
© 2013 MediaCrossing, Inc. All rights reserved.

Going Live:
Preparing your first Spark
production deployment
Gary Malouf
Architect, MediaCrossing
@GaryMalouf
Spark Summit 2014

Overview!
•  Spark at MediaCrossing!
•  Choosing, maintaining and possibly compiling the right

combination of packages to work with Spark!
•  Data serialization/deserialization formats!
•  Performance issues with small data!
•  Configuration/Deployment automation!
•  Monitoring!
•  Exposing Spark for non-developer usage!

2

Spark at MediaCrossing

•  We make it easier and more efficient for advertisers

and publishers to trade digital media in milliseconds!
•  Since we started trading in 2013, we were able to avoid

ever having to use Map/Reduce for our big data thanks
to Spark!

•  Inspired by Nathan Marz’s “Lambda Architecture”
principles, our team leverages a unified view of
realtime and historic user behavior to constantly adjust
our buying and selling models!

3

Target Audience!
•  You are building a new data/analytics system and have

determined that you have big data (> 5TB)!
•  ‘New’ in this case means no prior Hadoop/HDFS

installation!
•  This is your first rodeo with an analytics system based

on Spark!

4

Building the Stack!
•  Where will data be stored?!

- HDFS/Cassandra are two major options!
- If not already published, may need to compile Spark against
your HDFS distribution version!

•  How to choose a cluster manager?!
- Standalone/Yarn/Mesos !
- We went with Mesos – Berkeley stack preference!

•  How will data get persisted into your system?!
- Continuous streaming data - Apache Flume, Spark Streaming!
- Large batches – Spark jobs!!

•  Reliable Job Scheduling?!
- Chronos (runs on Mesos) – fault-tolerant job scheduler!

5

6

Storing your data!
•  Text Files!

- Human Readable!
- Not splittable when compressed out of box (negatively affects
parallelization)!

•  Sequence Files (container for binary key-value pairs)!
- Not human readable!
- Great for storing key-value pairs without parsing!
- Splittable (helps parallelize jobs)!
- Storage efficient!
- Protobuf friendly!

7

Small File Woes !
•  HDFS Default Block Size – 64MB!
•  Data partitioning in Spark is done based on the number

of blocks each source file takes up.!
•  Spark/HDFS performs orders of magnitude better with

100’s of files on the order of 64/128 MB in size vs
1000’s/10’s of 1000’s of much smaller files.!

•  Options:!
- Batch your data into large files at write time!
- Write your own job to aggregate small files into large ones!
- Use an existing library like  
https://github.com/edwardcapriolo/filecrush !

8

Configuration/Deployment!
•  Automate from day 1 – Ansible, Puppet, Chef, etc!
•  Like you would with source code, version control your

configuration and deployment scripts!
•  Co-locate Spark workers (Mesos slaves) with HDFS

data nodes – noticeably better performance!
•  Ideal World: Separate research cluster from

‘production’!

9

Monitoring!
•  Spark covers this extensively in their docs:

https://spark.apache.org/docs/latest/monitoring.html!
•  In practice, we rely on Nagios to tell us when a server

is struggling and Munin for diagnosing less urgent, long
running problems!

•  Running on Mesos, we rely on their user interface for
visually seeing what work is taking place across the
cluster, and when we need to increase our cluster size.!

10

Non-developer Tooling!
•  Built-in PySpark for interactive querying !
•  SparkR -

http://amplab-extras.github.io/SparkR-pkg/!
•  Shark (Hive on top of Spark) – SQL query

language!

11

Thank you for your time!!
•  We continue to increase our usage of

Spark for research and other critical
business functions

•  If what we are doing sounds interesting…
•  For more info, feel free to reach out :

•  @GaryMalouf
•  gary.malouf@mediacrossing.com

•  We hire remote engineers:
•  careers@mediacrossing.com

12

