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Communication Service Providers &
Big Data Analytics

Market & Technology Imperatives
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Net Revenue

Industry Context for Communication Service
Providers (CSPs)

GO(’)gle You

Revenue Growth Curves amazoncom
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© Chetan Sharma Consulting, 2012
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Subscriber Penetration

Big Data is at the heart of two core strategies for CSPs:

* Improve current revenue sources through greater operational efficiencies
» Create new revenue source with the 4th wave

Source: Chetan Consulting
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CSPs - A High Bar for Operational Intelligence
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Distributed
Network

Exponential
Data Growth

Dozens of
locations for
capturing data,
scattered
around a vast
territory

Petabytes of
data per day;
billions of
records per day
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Data Timely
Diversity Insights
Hundreds of Automated
sources from reactions
different triggered in
equipment types seconds

and vendors

High
Availability

No data loss;
no down time

CSPs require solutions engineered to meet very stringent requirements
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Different Platforms target Different Questions

Type of Data
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Streaming Analytics & Machine Learning
to Action
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Driving Streaming Analytics to Action

Network Flow
Analytics

Real-Time
Actions

Usage

Operational
Awareness Interactions

@

Small Cell / RAN /
Backhaul Differentiation

Layer 7 Visibility Policy Profile Triggers

Operational Intelligence Care & Experience SON / SDN / Virtualization

NetFlow, Routing

Planning Mgmt
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Content & New Service Creation & Content Optimization
CDN Analytics Monetization P
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Reflex 1.0 Pipeline — Timely Cube Reporting

Collector ™ Hadoop |#8 Analytics | § RAM [N
Compute Store Cache

Reflex 1.5 Pipeline — Spark / Yarn

BN Spark/ [N Analytics
Collector g vARN Store
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Stream Engine - Operational Intelligence Analytics

Feature Engine Anomaly Engine RCA Engine

Data Streams

@
Targeted
Data fusion Statistioal learn Actions
iii Metrics creation Multivariate analysis cuiEles] el mlng
Clustering

Variables selection Outlier Detection
Causality inference

Pattern identification

Contextual Data Item set mining

Stores

Optimized algorithmic support for common stream data processing & fusions
» Detect unusual events occurring in stream(s) of data. Once detected, isolate root cause
« Anomaly / outlier detection, commonalities / root cause forensics, prediction / forecasting,

actions / alerts / notifications
* Record enrichment capabilities — e.g. URL categorization, device id, etc.
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Example - State of the art causality analysis

A
Stochastic Granger Transfer

5. Processes Causality Entropy
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= Random !

= variables : Maximal
(Time independent) Correlation Information

Coefficient

Linear Linear + Non linear
RELATIONSHIP TYPE

Ranking of metrics: 1) Transfer Entropy
2) Maximal Information Coefficient, Granger Causality
3) Correlation
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Example - Causality Techniques

Transfer entropy from a process X Maximal Information Coefficient is
to another process Y is the amount of a measure of the strength between
uncertainty reduced in future values two random variables based on

of Y by knowing the past values of X mutual information. Methodology for
given past values of Y. empirical estimation based on

maximizing the mutual information
over a set of grids

Most generic estimation of causality
between two random processes

Can find linear and non-linear

CONS relationships

Challenging joint probability estimation

Large amount of data needed for

calculation CONS

Choice of time lags No time information
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Network Operations / Care Example

Identifying Commonalities, Anomalies, RCA

Event
Drivers
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BinStream Details
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Use Case

» Use IP Traffic Records to calculate Bandwidth Usage as a
Time Series (continuously ...), can’t do that based on the
time the records are received by Spark.

— In general for any record which has a timestamp, it important to
analyze based on the time of event rather than the reception of
the event record.
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Challenges With

* For one dataset. Make the time stamp part of the key.

d 11

* For continuously streamed data sets.

=
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— You do not know if you have received all data for a particular time
slot. Caused by event delay, or event duration.

— An event could span multiple time slots. Caused by event
duration.
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Data Processing — Timing (Map-Reduce world)
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Proposed Binning & Proration Solution

guAvuS

Spark Clock

Source Clock
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Solution (cond.)

* The typical solutions are:
— For event delay: Wait (Buffer).
— For event duration: Prorate events across time slots.

* Introduce a concept of BinStream. An abstraction over the
Dstream, which needs a
— Function to extract the time fields from the records.
— Function to prorate the records.

Note that this can be trivially achieved by using ‘window’
functionality, by having the batch equal to the time series interval
and the window size equal to maximum possible delay.
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Problems / Solutions

* window == wait & buffer.

— This has two issues.
A. Need memory for buffering.
B. Downstream needs to wait for the result (or any part of it)

» BinStream provides two additional options

— Gets rid of delay for getting partial results, by sending regular
latest snapshots for the old time slots. This does not solve the
memory and increases the processing load.

— If the client can handle partial results, i.e. if it can aggregate partial
results, it can get updates to the old bins. This reduces the
memory for the spark-streaming application.

g U/.\VU S Guavus Confidential — Do Not Distribute © 2014 Guavus , Inc. All rights reserve d. 20



Limitations.

* The number of time series slots for which the updates can
be generated is fixed, basically governed by the event
delay characteristics.
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