GHOSTFACE TOWARDS AN OPTIMIZER FOR MLBASE

Evan R. Sparks, Ameet Talwalkar, Michael J. Franklin, Michael I. Jordan, Tim Kraska

UC Berkeley

THE BDAS STACK

WHAT IS MLBASE?

- Distributed Machine Learning - Made Easy!
- Spark-based platform to simplify the development and usage of large scale machine learning.

THE MLBASE STACK

- Spark Fast, distributed runtime.
- MLlib Optimized library for standard ML functionality.
- MLI Experimental API designed to simplify the implementation of new algorithms/feature extractors, etc.
- ML Optimizer A declarative layer; simplified access to largescale ML for end users.

MLLIB/MLI UPDATE

- Released MLlib as a component of Spark 0.8.0
 - Thanks to Ameet Talwalkar, Shivaram Venkataraman, Xinghao Pan, Virginia Smith, Matei Zaharia, and others!
 - 30+ Contributors to MLlib in Spark 1.0
 - Continued development in the AMPlab.
- MLI is an experimental API for developing ML Algos (Sparks, et. al., ICDM 2013)
 - · Continued development as research platform at Berkeley.
 - Ideas from MLI have made/making their way into MLIib/Spark
 - Model/Algorithm Abstraction (MLlib 0.8)
 - Matrices as first class citizen, Sparse/Dense Support (MLlib 1.0)
 - Relational Tables (SparkSQL 1.0)
 - Standardized Interfaces, Parallel Model Training (MLlib 1.1)

A SIMPLE ML PIPELINE

Automated Model Selection

- · In practice, model building is an iterative process of continuous refinement.
- · Our grand vision is to automate the construction of these pipelines.
- · Start with one aspect of the pipeline model selection.

TRAINING A MODEL

- For each point in my dataset, model.
 - Repeat until converged.
- In practice requires multiple passes over the data.
- From a systems perspective this is the access pattern. Same pattern holds for lots of algorithms (Naive Bayes, Trees, etc.)
- Minutes to train an SVM on 200GB of data on a 16-node cluster.

compute some delta, update my
$$w:=w-\alpha \nabla Q(w)=w-\alpha \sum_{i=1}^n \nabla Q_i(w),$$

THE TRICKY PART

- Algorithms
 - Logistic Regression, SVM, Tree-based, etc.
- Algorithm hyper-parameters
 - Learning Rate,
 Regularization, Perturbations
- Featurization
 - Text n-grams, TF-IDF
 - Images Gabor filters, random convolutions
 - Random projection? Scaling?

ONE APPROACH

- TRY IT ALL!
 - Grid search every combination of parameters, algorithms, features, etc.
- Drawbacks
 - Models are expensive to compute.
 - · Parameter space is huge.
- Some version of this still often done in practice!

A BETTER APPROACH

- Better resource utilization
 - Through batching
- Algorithmic Speedups
 - Via Early Stopping
- Improved Search

ATALE OF 3 OPTIMIZATIONS

- Better Resource Utilization
- Algorithmic Speedups
- Improved Search

BETTER RESOURCE UTILIZATION

- Modern memory speeds slower than modern processor speeds:
 - Can read: 0.6b doubles/ sec/core. (4.75 GB/s)
 - Can compute: I5b flops/'s sec/core
 - Means we can do 25 flops/double read.

WHAT DOESTHIS MEAN FOR MODELING?

- Typical model update requires 2-4 flops/double.
- Can do 7-10 model updates in the same amount of time we can do I by using otherwise idle cycles.
- Assuming that models are relatively small - fit in cache.
- Train multiple models simultaneously.

1	a	Dog
1	b	Cat
2	С	Cat
2	d	Cat
3	е	Dog
3	f	Horse
4	g	Doge

WHAT DO WE SEE IN MLI?

- See something between a 2x and 5x increase in models trained/sec when introducing this optimization.
 - Overhead from virtualization, network, unboxing, etc.

Batch Size D	100	500	1000	10000
1	136.80	114.71	98.14	22.18
2	260.64	171.79	147.79	30.59
5	554.32	290.46	189.87	30.19
10	726.77	390.04	232.23	25.31

(a) Models trained per hour for varying batch sizes and model complexity.

D Batch Size	100	500	1000	10000
1	1.00	1.00	1.00	1.00
2	1.91	1.50	1.51	1.38
5	4.05	2.53	1.93	1.36
10	5.31	3.40	2.37	1.14

(b) Speedup factor vs baseline for varying batch size and model complexity.

Figure 5: Effect of batching is examined on 16 nodes with a synthetic dataset. Speedups diminish but remain significant as models increase in complexity.

BATCH MATRIX VERSION

- Previous numbers vector/ matrix multiplies.
- These rederived in terms of Matrix-Matrix multiplies.
- Better performance as models get more complicated.
- Still some stuff to do!

Batch Size D	100	500	1000	10000
1	116.29	29.80	24.11	2.12
2	112.82	45.01	22.12	2.71
5	311.05	87.97	54.54	6.74
10	527.50	219.30	154.09	11.42

(a) Models trained per hour for varying batch sizes and model complexity.

Batch Size D	100	500	1000	10000
1	1.00	1.00	1.00	1.00
2	0.97	1.51	0.92	1.28
5	2.67	2.95	2.26	3.18
10	4.54	7.36	6.39	5.40

(b) Speedup factor vs baseline for varying batch size and model complexity.

Figure 5: Effect of batching is examined on 16 nodes with a synthetic dataset. Speedups diminish but remain significant as models increase in complexity.

ATALE OF 3 OPTIMIZATIONS

- Improved Search
- Algorithmic Speedups
- Better Resource Utilization

ALGORITHMIC SPEEDUPS

- Each of the points in our hyperparameter space represents training a full model.
- But we sometimes can be pretty sure that the model isn't going to be helpful.
- So we stop early models that are junk after one pass over the data stop early.
- Other things we can do here quasi-Newton methods (Adagrad, LBFGS) speed up convergence without too much computational complexity.

ATALE OF 3 OPTIMIZATIONS

- Better Resource Utilization
- Algorithmic Speedups
- Improved Search

WHAT SEARCH METHOD SHOULD WE USE?

- Derivative Free Optimization Techniques
 - Grid
 - Random
 - Nelder-Mead
 - Powell's method
 - Bayesian
 - Spearmint, SMAC, TPE
- · What should we do?
 - Tried on 5 datasets, optimized over 4 parameters, check what works!

PUTTING IT ALL TOGETHER

- The first version of the MLbase optimizer
- Given 30GB dense image features (240k x 16k)
- Binary classification (plants vs. non plants)
- Consider two model families
 - 3 hyperparameters for each
 - Learning Rate, Regularization, Model family
- Naive method sequential grid search no early stopping.
- More sophisticated batch random search with early stopping.

DOES IT SCALE?

1.5 TB dataset (1.2m x 160k), 128 nodes, thousands of passes over the data.

Tried 32 models in 15 hours. Good answer after 11.

REAL WORLD PIPELINES

A SIMPLE ML PIPELINE

FUTURE WORK

- Choosing between model families (bandits?)
- Ensembling
- Leverage sampling
- Faster learning methods (ADAGRAD, L-BFGS)
- Better parallelism for smaller datasets
- Incorporating feature extraction into pipeline
- Multiple hypothesis testing issues

QUESTIONS?