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BUILDING BIG DATA OPERATIONAL 
INTELLIGENCE PLATFORM WITH 
APACHE SPARK 
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Market & Technology Imperatives 

Communication Service Providers &  
Big Data Analytics 
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Industry Context for Communication Service 
Providers (CSPs) 
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Big Data is at the heart of two core strategies for CSPs: 
•  Improve current revenue sources through greater operational efficiencies 
•  Create new revenue source with the 4th wave 

Source: Chetan Consulting 
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CSPs - Industry Value Chain Shift 

Source: asymco 
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CSPs - A High Bar for Operational Intelligence 
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CSPs require solutions engineered to meet very stringent requirements 

Distributed 
Network 

 
Dozens of 

locations for 
capturing data, 

scattered 
around a vast 

territory 

High 
Availability 

 
No data loss; 
no down time 

Timely 
Insights 

 
Automated 
reactions 

triggered in 
seconds 

Data 
Diversity 

 
Hundreds of 
sources from 

different 
equipment types 

and vendors 

Exponential 
Data Growth 

 
Petabytes of 
data per day; 

billions of 
records per day 



Guavus Confidential – Do Not Distribute © 2014 Guavus, Inc. All rights reserved. 

Type of Data 
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Different Platforms target Different Questions 
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Streaming Analytics & Machine Learning 
to Action 
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Driving Streaming Analytics to Action 

Network Flow 
Analytics 

Usage 
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Content Optimization 

Operational Intelligence 
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Reflex 1.0 Pipeline – Timely Cube Reporting 
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Stream Engine 

Stream Engine - Operational Intelligence Analytics 

Data Streams 

Contextual Data 
Stores 

Feature Engine 

Data fusion 
Metrics creation 

Variables selection 
Causality inference 

Anomaly Engine 

Multivariate analysis 
Outlier Detection  

RCA Engine 

Statistical learning  
Clustering 

Pattern identification 
Item set mining 

Targeted 
Actions 

Optimized algorithmic support for common stream data processing & fusions 
•  Detect unusual events occurring in stream(s) of data. Once detected, isolate root cause 
•  Anomaly / outlier detection, commonalities / root cause forensics, prediction / forecasting, 

actions / alerts / notifications 
•  Record enrichment capabilities – e.g. URL categorization, device id, etc. 
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Example - State of the art causality analysis 

Linear Linear + Non linear 
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Ranking of metrics:  1) Transfer Entropy 
        2) Maximal Information Coefficient, Granger Causality 
        3) Correlation 
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Transfer entropy from a process X 
to another process Y is the amount of 
uncertainty reduced in future values 
of Y by knowing the past values of X 
given past values of Y. 
 
 
 
 
 
 

Example - Causality Techniques 

PROS 
Model free, information theory based 
approach 
Most generic estimation of causality 
between two random processes 

CONS 

Challenging joint probability estimation 

Large amount of data needed for 
calculation 

Choice of time lags 
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Maximal Information Coefficient is 
a measure of the strength between 
two random variables based on 
mutual information. Methodology for 
empirical estimation based on 
maximizing the mutual information 
over a set of grids  

PROS 
Model free, information theory based 
approach 
Can find linear and non-linear 
relationships 
Estimation possible with smaller dataset 

CONS 

No time information 
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Network Operations / Care Example 
Identifying Commonalities, Anomalies, RCA 
 

Anomaly 
Detection 

Root-Cause 
Analysis 

Event  
Drivers 

Event 
Chaining 
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BinStream Details 
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Use Case 

•  Use IP Traffic Records to calculate Bandwidth Usage as a 
Time Series (continuously …), can’t do that based on the 
time the records are received by Spark. 
–  In general for any record which has a timestamp, it important to 

analyze based on the time of event rather than the reception of 
the event record. 
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Challenges With 

•  For one dataset. Make the time stamp part of the key. 
 

•  For continuously streamed data sets. 

– You do not know if you have received all data for a particular time 
slot. Caused by event delay, or event duration.  

– An event could span multiple time slots. Caused by event 
duration. 
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Data Processing – Timing (Map-Reduce world) 
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Proposed Binning & Proration Solution 
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Solution (cond.) 

•  The typical solutions are: 
–  For event delay: Wait (Buffer). 
–  For event duration: Prorate events across time slots. 

•  Introduce a concept of BinStream. An abstraction over the 
Dstream, which needs a 
–  Function to extract the time fields from the records. 
–  Function to prorate the records. 
 
Note that this can be trivially achieved by using ‘window’ 
functionality, by having the batch equal to the time series interval 
and the window size equal to maximum possible delay. 
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Problems / Solutions 

•  window == wait & buffer. 
–  This has two issues. 

A. Need memory for buffering. 
B. Downstream needs to wait for the result (or any part of it) 

•  BinStream provides two additional options 
– Gets rid of delay for getting partial results, by sending regular 

latest snapshots for the old time slots. This does not solve the 
memory and increases the processing load. 

–  If the client can handle partial results, i.e. if it can aggregate partial 
results, it can get updates to the old bins. This reduces the 
memory for the spark-streaming application. 
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Limitations. 

•  The number of time series slots for which the updates can 
be generated is fixed, basically governed by the event 
delay characteristics.  
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THANK YOU! 


