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WHAT IS MLBASE?

• Distributed Machine 
Learning - Made Easy!	



• Spark-based platform to 
simplify the development 
and usage of large scale 
machine learning.



THE MLBASE STACK
• Spark - Fast, distributed runtime.	


• MLlib - Optimized library for standard ML functionality.	


• MLI - Experimental API designed to simplify the 

implementation of new algorithms/feature extractors, etc.	


• ML Optimizer - A declarative layer ; simplified access to large-

scale ML for end users.
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MLLIB/MLI UPDATE
• Released MLlib as a component of Spark 0.8.0 	



• Thanks to Ameet Talwalkar, Shivaram Venkataraman, Xinghao Pan, Virginia Smith, Matei Zaharia, and others!	



• 30+ Contributors to MLlib in Spark 1.0	



• Continued development in the AMPlab.	



• MLI is an experimental API for developing ML Algos (Sparks, et. al., ICDM 2013)	



• Continued development as research platform at Berkeley.	



• Ideas from MLI have made/making their way into MLlib/Spark	



• Model/Algorithm Abstraction (MLlib 0.8)	



• Matrices as first class citizen, Sparse/Dense Support (MLlib 1.0)	



• Relational Tables (SparkSQL 1.0)	



• Standardized Interfaces, Parallel Model Training (MLlib 1.1)



A SIMPLE ML PIPELINE

• In practice, model building is an iterative process of continuous refinement.	



• Our grand vision is to automate the construction of these pipelines.	



• Start with one aspect of the pipeline - model selection.
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TRAINING A MODEL
• For each point in my dataset, 

compute some delta, update my 
model.	


• Repeat until converged.	



• In practice - requires multiple 
passes over the data.	



• From a systems perspective - this 
is the access pattern. Same pattern 
holds for lots of algorithms (Naive 
Bayes, Trees, etc.)	



• Minutes to train an SVM on 
200GB of data on a 16-node 
cluster.



THE TRICKY PART
• Algorithms	



• Logistic Regression, SVM, 
Tree-based, etc.	



• Algorithm hyper-parameters	


• Learning Rate, 

Regularization, Perturbations
Algorithms

Hyper 
Parameters

Featurization

• Featurization	


• Text - n-grams, TF-IDF	


• Images - Gabor filters, 

random convolutions	


• Random projection? Scaling?



ONE APPROACH
• TRY IT ALL!	



• Grid search every 
combination of 
parameters, algorithms, 
features, etc.	



• Drawbacks	


• Models are expensive to 

compute.	


• Parameter space is huge.	



• Some version of this still 
often done in practice!
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A BETTER APPROACH
• Better resource utilization	



• Through batching	



• Algorithmic Speedups	



• Via Early Stopping	



• Improved Search
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A TALE OF 3 OPTIMIZATIONS

• Better Resource Utilization 

• Algorithmic Speedups	



• Improved Search



BETTER RESOURCE 
UTILIZATION

• Modern memory speeds 
slower than modern 
processor speeds:	


• Can read: 0.6b doubles/

sec/core. (4.75 GB/s)	


• Can compute: 15b flops/

sec/core	


• Means we can do 25 

flops/double read.



WHAT DOES THIS MEAN FOR 
MODELING?

• Typical model update requires 2-4 
flops/double.	



• Can do 7-10 model updates in the 
same amount of time we can do 1 
by using otherwise idle cycles.	



• Assuming that models are 
relatively small - fit in cache.	



• Train multiple models 
simultaneously.
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WHAT DO WE SEE IN MLI?

• See something between a 
2x and 5x increase in 
models trained/sec when 
introducing this 
optimization.	


• Overhead from 

virtualization, network, 
unboxing, etc.



BATCH MATRIX VERSION

• Previous numbers - vector/
matrix multiplies.	



• These - rederived in terms 
of Matrix-Matrix multiplies.	



• Better performance as 
models get more 
complicated.	



• Still some stuff to do!



A TALE OF 3 OPTIMIZATIONS

• Improved Search	



• Algorithmic Speedups 

• Better Resource Utilization



ALGORITHMIC 	


SPEEDUPS
• Each of the points in our hyper-

parameter space represents training a 
full model.	



• But we sometimes can be pretty sure 
that the model isn’t going to be helpful.	



• So we stop early - models that are junk 
after one pass over the data stop early.	



• Other things we can do here - quasi-
Newton methods (Adagrad, LBFGS) 
speed up convergence without too 
much computational complexity.



A TALE OF 3 OPTIMIZATIONS

• Better Resource Utilization	



• Algorithmic Speedups	



• Improved Search



WHAT SEARCH METHOD 
SHOULD WE USE?

• Derivative Free Optimization 
Techniques	


• Grid	


• Random	


• Nelder-Mead	


• Powell’s method	


• Bayesian	



• Spearmint, SMAC, TPE	


• What should we do?	



• Tried on 5 datasets, 
optimized over 4 
parameters, check what 
works!
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PUTTING IT ALL TOGETHER
• The first version of the MLbase optimizer	



• Given 30GB dense image features (240k x 
16k)	



• Binary classification (plants vs. non plants)	



• Consider two model families	



• 3 hyperparameters for each	



• Learning Rate, Regularization, Model family	



• Naive method - sequential grid search - no 
early stopping.	



• More sophisticated - batch random search 
with early stopping.
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DOES IT 
SCALE?

1.5 TB dataset (1.2m x 160k), 
128 nodes, thousands of 

passes over the data.	


!

Tried 32 models in 15 hours. 
Good answer after 11.
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REAL WORLD 
PIPELINES



A SIMPLE ML PIPELINE
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A REAL PIPELINE FOR 
IMAGE CLASSIFICATION

Inspired by Coates & Ng, 2012
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FUTURE WORK
• Choosing between model families (bandits?)	



• Ensembling	



• Leverage sampling	



• Faster learning methods (ADAGRAD, L-BFGS)	



• Better parallelism for smaller datasets	



• Incorporating feature extraction into pipeline	



• Multiple hypothesis testing issues



QUESTIONS?


