
June 27, 2014

Music
Recommendations at
Scale with Spark

Chris Johnson
@MrChrisJohnson

Who am I??
•Chris Johnson

– Machine Learning guy from NYC
– Focused on music recommendations
– Formerly a PhD student at UT Austin

3Recommendations at Spotify
!

• Discover (personalized recommendations)
• Radio
• Related Artists
• Now Playing

How can we find good
recommendations?

!
•Manual Curation
!
!
!

•Manually Tag Attributes
!
!
• Audio Content,

Metadata, Text Analysis
!
!
• Collaborative Filtering

4

How can we find good
recommendations?

!
•Manual Curation
!
!
!

•Manually Tag Attributes
!
!
• Audio Content,

Metadata, Text Analysis
!
!
• Collaborative Filtering

5

Collaborative Filtering - “The Netflix Prize” 6

Collaborative Filtering 7

Hey,
I like tracks P, Q, R, S!

Well,
I like tracks Q, R, S, T!

Then you should check out
track P!

Nice! Btw try track T!

Image via Erik Bernhardsson

Section name 8

Explicit Matrix Factorization 9

Movies

Users

Chris

Inception

•Users explicitly rate a subset of the movie catalog
•Goal: predict how users will rate new movies

• = bias for user
• = bias for item
• = regularization parameter

Explicit Matrix Factorization 10

Chris
Inception

? 3 5 ?
1 ? ? 1
2 ? 3 2
? ? ? 5
5 2 ? 4

•Approximate ratings matrix by the product of low-
dimensional user and movie matrices
•Minimize RMSE (root mean squared error)

• = user rating for movie
• = user latent factor vector
• = item latent factor vector

X YUsers

Movies

Implicit Matrix Factorization 11

1 0 0 0 1 0 0 1
0 0 1 0 0 1 0 0
1 0 1 0 0 0 1 1
0 1 0 0 0 1 0 0
0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 1

•Instead of explicit ratings use binary labels
– 1 = streamed, 0 = never streamed
•Minimize weighted RMSE (root mean squared error) using a

function of total streams as weights

• = bias for user
• = bias for item
• = regularization parameter

• = 1 if user streamed track else 0
•
• = user latent factor vector
• =i tem latent factor vector

X YUsers

Songs

Alternating Least Squares (ALS) 12

1 0 0 0 1 0 0 1
0 0 1 0 0 1 0 0
1 0 1 0 0 0 1 1
0 1 0 0 0 1 0 0
0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 1

•Instead of explicit ratings use binary labels
– 1 = streamed, 0 = never streamed
•Minimize weighted RMSE (root mean squared error) using a

function of total streams as weights

• = bias for user
• = bias for item
• = regularization parameter

• = 1 if user streamed track else 0
•
• = user latent factor vector
• =i tem latent factor vector

X YUsers

Songs
Fix songs

Alternating Least Squares (ALS) 13

1 0 0 0 1 0 0 1
0 0 1 0 0 1 0 0
1 0 1 0 0 0 1 1
0 1 0 0 0 1 0 0
0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 1

•Instead of explicit ratings use binary labels
– 1 = streamed, 0 = never streamed
•Minimize weighted RMSE (root mean squared error) using a

function of total streams as weights

• = bias for user
• = bias for item
• = regularization parameter

• = 1 if user streamed track else 0
•
• = user latent factor vector
• =i tem latent factor vector

X YUsers

Songs
Fix songs

Solve for users

Alternating Least Squares (ALS) 14

1 0 0 0 1 0 0 1
0 0 1 0 0 1 0 0
1 0 1 0 0 0 1 1
0 1 0 0 0 1 0 0
0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 1

•Instead of explicit ratings use binary labels
– 1 = streamed, 0 = never streamed
•Minimize weighted RMSE (root mean squared error) using a

function of total streams as weights

• = bias for user
• = bias for item
• = regularization parameter

• = 1 if user streamed track else 0
•
• = user latent factor vector
• =i tem latent factor vector

X YUsers

Songs Fix users

Alternating Least Squares (ALS) 15

1 0 0 0 1 0 0 1
0 0 1 0 0 1 0 0
1 0 1 0 0 0 1 1
0 1 0 0 0 1 0 0
0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 1

•Instead of explicit ratings use binary labels
– 1 = streamed, 0 = never streamed
•Minimize weighted RMSE (root mean squared error) using a

function of total streams as weights

• = bias for user
• = bias for item
• = regularization parameter

• = 1 if user streamed track else 0
•
• = user latent factor vector
• =i tem latent factor vector

X YUsers

Songs
Solve for songs

Fix users

Alternating Least Squares (ALS) 16

1 0 0 0 1 0 0 1
0 0 1 0 0 1 0 0
1 0 1 0 0 0 1 1
0 1 0 0 0 1 0 0
0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 1

•Instead of explicit ratings use binary labels
– 1 = streamed, 0 = never streamed
•Minimize weighted RMSE (root mean squared error) using a

function of total streams as weights

• = bias for user
• = bias for item
• = regularization parameter

• = 1 if user streamed track else 0
•
• = user latent factor vector
• =i tem latent factor vector

X YUsers

Songs
Solve for songs

Fix users

Repeat until convergence…

Alternating Least Squares (ALS) 17

1 0 0 0 1 0 0 1
0 0 1 0 0 1 0 0
1 0 1 0 0 0 1 1
0 1 0 0 0 1 0 0
0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 1

•Instead of explicit ratings use binary labels
– 1 = streamed, 0 = never streamed
•Minimize weighted RMSE (root mean squared error) using a

function of total streams as weights

• = bias for user
• = bias for item
• = regularization parameter

• = 1 if user streamed track else 0
•
• = user latent factor vector
• =i tem latent factor vector

X YUsers

Songs
Solve for songs

Fix users

Repeat until convergence…

18Alternating Least Squares

code: https://github.com/MrChrisJohnson/implicitMF

https://github.com/MrChrisJohnson/implicitMF

Section name 19

Scaling up Implicit Matrix Factorization
with Hadoop

20

Hadoop at Spotify 2009 21

Hadoop at Spotify 2014 22

700 Nodes in our London data center

Implicit Matrix Factorization with Hadoop 23

Reduce stepMap step

u % K = 0
i % L = 0

u % K = 0
i % L = 1

...
u % K = 0
i % L = L-1

u % K = 1
i % L = 0

u % K = 1
i % L = 1

... ...

...

u % K = K-1
i % L = 0

... ...
u % K = K-1
i % L = L-1

item vectors
item%L=0

item vectors
item%L=1

item vectors
i % L = L-1

user vectors
u % K = 0

user vectors
u % K = 1

user vectors
u % K = K-1

all log entries
u % K = 1
i % L = 1

u % K = 0

u % K = 1

u % K = K-1

Figure via Erik Bernhardsson

Implicit Matrix Factorization with Hadoop 24

One map task

Distributed
cache:

All user vectors
where u % K = x

Distributed
cache:

All item vectors
where i % L = y

Mapper Emit contributions

Map input:
tuples (u, i, count)

where
u % K = x

and
i % L = y

Reducer New vector!

Figure via Erik Bernhardsson

Hadoop suffers from I/O overhead 25

IO Bottleneck

Spark to the rescue!! 26

Vs

http://www.slideshare.net/Hadoop_Summit/spark-and-shark

Spark

Hadoop

http://www.slideshare.net/Hadoop_Summit/spark-and-shark

Section name 27

28

ratings user vectors item vectors

First Attempt (broadcast everything)

worker 1 worker 2 worker 3 worker 4 worker 5 worker 6

• For each iteration:
1. Compute YtY over item vectors and broadcast
2. Broadcast item vectors
3. Group ratings by user
4. Solve for optimal user vector

29

ratings user vectors item vectors

First Attempt (broadcast everything)

worker 1 worker 2 worker 3 worker 4 worker 5 worker 6

YtY YtY YtY YtY YtY YtY

• For each iteration:
1. Compute YtY over item vectors and broadcast
2. Broadcast item vectors
3. Group ratings by user
4. Solve for optimal user vector

First Attempt (broadcast everything) 30

ratings user vectors item vectors

worker 1 worker 2 worker 3 worker 4 worker 5 worker 6

YtY YtY YtY YtY YtY YtY

• For each iteration:
1. Compute YtY over item vectors and broadcast
2. Broadcast item vectors
3. Group ratings by user
4. Solve for optimal user vector

31

ratings user vectors item vectors

First Attempt (broadcast everything)

worker 1 worker 2 worker 3 worker 4 worker 5 worker 6

YtY YtY YtY YtY YtY YtY

• For each iteration:
1. Compute YtY over item vectors and broadcast
2. Broadcast item vectors
3. Group ratings by user
4. Solve for optimal user vector

First Attempt (broadcast everything) 32

ratings user vectors item vectors

worker 1 worker 2 worker 3 worker 4 worker 5 worker 6

• For each iteration:
1. Compute YtY over item vectors and broadcast
2. Broadcast item vectors
3. Group ratings by user
4. Solve for optimal user vector

First Attempt (broadcast everything) 33

First Attempt (broadcast everything) 34

•Cons:
– Unnecessarily shuffling all data across wire each iteration.
– Not caching ratings data
– Unnecessarily sending a full copy of user/item vectors to all workers.

Second Attempt (full gridify) 35

ratings user vectors item vectors

worker 1 worker 2 worker 3 worker 4 worker 5 worker 6

•Group ratings matrix into K x L, partition, and cache
•For each iteration:
1. Compute YtY over item vectors and broadcast
2. For each item vector send a copy to each rating block in the item % L column
3. Compute intermediate terms for each block (partition)
4. Group by user, aggregate intermediate terms, and solve for optimal user vector

Second Attempt (full gridify) 36

ratings user vectors item vectors

worker 1 worker 2 worker 3 worker 4 worker 5 worker 6

•Group ratings matrix into K x L, partition, and cache
•For each iteration:
1. Compute YtY over item vectors and broadcast
2. For each item vector send a copy to each rating block in the item % L column
3. Compute intermediate terms for each block (partition)
4. Group by user, aggregate intermediate terms, and solve for optimal user vector

Second Attempt (full gridify) 37

ratings user vectors item vectors

worker 1 worker 2 worker 3 worker 4 worker 5 worker 6

•Group ratings matrix into K x L, partition, and cache
•For each iteration:
1. Compute YtY over item vectors and broadcast
2. For each item vector send a copy to each rating block in the item % L column
3. Compute intermediate terms for each block (partition)
4. Group by user, aggregate intermediate terms, and solve for optimal user vector

Second Attempt (full gridify) 38

ratings user vectors item vectors

worker 1 worker 2 worker 3 worker 4 worker 5 worker 6

YtY YtY YtY YtY YtY YtY

•Group ratings matrix into K x L, partition, and cache
•For each iteration:
1. Compute YtY over item vectors and broadcast
2. For each item vector send a copy to each rating block in the item % L column
3. Compute intermediate terms for each block (partition)
4. Group by user, aggregate intermediate terms, and solve for optimal user vector

Second Attempt (full gridify) 39

ratings user vectors item vectors

worker 1 worker 2 worker 3 worker 4 worker 5 worker 6

YtY YtY YtY YtY YtY YtY

•Group ratings matrix into K x L, partition, and cache
•For each iteration:
1. Compute YtY over item vectors and broadcast
2. For each item vector send a copy to each rating block in the item % L column
3. Compute intermediate terms for each block (partition)
4. Group by user, aggregate intermediate terms, and solve for optimal user vector

Second Attempt (full gridify) 40

ratings user vectors item vectors

worker 1 worker 2 worker 3 worker 4 worker 5 worker 6

YtY YtY YtY YtY YtY YtY

•Group ratings matrix into K x L, partition, and cache
•For each iteration:
1. Compute YtY over item vectors and broadcast
2. For each item vector send a copy to each rating block in the item % L column
3. Compute intermediate terms for each block (partition)
4. Group by user, aggregate intermediate terms, and solve for optimal user vector

Second Attempt (full gridify) 41

ratings user vectors item vectors

worker 1 worker 2 worker 3 worker 4 worker 5 worker 6

•Group ratings matrix into K x L, partition, and cache
•For each iteration:
1. Compute YtY over item vectors and broadcast
2. For each item vector send a copy to each rating block in the item % L column
3. Compute intermediate terms for each block (partition)
4. Group by user, aggregate intermediate terms, and solve for optimal user vector

Second Attempt 42

Second Attempt 43

•Pros
– Ratings get cached and never shuffled
– Each partition only requires a subset of item (or user) vectors in memory each iteration
– Potentially requires less local memory than a “half gridify” scheme

•Cons
- Sending lots of intermediate data over wire each iteration in order to aggregate and solve for optimal vectors
- More IO overhead than a “half gridify” scheme

Third Attempt (half gridify) 44

ratings user vectors item vectors

•Partition ratings matrix into K user (row) and item (column) blocks, partition, and cache
•For each iteration:
1. Compute YtY over item vectors and broadcast
2. For each item vector, send a copy to each user rating partition that requires it (potentially

all partitions)
3. Each partition aggregates intermediate terms and solves for optimal user vectors

worker 1 worker 2 worker 3 worker 4 worker 5 worker 6

Third Attempt (half gridify) 45

ratings user vectors item vectors

•Partition ratings matrix into K user (row) and item (column) blocks, partition, and cache
•For each iteration:
1. Compute YtY over item vectors and broadcast
2. For each item vector, send a copy to each user rating partition that requires it (potentially

all partitions)
3. Each partition aggregates intermediate terms and solves for optimal user vectors

worker 1 worker 2 worker 3 worker 4 worker 5 worker 6

Third Attempt (half gridify) 46

ratings user vectors item vectors

•Partition ratings matrix into K user (row) and item (column) blocks, partition, and cache
•For each iteration:
1. Compute YtY over item vectors and broadcast
2. For each item vector, send a copy to each user rating partition that requires it (potentially

all partitions)
3. Each partition aggregates intermediate terms and solves for optimal user vectors

worker 1 worker 2 worker 3 worker 4 worker 5 worker 6

Third Attempt (half gridify) 47

ratings user vectors item vectors

•Partition ratings matrix into K user (row) and item (column) blocks, partition, and cache
•For each iteration:
1. Compute YtY over item vectors and broadcast
2. For each item vector, send a copy to each user rating partition that requires it (potentially

all partitions)
3. Each partition aggregates intermediate terms and solves for optimal user vectors

worker 1 worker 2 worker 3 worker 4 worker 5 worker 6

YtY YtY YtY YtY YtY YtY

Third Attempt (half gridify) 48

ratings user vectors item vectors

•Partition ratings matrix into K user (row) and item (column) blocks, partition, and cache
•For each iteration:
1. Compute YtY over item vectors and broadcast
2. For each item vector, send a copy to each user rating partition that requires it (potentially

all partitions)
3. Each partition aggregates intermediate terms and solves for optimal user vectors

worker 1 worker 2 worker 3 worker 4 worker 5 worker 6

YtY YtY YtY YtY YtY YtY

Third Attempt (half gridify) 49

ratings user vectors item vectors

•Partition ratings matrix into K user (row) and item (column) blocks, partition, and cache
•For each iteration:
1. Compute YtY over item vectors and broadcast
2. For each item vector, send a copy to each user rating partition that requires it (potentially

all partitions)
3. Each partition aggregates intermediate terms and solves for optimal user vectors

worker 1 worker 2 worker 3 worker 4 worker 5 worker 6

YtY YtY YtY YtY YtY YtY

Third Attempt (half gridify) 50

ratings user vectors item vectors

•Partition ratings matrix into K user (row) and item (column) blocks, partition, and cache
•For each iteration:
1. Compute YtY over item vectors and broadcast
2. For each item vector, send a copy to each user rating partition that requires it (potentially

all partitions)
3. Each partition aggregates intermediate terms and solves for optimal user vectors

worker 1 worker 2 worker 3 worker 4 worker 5 worker 6

YtY YtY YtY YtY YtY YtY

Note that we removed the extra
shuffle from the full gridify
approach.

51Third Attempt (half gridify)

•Pros
– Ratings get cached and never shuffled
– Once item vectors are joined with ratings partitions each partition has enough information to solve optimal user

vectors without any additional shuffling/aggregation (which occurs with the “full gridify” scheme)
•Cons
- Each partition could potentially require a copy of each item vector (which may not all fit in memory)
- Potentially requires more local memory than “full gridify” scheme

Actual MLLib code!

ALS Running Times 52

Via Xiangrui Meng (Databricks) http://stanford.edu/~rezab/sparkworkshop/slides/xiangrui.pdf

Hadoop Spark (full
gridify)

Spark (half
gridify)

10 hours 3.5 hours 1.5 hours

•Dataset consisting of Spotify streaming data for 2 Million users and 500k artists
-Note: full dataset consists of 40M users and 20M songs but we haven’t yet successfully run with Spark

•All jobs run using 40 latent factors
•Spark jobs used 200 executors with 8G containers
•Hadoop job used 1k mappers, 300 reducers

http://stanford.edu/~rezab/sparkworkshop/slides/xiangrui.pdf

ALS Running Times 53

Via Xiangrui Meng (Databricks) http://stanford.edu/~rezab/sparkworkshop/slides/xiangrui.pdf

http://stanford.edu/~rezab/sparkworkshop/slides/xiangrui.pdf

Section name 54

Fin

Section name 55

Section name 56

Section name 57

Section name 58

Section name 59

Section name 60

Section name 61

