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- Performance
- Project 2 - In-stream processing

- Lessons Learned

Background

- Telco data characteristics

- Huge amount of data daily
- 40 TB/day

- 15 PB (estimated by the end of 2014) 10 + Clusters

- Active user of Hadoop

- Involved with 10 + Hadoop clusters

The largest one has 500 + nodes and a total of 900 + nodes
altogether.

- Uses various commercial MPP databases for analytics

Real-time analytics in Telco

Introduce 2 projects using Spark




- Involved with 10 + Hadoop clusters

- The largest one has 500 + nodes and a total of 900 + nodes
altogether.

- Uses various commercial MPP databases for analytics

Real-time analytics in Telco

Introduce 2 projects using Spark
1. The first being high speed data processing
- Replacement of MPP database
2. The second being In-Stream data processing

- Replacement of Hive batch job

Previous approach

Working, But:--




2. The second being In-Stream data processing

- Replacement of Hive batch job

Previous approach

-
Working, But: m
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Previous approach

have to load too much data into MPP DBMS
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- Low latency ad-hoc query(< 2secs)
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System Requirements

- Low latency ad-hoc query(< 2secs)

- ANSI SQL support
(no need for Insert/Update/Delete)

- JDBC support
- Support concurrent users(10 users per sec)

- High availability

Shark on Spark

- |t can replace RDBMS




- Support concurrent users(10 users per sec)

-+ High availabllity

Shark on Spark

- It can replace RDBMS

- Low latency for ad-hoc query with caching tables
+ HiveQL support

- JDBC support
. Support concurrent USeI’S(1OUSGI’S per SeC)

- High availabllity

Shark on Spark




- Support concurrent users(10users per sec)

- High availabllity

Shark on Spark
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Function & Performance

- All queries work good with some modifications of
queries




Function & Performance

- All queries work good with some modifications of
queries

URI Samples Samples diff Average (ms) !
: 21638

Improvement

- Improvement and Bug fix

« Bug fix of Hive 0.11 / Support Non ASCII table name




Improvement
+ Improvement and Bug fix

- Bug fix of Hive 0.11 / Support Non ASCIl table name
- Implement UDF(Oracle like functions)

- Change Correlation Sub Query to Left Outer Join

- Performance Improvement

- Control reducer count
- Material view can reduce query time

- Caching query result

Improvement - Example

- Can reduce query time with a simple understanding
of Shark and Hive

Spark Cluster




- Control reducer count
- Material view can reduce query time

- Caching query result

Improvement - Example

- Can reduce query time with a simple understanding
of Shark and Hive

write result

Spark Task

Spark Cluster l
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Result of Caching query

- Most of queries complete in 0.3 second.

URI Samples Samples diff  Average (ms)
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Result of Caching query

+ Most of queries complete in 0.3 second.

URI Samples Samples diff  Average (ms)

Responding time

In-Stream data processing

- Replace Hive batch job with Spark

+ One hour batch job -> 5 sec batch job in 1 minute of window time




In-Stream data processing
- Replace Hive batch job with Spark

+ One hour batch job -> 5 sec batch job in 1 minute of window time

- Calculate top 100 keywords and applications

+ Processing data with 530MB/s
-> 1 mil records / sec

- Must be implemented within one month

The answer is Spark
Streaming!!

- Very similar to Spark

» DStream is very similar to RDD




IN one montn

The answer is Spark
Streaming!!
- Very similar to Spark
. DStream is very similar to RDD

« Can use most functions that RDD provides(groupByKey,
sortByKey)

+ Easily change batch application to in-stream processing
application

- Support local environment

+ Can evaluate the application with laptop

Implementation process

- It only takes one week to complete the process

Batch job application




. Support local environment

- Can evaluate the application with laptop

Implementation process

- |t only takes one week to complete the process

Batch job application

Implement Evaluate Evaluate

batch ____’ with ____’ with

application local mode Cluster

In-stream application l

Evalilt‘r? © 4 Ev\zl;:\a - 4 Change the code to in-
cluster local mode stream processing

Data processing architecture

- Only "84 lines of code” are needed!
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Ev:rilt‘t? * 4 Evf,li‘:: - 4 Change the code to in-
cluster local mode stream processing

Data processing architecture

- Only "84 lines of code” are needed!
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Performance

- About 3 times faster than other In-streaming
processing engines.
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Performance

+ About 3 times faster than other In-streaming
processing engines.

L essons learned

- We can implement OLTP style systems and
In-stream data processing with Spark and Shark.

- Win-win between community and company



L essons learned

- We can implement OLTP style systems and
In-stream data processing with Spark and Shark.

- Win-win between community and company
- Test in real working cluster
- Finding some bugs and function requirement, as well.

- mainly focusing on low latency query.







