
GHOSTFACE
TOWARDS AN OPTIMIZER

FOR MLBASE

Evan R. Sparks, Ameet Talwalkar, 	

Michael J. Franklin, Michael I. Jordan, Tim Kraska	

!
UC Berkeley

THE BDAS STACK

WHAT IS MLBASE?

• Distributed Machine
Learning - Made Easy!	

• Spark-based platform to
simplify the development
and usage of large scale
machine learning.

THE MLBASE STACK
• Spark - Fast, distributed runtime.	

• MLlib - Optimized library for standard ML functionality.	

• MLI - Experimental API designed to simplify the

implementation of new algorithms/feature extractors, etc.	

• ML Optimizer - A declarative layer ; simplified access to large-

scale ML for end users.

Runtime(s)

MLlib

MLI

ML Optimizer

Spark

Help wanted!

This talk

MLLIB/MLI UPDATE
• Released MLlib as a component of Spark 0.8.0 	

• Thanks to Ameet Talwalkar, Shivaram Venkataraman, Xinghao Pan, Virginia Smith, Matei Zaharia, and others!	

• 30+ Contributors to MLlib in Spark 1.0	

• Continued development in the AMPlab.	

• MLI is an experimental API for developing ML Algos (Sparks, et. al., ICDM 2013)	

• Continued development as research platform at Berkeley.	

• Ideas from MLI have made/making their way into MLlib/Spark	

• Model/Algorithm Abstraction (MLlib 0.8)	

• Matrices as first class citizen, Sparse/Dense Support (MLlib 1.0)	

• Relational Tables (SparkSQL 1.0)	

• Standardized Interfaces, Parallel Model Training (MLlib 1.1)

A SIMPLE ML PIPELINE

• In practice, model building is an iterative process of continuous refinement.	

• Our grand vision is to automate the construction of these pipelines.	

• Start with one aspect of the pipeline - model selection.

!
Data

Feature	

Extrac,on

Model	

Training

Final	
 	

Model

Automated Model Selection

TRAINING A MODEL
• For each point in my dataset,

compute some delta, update my
model.	

• Repeat until converged.	

• In practice - requires multiple
passes over the data.	

• From a systems perspective - this
is the access pattern. Same pattern
holds for lots of algorithms (Naive
Bayes, Trees, etc.)	

• Minutes to train an SVM on
200GB of data on a 16-node
cluster.

THE TRICKY PART
• Algorithms	

• Logistic Regression, SVM,
Tree-based, etc.	

• Algorithm hyper-parameters	

• Learning Rate,

Regularization, Perturbations
Algorithms

Hyper
Parameters

Featurization

• Featurization	

• Text - n-grams, TF-IDF	

• Images - Gabor filters,

random convolutions	

• Random projection? Scaling?

ONE APPROACH
• TRY IT ALL!	

• Grid search every
combination of
parameters, algorithms,
features, etc.	

• Drawbacks	

• Models are expensive to

compute.	

• Parameter space is huge.	

• Some version of this still
often done in practice!

Learning	

Rate

Regularization

Best answer

A BETTER APPROACH
• Better resource utilization	

• Through batching	

• Algorithmic Speedups	

• Via Early Stopping	

• Improved Search

Learning	

Rate

Regularization

Best answer

A TALE OF 3 OPTIMIZATIONS

• Better Resource Utilization

• Algorithmic Speedups	

• Improved Search

BETTER RESOURCE
UTILIZATION

• Modern memory speeds
slower than modern
processor speeds:	

• Can read: 0.6b doubles/

sec/core. (4.75 GB/s)	

• Can compute: 15b flops/

sec/core	

• Means we can do 25

flops/double read.

WHAT DOES THIS MEAN FOR
MODELING?

• Typical model update requires 2-4
flops/double.	

• Can do 7-10 model updates in the
same amount of time we can do 1
by using otherwise idle cycles.	

• Assuming that models are
relatively small - fit in cache.	

• Train multiple models
simultaneously.

A B C

1 a Dog

1 b Cat

2 c Cat

2 d Cat

3 e Dog

3 f Horse

4 g Doge

M
od

el
 2

M
od

el
 1

WHAT DO WE SEE IN MLI?

• See something between a
2x and 5x increase in
models trained/sec when
introducing this
optimization.	

• Overhead from

virtualization, network,
unboxing, etc.

BATCH MATRIX VERSION

• Previous numbers - vector/
matrix multiplies.	

• These - rederived in terms
of Matrix-Matrix multiplies.	

• Better performance as
models get more
complicated.	

• Still some stuff to do!

A TALE OF 3 OPTIMIZATIONS

• Improved Search	

• Algorithmic Speedups

• Better Resource Utilization

ALGORITHMIC 	

SPEEDUPS
• Each of the points in our hyper-

parameter space represents training a
full model.	

• But we sometimes can be pretty sure
that the model isn’t going to be helpful.	

• So we stop early - models that are junk
after one pass over the data stop early.	

• Other things we can do here - quasi-
Newton methods (Adagrad, LBFGS)
speed up convergence without too
much computational complexity.

A TALE OF 3 OPTIMIZATIONS

• Better Resource Utilization	

• Algorithmic Speedups	

• Improved Search

WHAT SEARCH METHOD
SHOULD WE USE?

• Derivative Free Optimization
Techniques	

• Grid	

• Random	

• Nelder-Mead	

• Powell’s method	

• Bayesian	

• Spearmint, SMAC, TPE	

• What should we do?	

• Tried on 5 datasets,
optimized over 4
parameters, check what
works!

GRID NELDER_MEAD POWELL RANDOM SMAC SPEARMINT TPE

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

australian
breast

diabetes
fourclass

splice

16 81 256 625 16 81 256 625 16 81 256 625 16 81 256 625 16 81 256 625 16 81 256 625 16 81 256 625
Method and Maximum Calls

D
at

as
et

 a
nd

 V
al

id
at

io
n

Er
ro

r

Maximum Calls
16
81
256
625

Comparison of Search Methods Across Learning Problems

PUTTING IT ALL TOGETHER
• The first version of the MLbase optimizer	

• Given 30GB dense image features (240k x
16k)	

• Binary classification (plants vs. non plants)	

• Consider two model families	

• 3 hyperparameters for each	

• Learning Rate, Regularization, Model family	

• Naive method - sequential grid search - no
early stopping.	

• More sophisticated - batch random search
with early stopping.

●●●●●●●●●●●●●●●●

●●●●

●●●●

●●●●

●●●●
●●●●●●●●●

●●●

●●

●●●●●●●

●●●●●●●●●
●●●●●●●

●●●

●●

●●●●●●●●●●●●●●●●●●●

●●●

●
●●●●

●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.25

0.50

0.75

0 200 400 600 800
Time elapsed (m)

Be
st

 V
al

id
at

io
n

Er
ro

r S
ee

n
So

 F
ar

Search Method
●

●

●

Grid − Unoptimized
Random − Optimized
TPE − Optimized

Model Convergence Over Time

●●●●●●●●
●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●

●●●●●
●●●

●●●●●●
●●●

●●●
●●●

●●●
●●●

●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●

●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●

●●●
●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●

●●●
●●●
●●●
● ●●●

●●●
●●●
●●●

● ●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●● ●●●

●●●
●●●
●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
● ●●●

●●●
●●●
●●●
●●●

● ●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
● ●● ●●●

●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●● ●●●

●●●
●●●
●

0

50

100

0

50

100

0

50

100

Early: 0
Early: 1

Early: 1
Batch.Size: 1

Batch.Size: 1
Batch.Size: 10

0 200 400 600 800
Time elapsed (m)

N
um

be
r o

f M
od

el
s

Tr
ai

ne
d

by
 O

pt
im

iz
at

io
n

Le
ve

l

Search Method
●

●

●

Grid
Random
TPE

Models Trained Over Time

DOES IT
SCALE?

1.5 TB dataset (1.2m x 160k),
128 nodes, thousands of

passes over the data.	

!

Tried 32 models in 15 hours.
Good answer after 11.

●●●●●●●● ●●●●●● ●●●●● ●●●●

●●●●

●● ●● ●

0.25

0.50

0.75

5 10
Time elapsed (h)

Be
st

 V
al

id
at

io
n

Er
ro

r S
ee

n
So

 F
ar

Convergence of Model Accuracy on 1.5TB Dataset

REAL WORLD
PIPELINES

A SIMPLE ML PIPELINE

!
Data

Feature	

Extrac,on

Model	

Training

Final	
 	

Model

A REAL PIPELINE FOR
IMAGE CLASSIFICATION

Inspired by Coates & Ng, 2012

Data Image	

Parser Normalizer Convolver

sqrt,mean

Zipper

Linear
Solver

Symmetric	

Rectifier

ident,abs
ident,mean

Global Pooling

Pooler

Patch	

Extractor

Patch
Whitener

KMeans	

Clusterer

Feature Extractor

Label	

Extractor

ModelLinear	

Mapper

Test	

Data

Label	

Extractor

Feature
Extractor

Test
Error

Error	

Computer

Data Image	

Parser Normalizer Convolver

sqrt,mean

Zipper

Linear
Solver

Symmetric	

Rectifier

ident,abs
ident,mean

Global

Pooler

Patch	

Extractor

Patch
Whitener

KMeans	

Clusterer

Feature Extractor

Label	

Extractor

Linear	

Mapper Model

Test	

Data

Label	

Extractor

Feature
Extractor

Test
Error

Error	

Computer

No Hyperparameters	

A few Hyperparameters	

Lotsa Hyperparameters

FUTURE WORK
• Choosing between model families (bandits?)	

• Ensembling	

• Leverage sampling	

• Faster learning methods (ADAGRAD, L-BFGS)	

• Better parallelism for smaller datasets	

• Incorporating feature extraction into pipeline	

• Multiple hypothesis testing issues

QUESTIONS?

