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Overview!
•  Spark at MediaCrossing!
•  Choosing, maintaining and possibly compiling the right 

combination of packages to work with Spark!
•  Data serialization/deserialization formats!
•  Performance issues with small data!
•  Configuration/Deployment automation!
•  Monitoring!
•  Exposing Spark for non-developer usage!
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Spark at MediaCrossing

•  We make it easier and more efficient for advertisers 

and publishers to trade digital media in milliseconds!
•  Since we started trading in 2013, we were able to avoid 

ever having to use Map/Reduce for our big data thanks 
to Spark!

•  Inspired by Nathan Marz’s “Lambda Architecture” 
principles, our team leverages a unified view of 
realtime and historic user behavior to constantly adjust 
our buying and selling models!
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Target Audience!
•  You are building a new data/analytics system and have 

determined that you have big data (> 5TB)!
•  ‘New’ in this case means no prior Hadoop/HDFS 

installation!
•  This is your first rodeo with an analytics system based 

on Spark!
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Building the Stack!
•  Where will data be stored?!

- HDFS/Cassandra are two major options!
- If not already published, may need to compile Spark against 
your HDFS distribution version!

•  How to choose a cluster manager?!
- Standalone/Yarn/Mesos !
- We went with Mesos – Berkeley stack preference!

•  How will data get persisted into your system?!
- Continuous streaming data -  Apache Flume, Spark Streaming!
- Large batches – Spark jobs!!

•  Reliable Job Scheduling?!
- Chronos (runs on Mesos) – fault-tolerant job scheduler!
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Storing your data!
•  Text Files!

- Human Readable!
- Not splittable when compressed out of box (negatively affects 
parallelization)!

•  Sequence Files (container for binary key-value pairs)!
- Not human readable!
- Great for storing key-value pairs without parsing!
- Splittable (helps parallelize jobs)!
- Storage efficient!
- Protobuf friendly!
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Small File Woes !
•  HDFS Default Block Size – 64MB!
•  Data partitioning in Spark is done based on the number 

of blocks each source file takes up.!
•  Spark/HDFS performs orders of magnitude better with 

100’s of files on the order of 64/128 MB in size vs 
1000’s/10’s of 1000’s of much smaller files.!

•  Options:!
- Batch your data into large files at write time!
- Write your own job to aggregate small files into large ones!
- Use an existing library like  
https://github.com/edwardcapriolo/filecrush !
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Configuration/Deployment!
•  Automate from day 1 – Ansible, Puppet, Chef, etc!
•  Like you would with source code, version control your 

configuration and deployment scripts!
•  Co-locate Spark workers (Mesos slaves) with HDFS 

data nodes – noticeably better performance!
•  Ideal World:  Separate research cluster from 

‘production’!
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Monitoring!
•  Spark covers this extensively in their docs: 

https://spark.apache.org/docs/latest/monitoring.html!
•  In practice, we rely on Nagios to tell us when a server 

is struggling and Munin for diagnosing less urgent, long 
running problems!

•  Running on Mesos, we rely on their user interface for 
visually seeing what work is taking place across the 
cluster, and when we need to increase our cluster size.!
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Non-developer Tooling!
•  Built-in PySpark for interactive querying !
•  SparkR - 

http://amplab-extras.github.io/SparkR-pkg/!
•  Shark (Hive on top of Spark) – SQL query 

language!
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Thank you for your time!!
•  We continue to increase our usage of 

Spark for research and other critical 
business functions 

•  If what we are doing sounds interesting… 
•  For more info, feel free to reach out : 

•  @GaryMalouf 
•  gary.malouf@mediacrossing.com  

•  We hire remote engineers: 
•  careers@mediacrossing.com 
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