
© 2014 IBM Corporation© 2014 IBM Corporation

 IBM Text Analytics on Apache Spark
Dimple Bhatia (dimple@us.ibm.com, @dimpbhatia)

 Sudarshan Thitte (srthitte@us.ibm.com, @trsudarshan)

Engineering, Text Analytics, IBM

@ Spark Summit 2014

mailto:dimple@us.ibm.com
mailto:srthitte@us.ibm.com
https://twitter.com/trsudarshan

© 2014 IBM Corporation

IBM Disclaimer on Forward Looking Statements

IBM’s statements regarding its plans, directions, and intent are subject to change or
withdrawal without notice at IBM’s sole discretion.

Information regarding potential future products is intended to outline our general product
direction and it should not be relied on in making a purchasing decision.

The information mentioned regarding potential future products is not a commitment,
promise, or legal obligation to deliver any material, code or functionality. Information
about potential future products may not be incorporated into any contract. The
development, release, and timing of any future features or functionality described for our
products remains at our sole discretion.

Performance is based on measurements and projections using standard IBM benchmarks in
a controlled environment. The actual throughput or performance that any user will
experience will vary depending upon many factors, including considerations such as the
amount of multiprogramming in the user’s job stream, the I/O configuration, the storage
configuration, and the workload processed. Therefore, no assurance can be given that an
individual user will achieve results similar to those stated here.

© 2014 IBM Corporation

Agenda

● Motivation
– IBM Text Analytics → Our expectation, experience, solution

● IBM Text Analytics
– SystemT → high-performance run-time, uses optimized execution plans
– Information Extraction (IE)→ deep-parse, lexical semantics, extraction libraries
– AQL → express lexical semantics as declarative rules using relational algebra
– Benchmarks → SystemT versus GATE-ANNIE
– Eclipse & Web based developer tooling → text-analytics life-cycle, map-reduce

● Project *Sparkle* - IBM Text Analytics on Apache Spark
– Spark-Java, Shark-UDTF
– Future work → Scale, Scala, Tooling, Extractors
–

© 2014 IBM Corporation

● rule-based solutions building on
cascading grammars with expressivity &
efficiency issues

● black-box solutions building on
statistical learning models with lack of
transparency

A declarative information extraction
system with cost-based optimization,
high-performance runtime and novel
development tooling based on solid
theoretical foundation
[SIGMOD Record’09, ACL’10, PODS’13, PODS’14]

An enterprise information extraction
system needs to be:

expressive
efficient

transparent
usable

Our “expectation”

Our “experience” Our “solution”

IBM Text Analytics - Motivation

© 2014 IBM Corporation

Cost-based
optimization

Intent

Select

Join

Product

Regex

Intent

Regex

Select

Product

Join

… Intent

Join

Select

Product
Regex

§ Declarative SQL-like language
User specifies tasks in a high-level language,
without specifying algorithms for data
processing
[SIGMOD Record’09, ACL’10]

§
§ High-performance, scalable and

embeddable Java runtime Outperforms
state-of-the-art systems
[SIGMOD Record’09, ACL’10]

§
§ Modern pattern discovery tools

AQL development using ML & HCI
[EMNLP’08, VLDB’10, ACL’11, CIKM’11,
ACL’12, EMNLP’12, CHI’13, SIGMOD’13,
ACL’13]

AQL Extractor

create view IntentToBuy as
select P.name as product,
 I.clue as strength
from Intent I, Product P
where
 Follows(I.clue, P.name, 0, 20)
and Not(ContainsRegex(/\b(not)\b/,
 LeftContext(I.clue, 10)));

SystemT Runtime

Input document
one-at-a-time

Extracted
Concepts per
document

§ Document-at-a-time

§ High-throughput

§ Small memory footprint
[SIGMOD Record’08]

IBM Text Analytics

AQL language exposed via InfoSphere BigInsights and Streams
SystemT Runtime with pre-built extractors ship in 8+ other IBM products

§ Various optimization strategies to choose
across execution plans

Cost-based optimization for text-centric
operations [ICDE’08, ICDE’11]

© 2014 IBM Corporation

SystemT – high performance run-time, optimized execution

Optimizer

Compiled
 Plan

AQL Language

Input documents

Distributed Cluster
with SystemT

● Multiple ways to execute a given set
of AQL statements

● Optimizer chooses a good plan from
among alternatives

● Employs multiple techniques
● AQL rewrite rules
● Cost-based optimization
● Global plan rewrite rules

● Extractor plan → graph of operators
● Operator → a module that performs a

specific task, ex.: identifying matches
of a regex on a string

● Output of one operator → input of
another

Info. Extractions

● Shared Dictionary
Matching

● Regular Expression
Strength Reduction

● Shared Regular
Expression Matching

● Conditional Evaluation

© 2014 IBM Corporation

Information Extraction – highlights

Regexes & Dictionaries Span Operations

. . .

AQL

Named
Entities

Le
ve

l o
f

ab
st

ra
ct

io
n

Le
ve

l o
f

ab
st

ra
ct

io
n

Le
ve

l o
f

ab
st

ra
ct

io
n

Le
ve

l o
f

ab
st

ra
ct

io
n

Machine
Data

Primitives
Noisy Data Normalization

Deep Parser

Action API
Financial
Primitives . . .

Life sciences IE
•Social, Log &

Email IE

. . . •CRM, Search &
Piracy IEFinancial IE

Joins & Predicates Functions

deep-parsing, normalization, rule-based lexical semantics, algebraic operations over textual spans, extensibility via functions, rich extraction libraries and many more

Action API, deep-parser & noisy data normalization → work in progress,
slated towards a future release of IBM BigInsights

© 2014 IBM Corporation

module IntentExamples;

import view Actions from module ActionAPI as Actions;
import view Roles from module ActionAPI as Roles;

create dictionary IntentVerbs with case insensitive as ('want','wish',‘intend');
create dictionary CustomerTerm with case insensitive as ('I','we');
create dictionary IntentSubject with case insensitive as ('agent');
create dictionary IntentObject with case insensitive as ('theme','action_theme');

create view ClientNeeds as
 select A.sentence, O.value from Actions A, Roles S, Roles O
 where
 Equals(GetText(A.aid),GetText(S.aid)) and
 Equals(GetText(A.aid),GetText(O.aid)) and
 MatchesDict(‘IntentVerbs',A.verbBase) and
 MatchesDict(‘IntentSubject',S.name) and
 MatchesDict('CustomerTerm',S.value) and
 MatchesDict(‘IntentObject',O.name);

output view ClientIntent;

module IntentExamples;

import view Actions from module ActionAPI as Actions;
import view Roles from module ActionAPI as Roles;

create dictionary IntentVerbs with case insensitive as ('want','wish',‘intend');
create dictionary CustomerTerm with case insensitive as ('I','we');
create dictionary IntentSubject with case insensitive as ('agent');
create dictionary IntentObject with case insensitive as ('theme','action_theme');

create view ClientNeeds as
 select A.sentence, O.value from Actions A, Roles S, Roles O
 where
 Equals(GetText(A.aid),GetText(S.aid)) and
 Equals(GetText(A.aid),GetText(O.aid)) and
 MatchesDict(‘IntentVerbs',A.verbBase) and
 MatchesDict(‘IntentSubject',S.name) and
 MatchesDict('CustomerTerm',S.value) and
 MatchesDict(‘IntentObject',O.name);

output view ClientIntent;

Dictionaries

Join
Actions + Roles and
use functions

Dictionary-based
selection predicates

API imports

AQL – express lexical semantics as declarative rules

© 2014 IBM Corporation

Benchmarks – SystemT vs GATE-ANNIE+

§ T-NE
Using AQL & SystemT run-time

§

§ ANNIE
http://gate.ac.uk/sale/tao/splitch6.html#chap:a
nnie

§ ANNIE-Optimized
ANNIE with Ontotext Japec transducer

§ Minkov
Using E Minkov [EMNLP’05]

Quality of
Person entity
extraction via

AQL is
superlative

* as a function of throughput & memory utilization, as seen on a cluster of 2 x 2.4 GHz, 4-core Intel Xeon CPUs with 64GB RAM

Runtime
Performance* of

SystemT is orders of
magnitude better

+ GATE-ANNIE is a well known open-source IE system → http://gate.ac.uk/sale/tao/splitch6.html

http://gate.ac.uk/sale/tao/splitch6.html

© 2014 IBM Corporation

Eclipse IE – Extraction workflow, AQL editor, extraction design
planner

Guided IE workflow

Powerful AQL editor
with assistive design

planner

© 2014 IBM Corporation

Eclipse IE – Result Viewer with granular highlighting

View results in a structured
manner

Granular highlighting of results in
source document

© 2014 IBM Corporation

Web-IE (Future release) – Visual extractor development

Pattern built using
Machine Data extractor

and user defined
dictionary and regex via

drag and drop

Extraction Results
highlighted

Catalog of primitives and
user defined extractors

© 2014 IBM Corporation

Text Analytics Life-cycle

Distributed run via Spark/Hadoop as:

● Spark/Hadoop* Java
● Shark/Hive UDTF
● Pig-friendly* UDF
● Jaql*+ map-reduce

+ More on IBM Jaql

● Sample/Subset data for training
● Develop IE program/extractor
● Publish to distributed cluster as an App
● Administrator deploys App
● Run as a distributed IE job
● Visualize and Iterate

* Part of IBM BigInsights

http://www-01.ibm.com/support/knowledgecenter/SSPT3X_3.0.0/com.ibm.swg.im.infosphere.biginsights.analyze.doc/doc/t_analyze_bd_jaql.html
http://www-01.ibm.com/support/knowledgecenter/SSPT3X_3.0.0/com.ibm.swg.im.infosphere.biginsights.text.doc/doc/ana_txtan_intro.html

© 2014 IBM Corporation

Sparkle - Text Analytics via Spark Java / Shark UDTF

HDFS

Spark-Java
● Read data from HDFS into

JavaRDD
● Distribute IE using SystemT via

map()
● Return result-set to HDFS

Shark-UDTF
● Hive UDTF used within Shark
● Read data from HDFS into table
● Invoke via a normal Hive query

passing in columns adherent to
expected UDTF schema

● Save result-set into table

Text Analytics
Using SystemT Java APIs+

● Transform input record/row into
SystemT input tuple, conforming to
input schema

● Use OperatorGraph object and
apply IE program to this input tuple

● Gather results from this application
and return to caller

+ SystemT Java API Tutorial

http://www-01.ibm.com/support/knowledgecenter/SSPT3X_3.0.0/com.ibm.swg.im.infosphere.biginsights.text.doc/doc/ana_txtan_apis.html

© 2014 IBM Corporation

Sparkle - Future Work

● Stress test current integration with massive data sets and complex IE

● Integrate developer tools with Spark-based IBM text-analytics back-end

● Explore IBM text-analytics as a feature extraction component within large
learning-based Spark-analytics pipelines+

● Expose IBM Text Analytics to Scala developers+

●

+ - long-term

© 2014 IBM Corporation

References

●

● Research publications on IBM Text Analytics
● Contains all research publications around theory, performance & tooling of IBM Text Analytics

● Product documentation on using IBM Text Analytics
● Documentation regarding our text-analytics technology – its components, usage, tutorials etc.
●

● Reference documentation on IBM Text Analytics
● Official reference documentation for AQL and SystemT's Javadocs

●

http://researcher.watson.ibm.com/researcher/view_group_pubs.php?grp=1264
http://www-01.ibm.com/support/knowledgecenter/SSPT3X_3.0.0/com.ibm.swg.im.infosphere.biginsights.text.doc/doc/ana_txtan_intro.html
http://www-01.ibm.com/support/knowledgecenter/SSPT3X_3.0.0/com.ibm.swg.im.infosphere.biginsights.ref.doc/ta-ref.html

© 2014 IBM Corporation

We're hiring !!

Would you like to do MORE ?

Massive-scale data analytics
Open-source commitment

Resilient distributed systems
Efficient query languages

If so, talk to us!

Dimple (dimple@us.ibm.com)

 Sudarshan (srthitte@us.ibm.com)

mailto:dimple@us.ibm.com
mailto:rvaidya@us.ibm.com

© 2014 IBM Corporation

BACKUP CONTENT

© 2014 IBM Corporation

Named Entity Extraction via Spark Java

© 2014 IBM Corporation

Named Entity Extraction via Spark Java - Details

© 2014 IBM Corporation

Results from Named Entity Extraction (NEE) via Spark Java

Results from NEE via
Spark Java are persisted

on IBM BigInsights'
HDFS

Results from NEE via Spark
Java, per-document,

hence sparse

© 2014 IBM Corporation

Eclipse developer tool for text-analytics

Syntax-highlighting,
content-assist, markers

etc.

Build regular
expressions with
zero/little prior

knowledge

© 2014 IBM Corporation

create view Number as
extract regex /\d+/
 on between 1 and 1 tokens
 in D.text

as match
from Document D;

create view Unit as
extract dictionary UnitDict
 on D.text as match
from Document D;

create view AmountWithUnit as
select
CombineSpans(N.match, U.match)
 as match
from Number N, Unit U
where
 FollowsTok(N.match, U.match,
 0, 0);

AQL – Source [left] → Sub-plan from compiled plan [right]
$AmountWithUnit =
Project(("FunctionCall30" => "match"),
 ApplyFunc(
 CombineSpans(
 GetCol("N.match"),
 GetCol("U.match")
) => "FunctionCall30",
 AdjacentJoin(
 FollowsTok(
 GetCol("N.match"),
 GetCol("U.match"),
 IntConst(0),
 IntConst(0)
),
 Project(("match" => "N.match"),
 $Number
),
 Project(("match" => "U.match"),
 $Unit
)
)
)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	page10
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	page17
	page18
	page18
	page20
	page21
	page22
	page23
	page24
	page24

