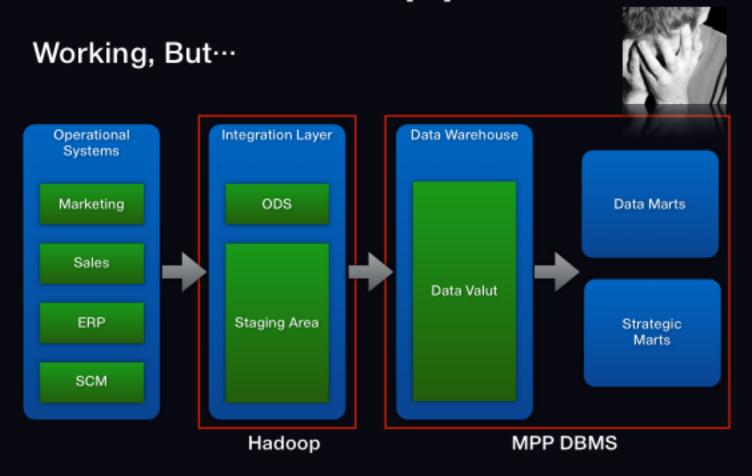
Involved with 10 + Hadoop clusters

- The largest one has 500 + nodes and a total of 900 + nodes altogether.
- Uses various commercial MPP databases for analytics


Real-time analytics in Telco

Introduce 2 projects using Spark

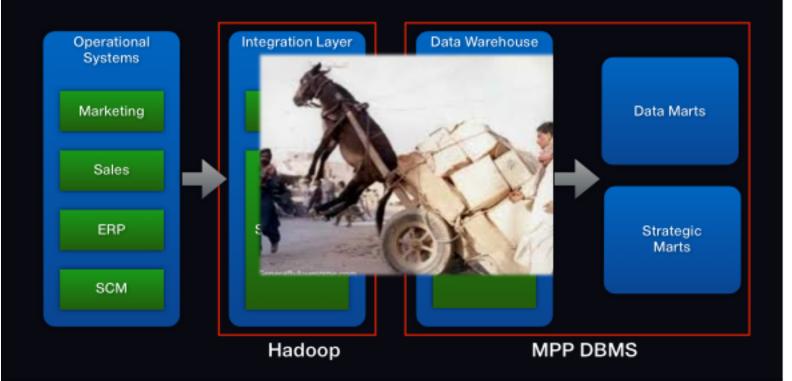
- The first being high speed data processing
 - Replacement of MPP database
- The second being In-Stream data processing
 - Replacement of Hive batch job


Previous approach

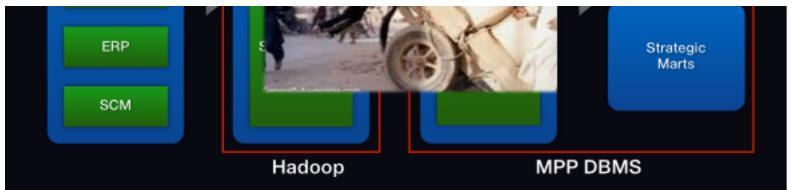
Working, But...

- 2. The second being In-Stream data processing
 - Replacement of Hive batch job

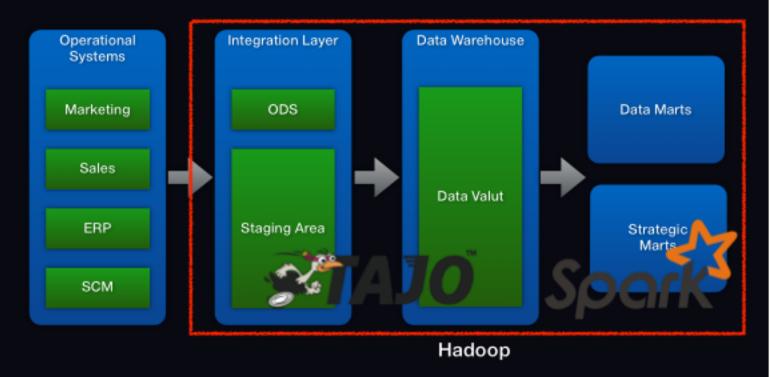
Previous approach


Previous approach

have to load too much data into MPP DBMS


Previous approach

have to load too much data into MPP DBMS


New approach

Support High speed ETL data processing Real-time query processing for web client users

New approach

Support High speed ETL data processing Real-time query processing for web client users

System Requirements

Low latency ad-hoc query(< 2secs)

110100

Hadoop

System Requirements

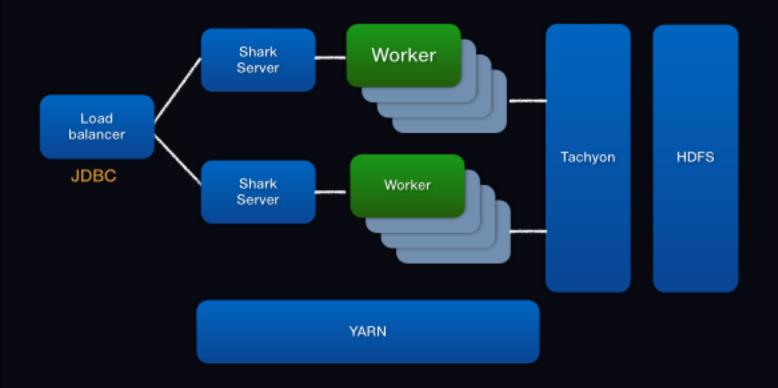
- Low latency ad-hoc query(< 2secs)
- ANSI SQL support (no need for Insert/Update/Delete)
- JDBC support
- Support concurrent users(10 users per sec)
- High availability

Shark on Spark

It can replace RDBMS

- Support concurrent users(10 users per sec)
- · High availability

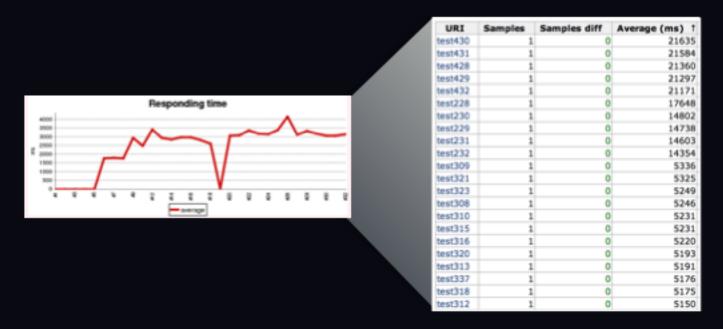
Shark on Spark


- It can replace RDBMS
 - Low latency for ad-hoc query with caching tables
 - HiveQL support
 - JDBC support
- Support concurrent users (10users per sec)
- High availability

Shark on Spark

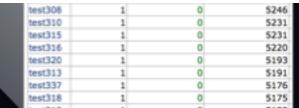
- Support concurrent users(10users per sec)
- · High availability

Shark on Spark



Function & Performance

All queries work good with some modifications of queries


Function & Performance

 All queries work good with some modifications of queries

Improvement

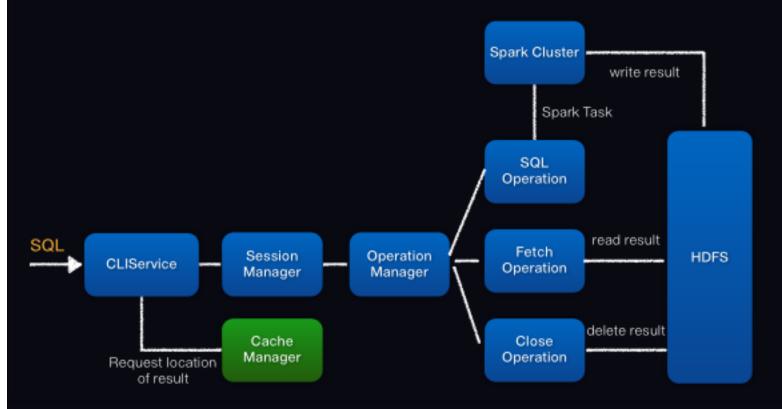
- Improvement and Bug fix
 - Bug fix of Hive 0.11 / Support Non ASCII table name
 - Implement LIDE/Oracle like functions)

Improvement

- Improvement and Bug fix
 - Bug fix of Hive 0.11 / Support Non ASCII table name
 - Implement UDF(Oracle like functions)
 - Change Correlation Sub Query to Left Outer Join
- Performance Improvement
 - Control reducer count
 - Material view can reduce query time
 - Caching query result

Improvement - Example

 Can reduce query time with a simple understanding of Shark and Hive

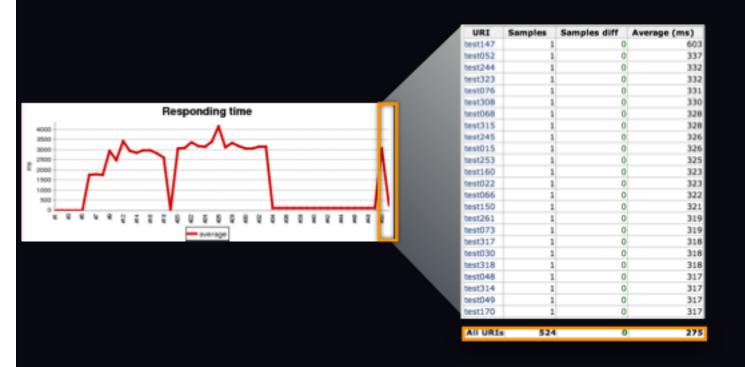


- Control reducer count
- Material view can reduce query time
- Caching query result

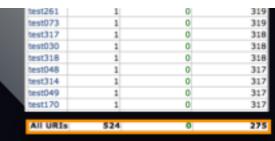
Improvement - Example

 Can reduce query time with a simple understanding of Shark and Hive

Result of Caching query


Most of gueries complete in 0.3 second.

4	URI	Samples	Samples diff	Average (ms)		
	test147	1	0	603		
	test052	1	0	337		


Result of Caching query

Most of queries complete in 0.3 second.

In-Stream data processing

- Replace Hive batch job with Spark
 - One hour batch job -> 5 sec batch job in 1 minute of window time
- Calculate ton 100 keywords and applications

In-Stream data processing

- Replace Hive batch job with Spark
 - One hour batch job -> 5 sec batch job in 1 minute of window time
- Calculate top 100 keywords and applications
- Processing data with 530MB/s
 - -> 1 mil records / sec
- Must be implemented within one month

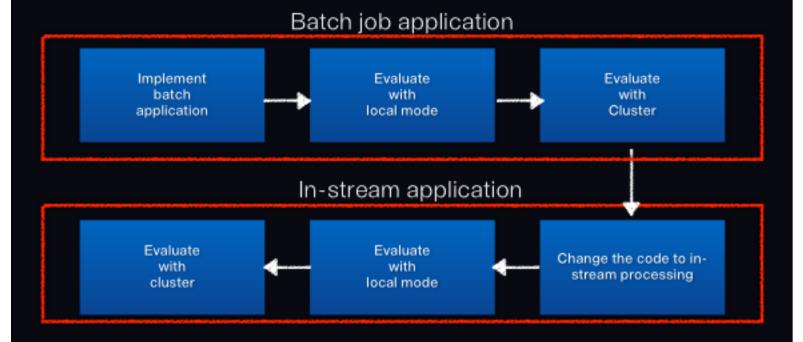
The answer is Spark Streaming!!

- Very similar to Spark
 - DStream is very similar to RDD

Must be implemented within one month

The answer is Spark Streaming!!

- Very similar to Spark
 - DStream is very similar to RDD
 - Can use most functions that RDD provides(groupByKey, sortByKey)
 - Easily change batch application to in-stream processing application
- Support local environment
 - Can evaluate the application with laptop

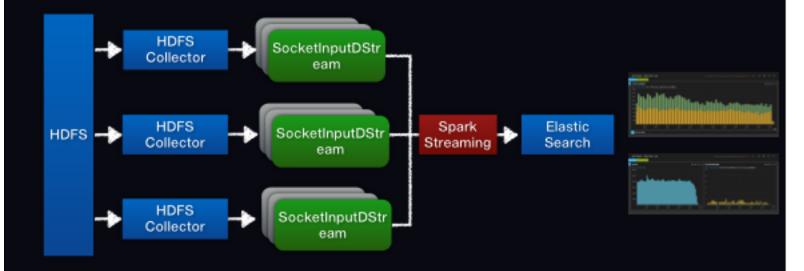

Implementation process

It only takes one week to complete the process

- Support local environment
 - Can evaluate the application with laptop

Implementation process

It only takes one week to complete the process



Data processing architecture

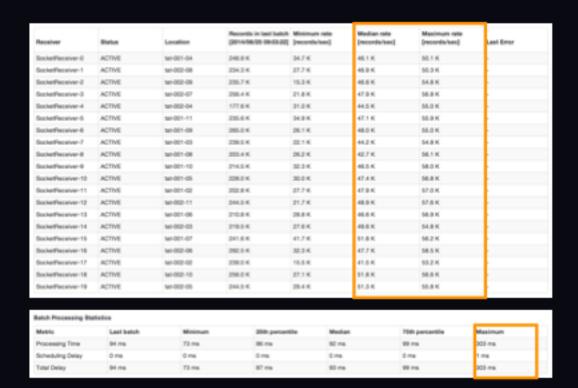
Only "84 lines of code" are needed!

Data processing architecture

Only "84 lines of code" are needed!

Performance

 About 3 times faster than other In-streaming processing engines.


Receiver	Status	Location	Records in lest batch (2014/06/05 08/03/20)	Minimum rate [records/sec]	Median rate [records/sec]	Maximum rate (records/sec)	Leet Error
SocketFleceiver-0	ACTIVE	tel-001-04	245.9 K	34.7 K	46.1 K	50.1 K	
SocketReceiver-1	ACTIVE	tel-002-08	254.3 K	27.7 K	45.9 K	50.0 K	
SocketReceiver-2	ACTIVE	tel-002-09	236.7 K	15.3 K	45.6 K	54.8 K	

Performance

About 3 times faster than other In-streaming processing engines.

Lessons learned

- We can implement OLTP style systems and In-stream data processing with Spark and Shark.
- Win-win between community and company

				41.0014	0000011				
ACTIVE 9	wi-000-10	256.0 K	27.1 K	51.8 K	58.8 K				
ACTIVE 9	wi 002-05	244.5 K	29.4 K	51.3 K	55.8 K				
Batch Processing Statistics									
Leef betch	Minimum	25th percen	tile Median	75th p	percentile Ma	ximum			
94 ms	73 ms	00 mg	92 ms	99 ma	300	1 ms			
0 ms	0 ms	0.06	0 me	0 me	1.0	16			
94 ms	73 ms	67 mg	93 ms	99 ms	300	3 ms			
	ACTIVE 1 Even Level balloh SH mis O mis	ACTIVE tel 002-10 ACTIVE tel 002-05 Files Last batch Minimum 94 ms 72-ms 0 ms 0 ms	ACTIVE 54:000-10 296.0 K ACTIVE 54:000-05 264.5 K Files Last batch Minimum 200 percent 94 ms 73 ms 86 ms 0 ms 0 ms 0 ms	### NOTIVE \$40,000-10 296.0 K 27.1 K ###################################	### RCTIVE No.002-10 296.0 K 27.1 K 91.8 K 91.3 K 9	### ### ### ### ### ### #### #########			

Lessons learned

- We can implement OLTP style systems and In-stream data processing with Spark and Shark.
- Win-win between community and company
 - · Test in real working cluster
 - Finding some bugs and function requirement, as well.
 - mainly focusing on low latency query.

