

Chris Johnson @MrChrisJohnson

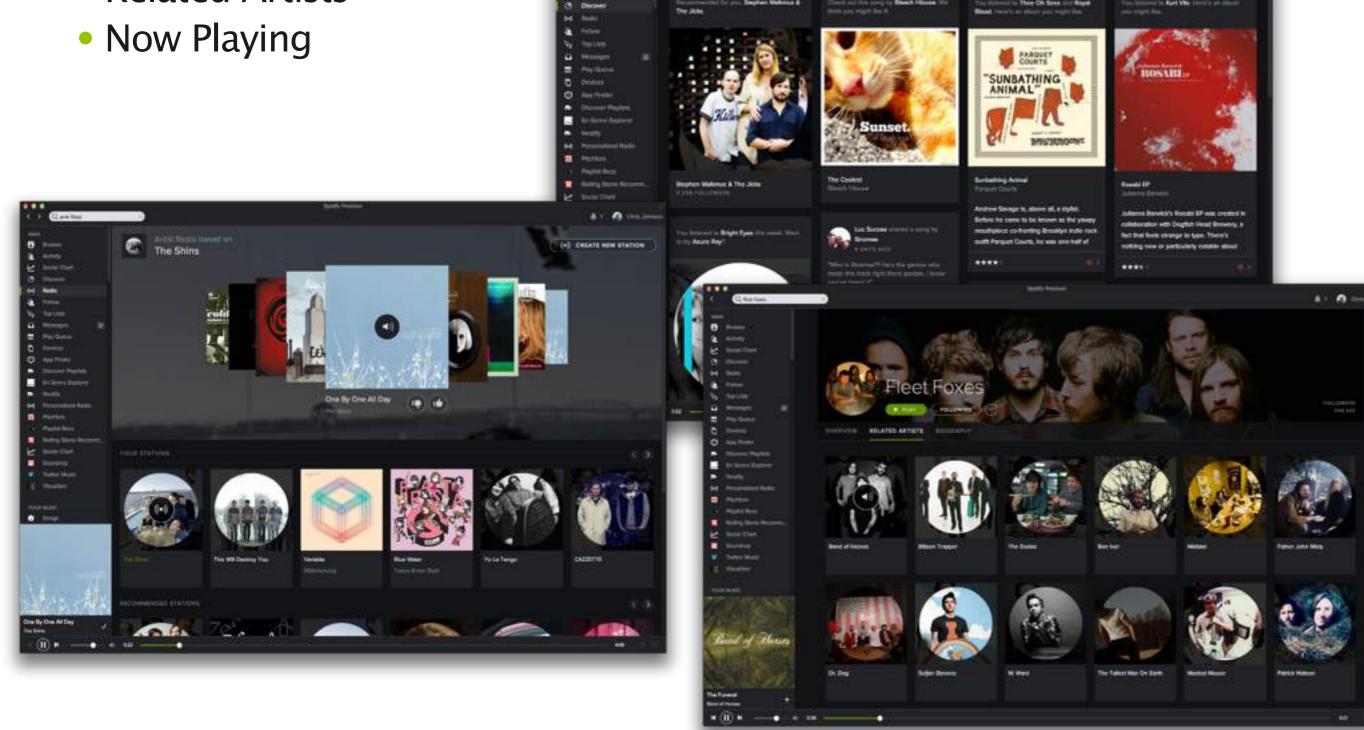
Music

Who am I??

- Chris Johnson
 - Machine Learning guy from NYC
 - Focused on music recommendations
 - Formerly a PhD student at UT Austin

Recommendations at Spotify

- Discover (personalized recommendations)
- Radio
- Related Artists



Discover

How can we find good recommendations?

Manual Curation

Manually Tag Attributes

Audio Content,
 Metadata, Text Analysis

Collaborative Filtering

How can we find good recommendations?

Manual Curation

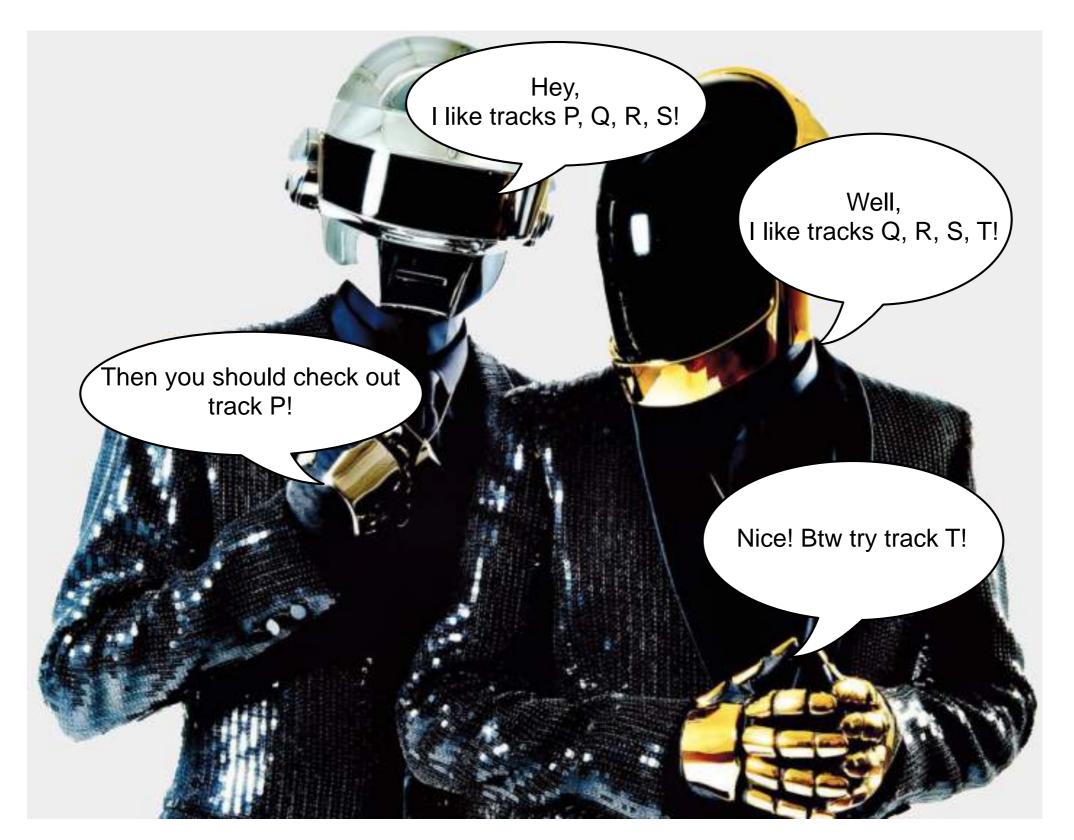
Manually Tag Attributes

Audio Content,
 Metadata, Text Analysis

Collaborative Filtering

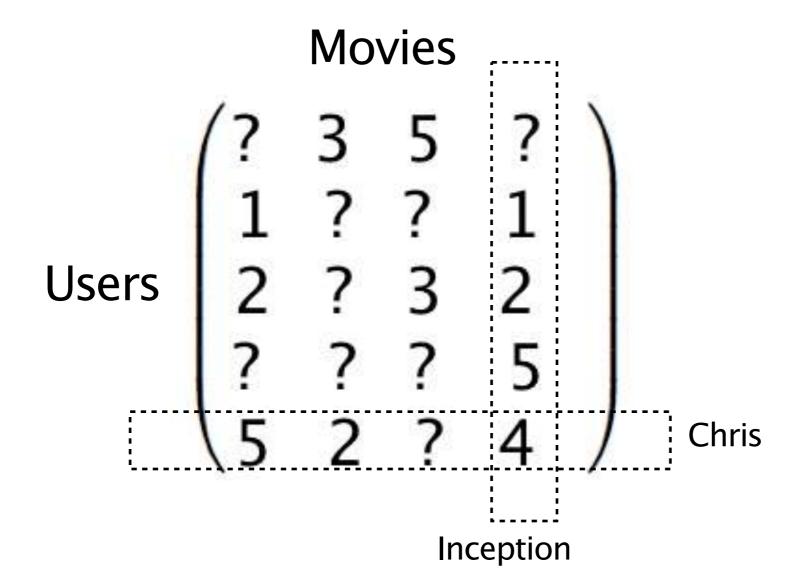
Collaborative Filtering – "The Netflix Prize" 6

Collaborative Filtering



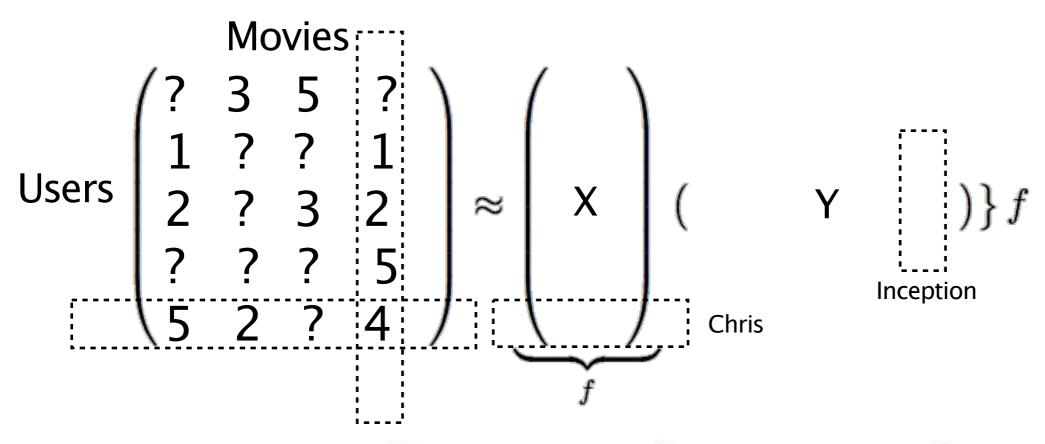
Explicit Matrix Factorization

- Users explicitly rate a subset of the movie catalog
- Goal: predict how users will rate new movies



Explicit Matrix Factorization

- Approximate ratings matrix by the product of low– dimensional user and movie matrices
- Minimize RMSE (root mean squared error)



$$\min_{x,y} \sum_{u,i} (r_{ui} - x_u^T y_i - \beta_u - \beta_i)^2 + \lambda (\sum_u ||x_u||^2 + \sum_i ||y_i||^2)$$

- r_{ui} = user u's rating for movie i
- x_u = user u's latent factor vector
- x_i = item i's latent factor vector
- β_u = bias for user u
- β_i = bias for item i

Implicit Matrix Factorization

- Instead of explicit ratings use binary labels
 - -1 = streamed, 0 = never streamed
- Minimize weighted RMSE (root mean squared error) using a function of total streams as weights

Users
$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \approx \left(\begin{array}{c} X \\ X \\ \end{array} \right) \left\{ f \right\}$$
Songs

$$\min_{x,y} \sum_{u,i} c_{ui} (p_{ui} - x_u^T y_i - \beta_u - \beta_i)^2 + \lambda (\sum_u ||x_u||^2 + \sum_i ||y_i||^2)$$

- $p_{ui} = 1$ if user u streamed track i else 0
- $c_{ui} = 1 + \alpha r_{ui}$
- $x_u = \text{user } u's$ latent factor vector
- $x_i = i \text{ tem } i's$ latent factor vector

- β_u = bias for user u
- β_i = bias for item i
- λ = regularization parameter

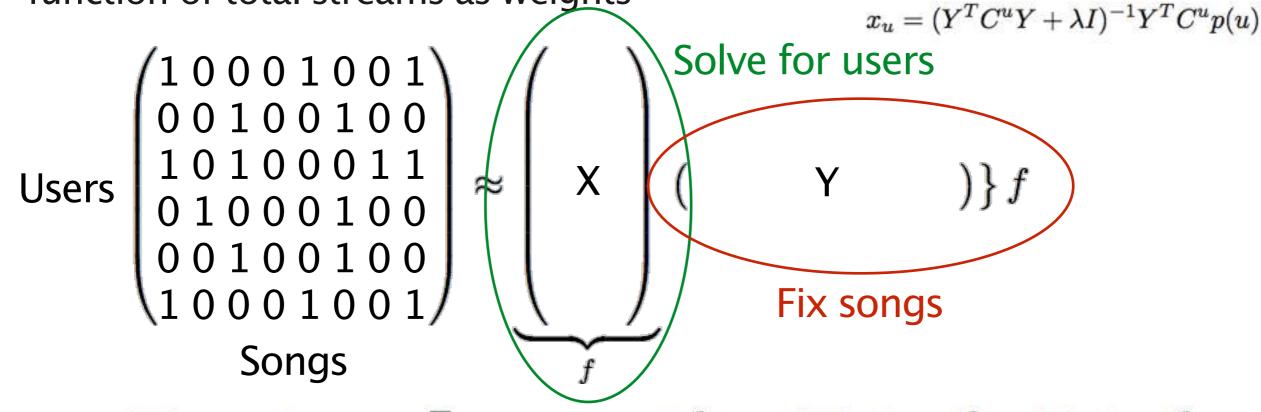
- Instead of explicit ratings use binary labels
 - -1 = streamed, 0 = never streamed
- Minimize weighted RMSE (root mean squared error) using a function of total streams as weights

$$\min_{x,y} \sum_{u,i} c_{ui} (p_{ui} - x_u^T y_i - \beta_u - \beta_i)^2 + \lambda (\sum_u ||x_u||^2 + \sum_i ||y_i||^2)$$

- $p_{ui} = 1$ if user u streamed track i else 0
- $c_{ui} = 1 + \alpha r_{ui}$
- $x_u = \text{user } u's$ latent factor vector
- $x_i = i \text{ tem } i's$ latent factor vector

- β_u = bias for user u
- β_i = bias for item i
- λ = regularization parameter

- Instead of explicit ratings use binary labels
 - -1 = streamed, 0 = never streamed
- Minimize weighted RMSE (root mean squared error) using a function of total streams as weights

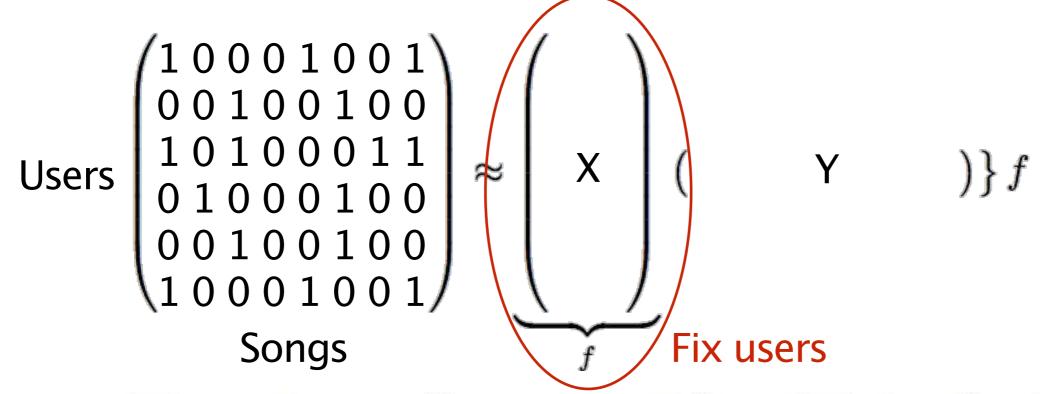


$$\min_{x,y} \sum_{u,i} c_{ui} (p_{ui} - x_u^T y_i - \beta_u - \beta_i)^2 + \lambda (\sum_u ||x_u||^2 + \sum_i ||y_i||^2)$$

- $p_{ui} = 1$ if user u streamed track i else 0
- $c_{ui} = 1 + \alpha r_{ui}$
- $x_u = \text{user } u's$ latent factor vector
- $x_i = i \text{ tem } i's$ latent factor vector

- β_u = bias for user u
- β_i = bias for item i
- λ = regularization parameter

- Instead of explicit ratings use binary labels
 - -1 = streamed, 0 = never streamed
- Minimize weighted RMSE (root mean squared error) using a function of total streams as weights

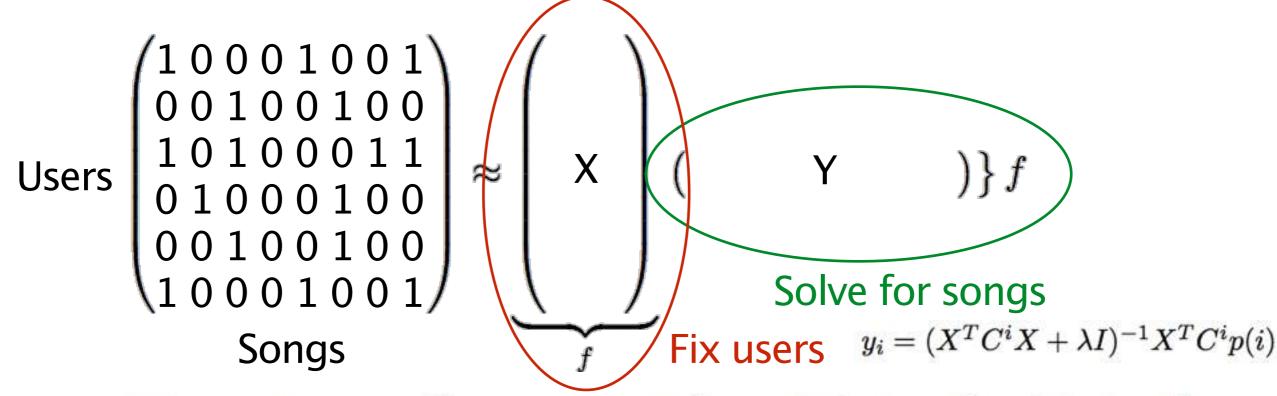


$$\min_{x,y} \sum_{u,i} c_{ui} (p_{ui} - x_u^T y_i - \beta_u - \beta_i)^2 + \lambda (\sum_u ||x_u||^2 + \sum_i ||y_i||^2)$$

- $p_{ui} = 1$ if user u streamed track i else 0
- $c_{ui} = 1 + \alpha r_{ui}$
- $x_u = \text{user } u's$ latent factor vector
- $x_i = i \text{ tem } i's$ latent factor vector

- β_u = bias for user u
- β_i = bias for item i
- λ = regularization parameter

- Instead of explicit ratings use binary labels
 - -1 = streamed, 0 = never streamed
- Minimize weighted RMSE (root mean squared error) using a function of total streams as weights

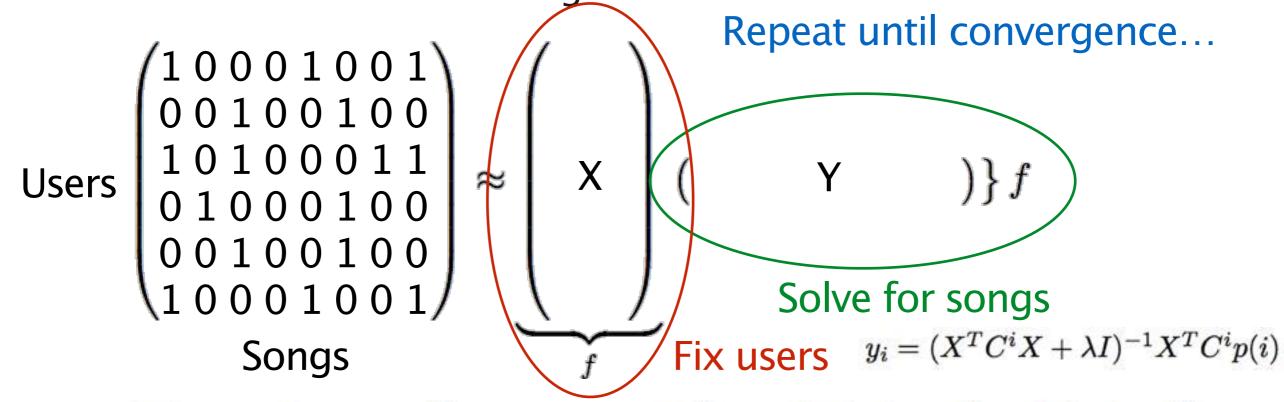


$$\min_{x,y} \sum_{u,i} c_{ui} (p_{ui} - x_u^T y_i - \beta_u - \beta_i)^2 + \lambda (\sum_u ||x_u||^2 + \sum_i ||y_i||^2)$$

- $p_{ui} = 1$ if user u streamed track i else 0
- $c_{ui} = 1 + \alpha r_{ui}$
- $x_u = \text{user } u's$ latent factor vector
- $x_i = i \text{ tem } i's$ latent factor vector

- β_u = bias for user u
- β_i = bias for item i
- λ = regularization parameter

- Instead of explicit ratings use binary labels
 - -1 = streamed, 0 = never streamed
- Minimize weighted RMSE (root mean squared error) using a function of total streams as weights

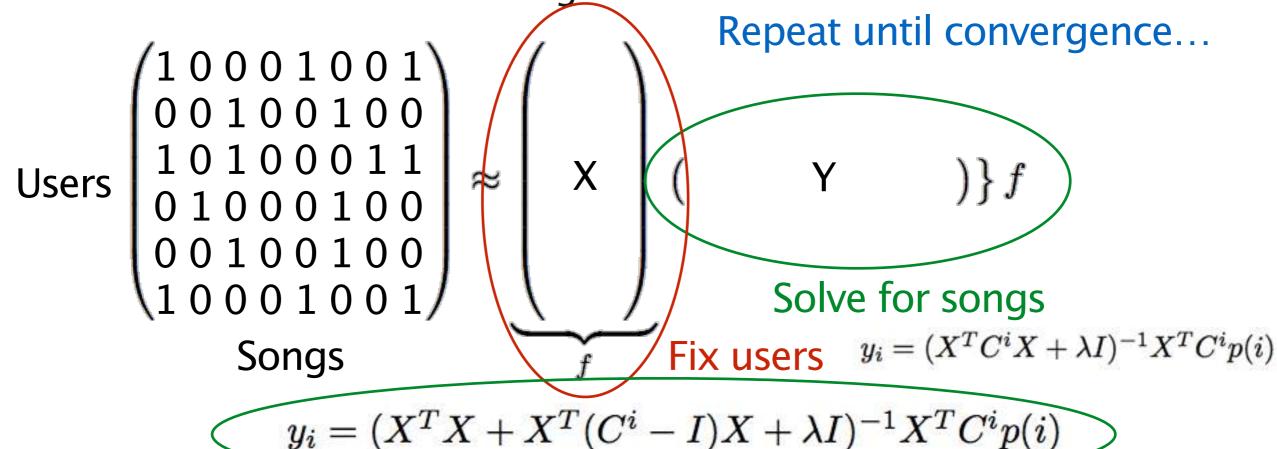


$$\min_{x,y} \sum_{u,i} c_{ui} (p_{ui} - x_u^T y_i - \beta_u - \beta_i)^2 + \lambda (\sum_u ||x_u||^2 + \sum_i ||y_i||^2)$$

- $p_{ui} = 1$ if user u streamed track i else 0
- $c_{ui} = 1 + \alpha r_{ui}$
- $x_u = \text{user } u's$ latent factor vector
- $x_i = i \text{ tem } i's$ latent factor vector

- β_u = bias for user u
- β_i = bias for item i
- λ = regularization parameter

- Instead of explicit ratings use binary labels
 - -1 = streamed, 0 = never streamed
- Minimize weighted RMSE (root mean squared error) using a function of total streams as weights

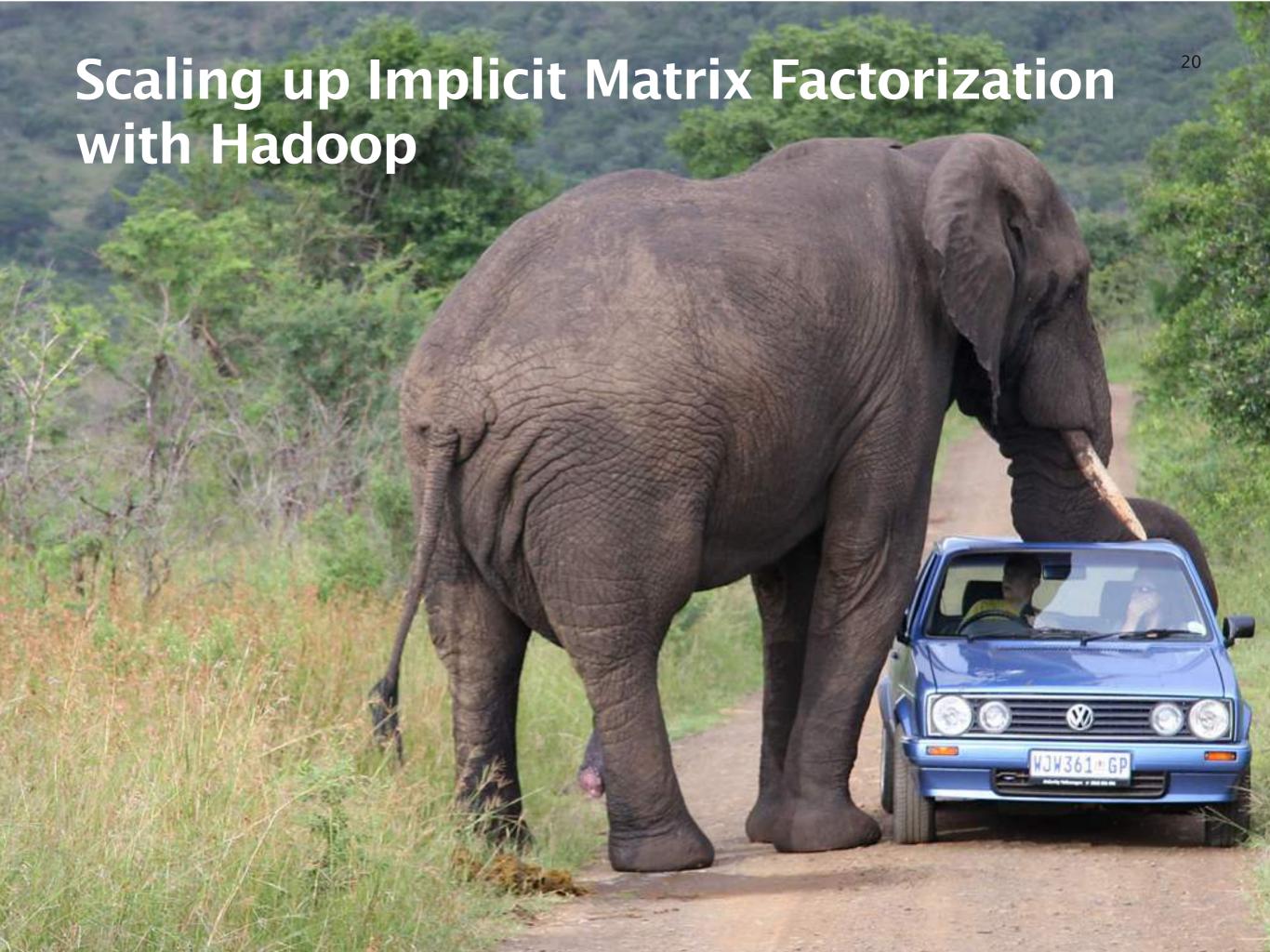


- $p_{ui} = 1$ if user u streamed track i else 0
- $c_{ui} = 1 + \alpha r_{ui}$
- $x_u = \text{user } u's$ latent factor vector
- $x_i = i \text{ tem } i's$ latent factor vector

- $\beta_u = \text{bias for user } u$
- β_i = bias for item i

Alternating Least Squares

```
def als_iteration(user, counts, solve_vecs, fixed_vecs, num_factors=40, reg_param=0.8):
                                True if solving for user vectors
 4
            @param user:
                                scipy.sparse matrix containing implicit
 5
            @param counts:
                                     user-item counts * alpha
                                 scipy.sparse vector of latent factors you
            @param solve_vecs:
 8
                                     wish to solve for
 9
            @param fixed_vecs:
                                scipy sparse vector of fixed latent factors
                                 regularization parameter (lambda)
10
            @param reg_param:
11
12
        111
13
        num_fixed = fixed_vecs.shape[0]
        YTY = fixed_vecs.T.dot(fixed_vecs)
14
15
        eye = scipy.sparse.eye(num_fixed)
        lambda_eye = reg_param * scipy.sparse.eye(num_factors)
16
17
        for i in xrange(solve_vecs.shape[0]):
18
19
            if user:
20
                counts_i = counts[i].toarray()
21
            elsei
22
                counts_i = counts[:, i].T.toarray()
            CuI = scipy.sparse.diags(counts_i, [0])
23
24
            pu = counts_i.copy()
25
            pu[numpy.where(pu != 0)] = 1.0
            YTCuIY = fixed_vecs.T.dot(CuI).dot(fixed_vecs)
26
            YTCupu = fixed_vecs.T.dot(CuI + eye).dot(scipy.sparse.csr_matrix(pu).T)
27
            xu = scipy.sparse.linalg.spsolve(YTY + YTCuIY + lambda_eye, YTCupu)
28
            solve_vecs[i] = xu
29
30
31
        return solve_vecs
```

Hadoop at Spotify 2014

700 Nodes in our London data center

Implicit Matrix Factorization with Hadoop

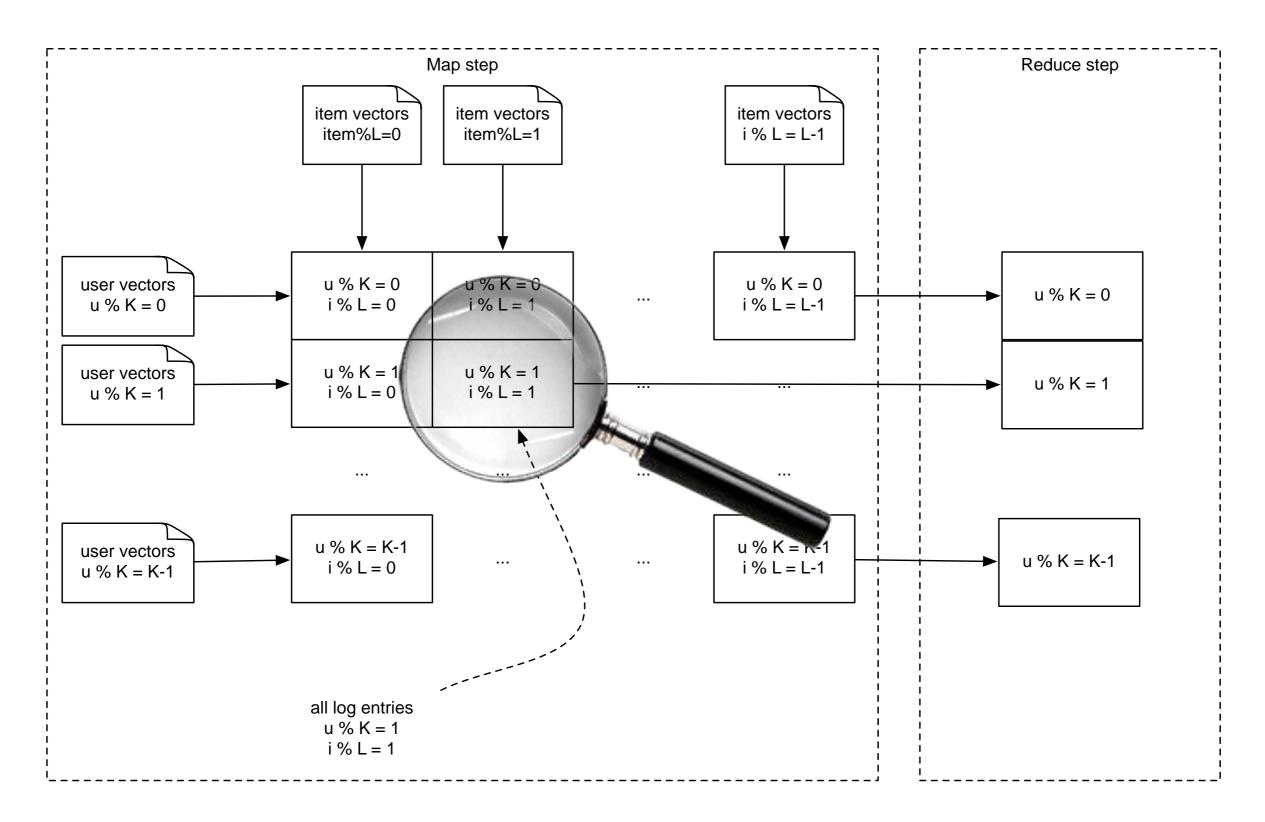
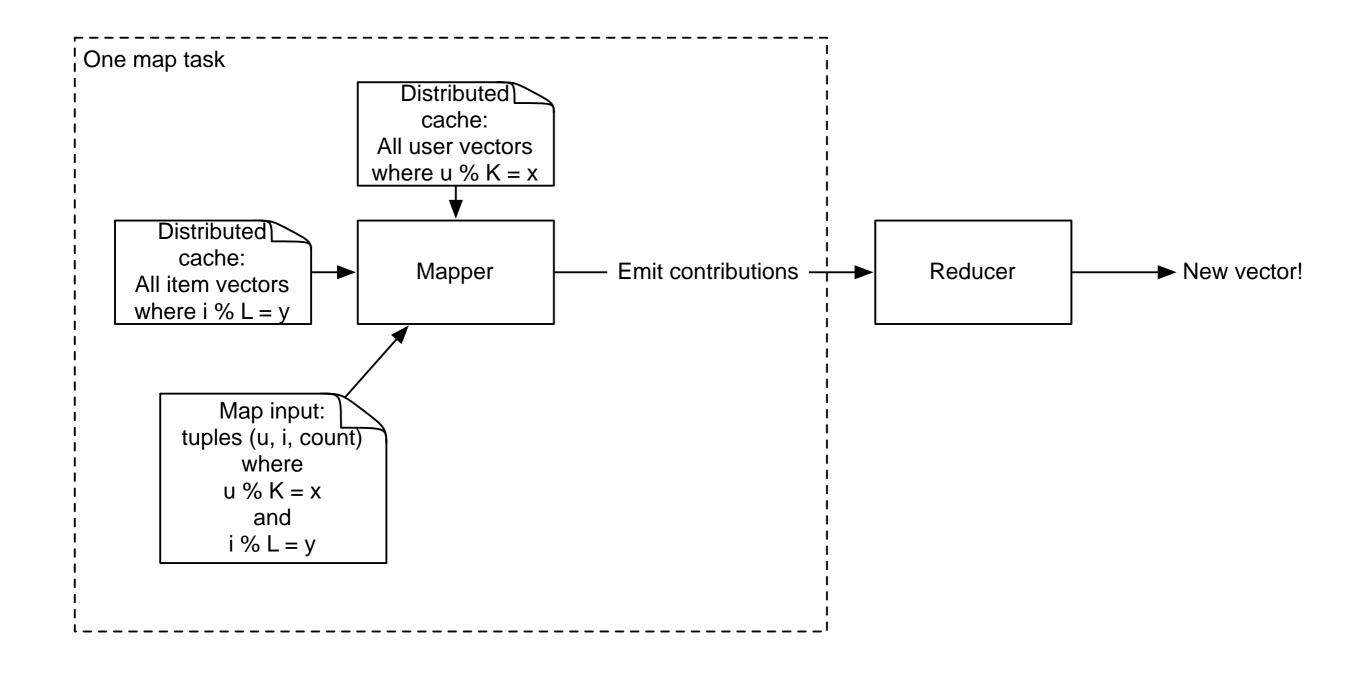
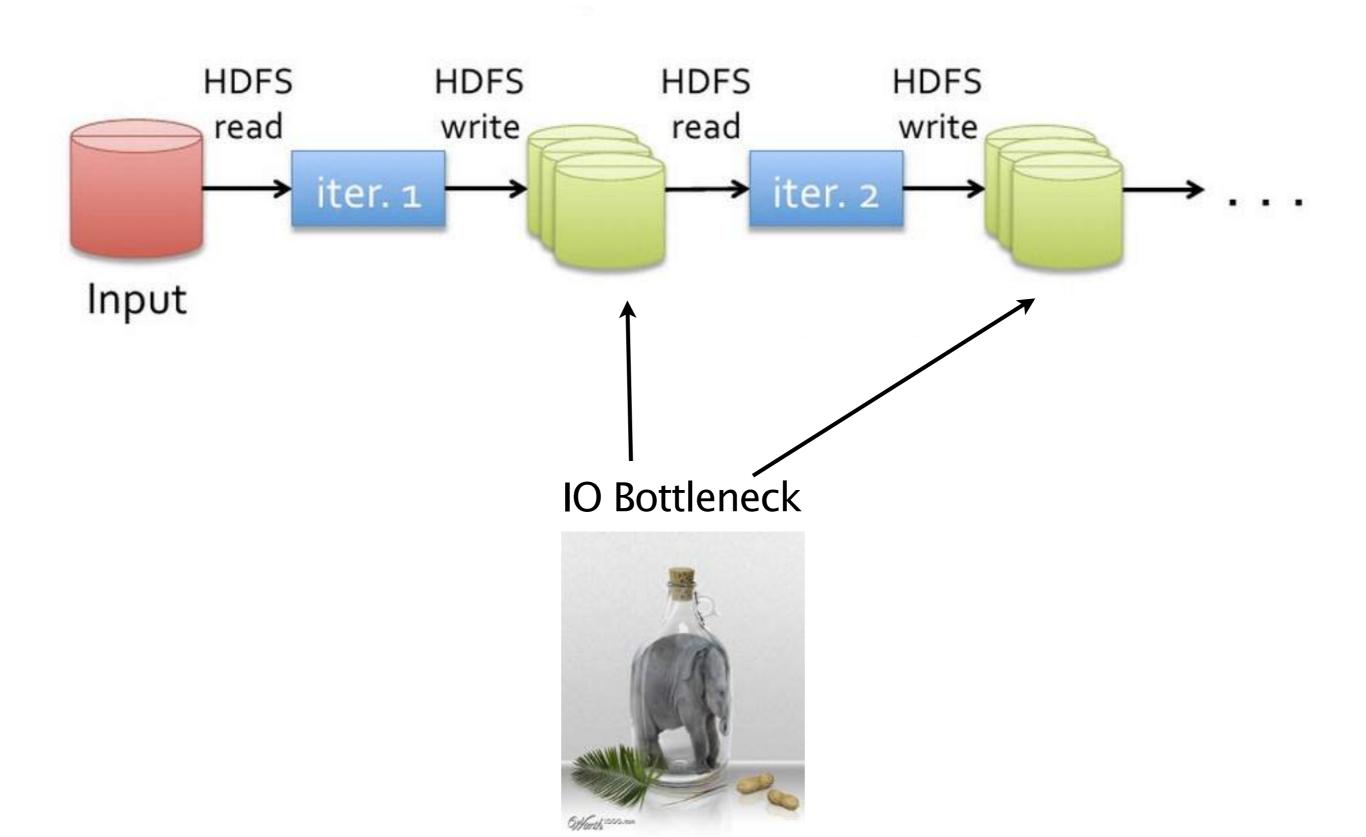


Figure via Erik Bernhardsson

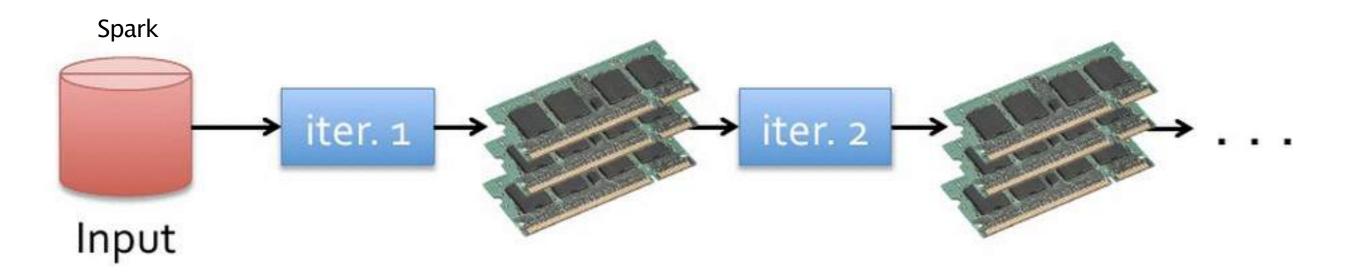
Implicit Matrix Factorization with Hadoop



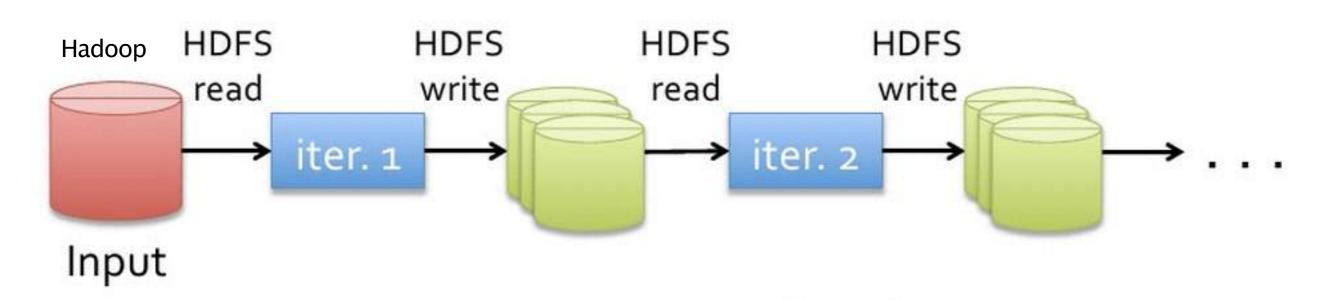
Hadoop suffers from I/O overhead



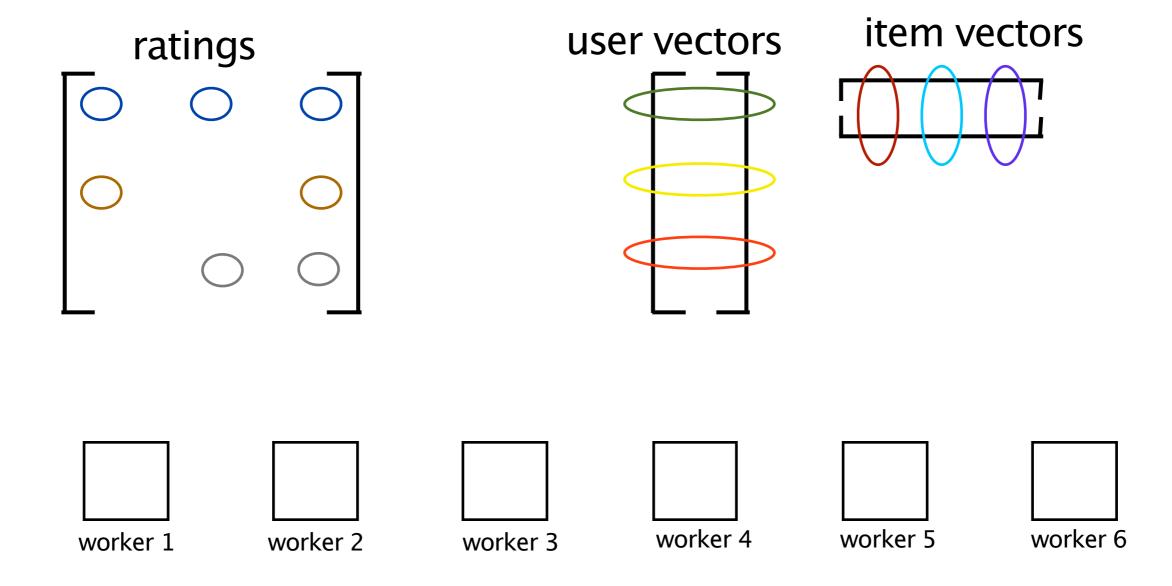
Spark to the rescue!!



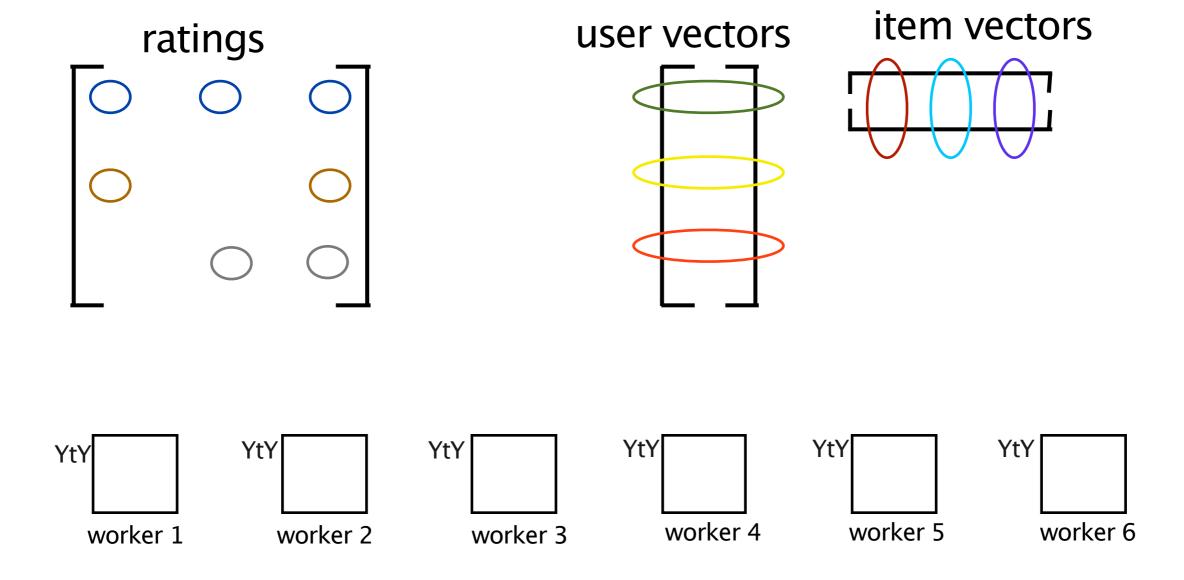
Vs



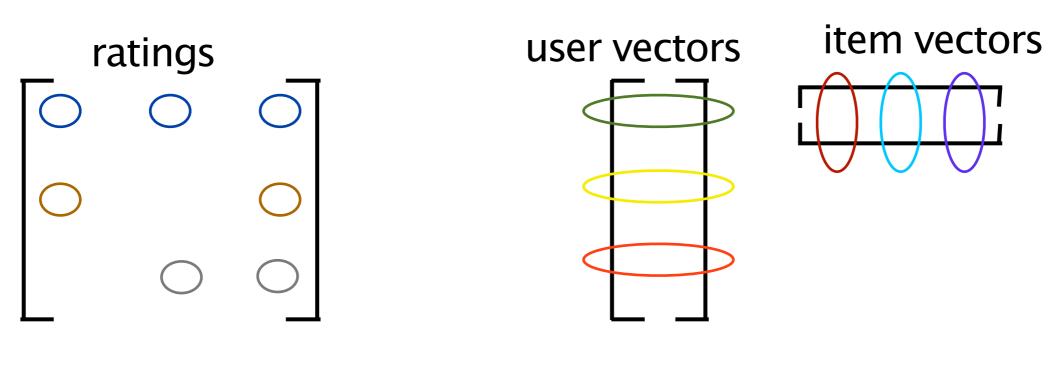
- For each iteration:
 - 1. Compute YtY over item vectors and broadcast
 - 2. Broadcast item vectors
 - 3. Group ratings by user
 - 4. Solve for optimal user vector

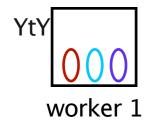


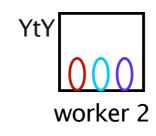
- For each iteration:
 - 1. Compute YtY over item vectors and broadcast
 - 2. Broadcast item vectors
 - 3. Group ratings by user
 - 4. Solve for optimal user vector

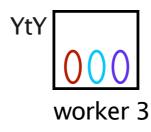


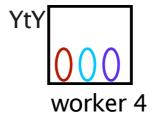
- For each iteration:
 - 1. Compute YtY over item vectors and broadcast
 - 2. Broadcast item vectors
 - 3. Group ratings by user
 - 4. Solve for optimal user vector

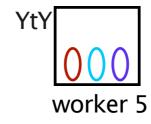


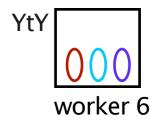




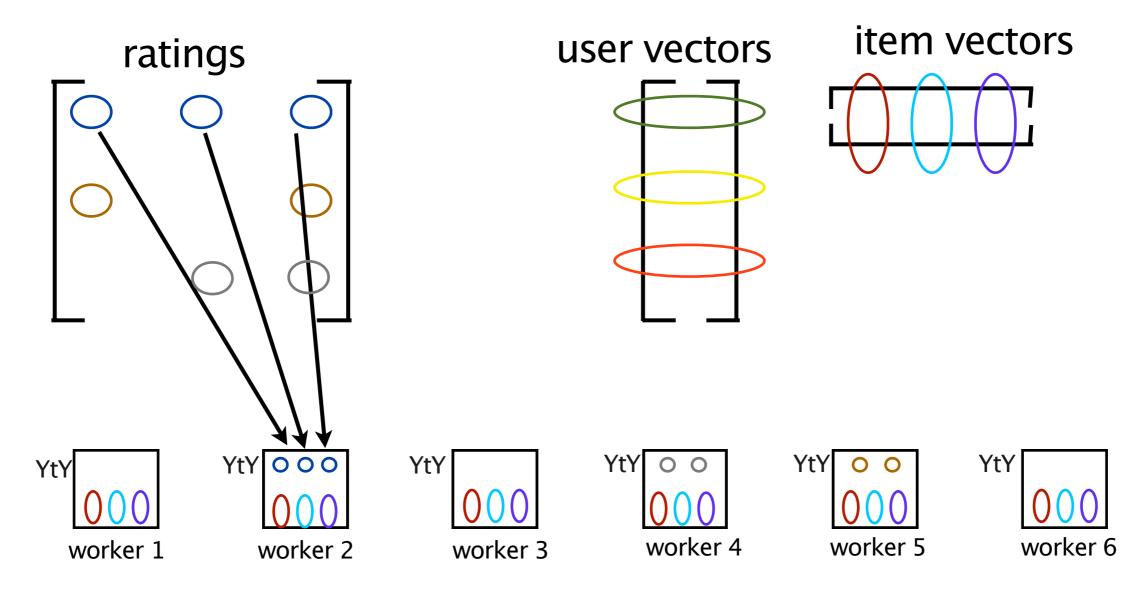




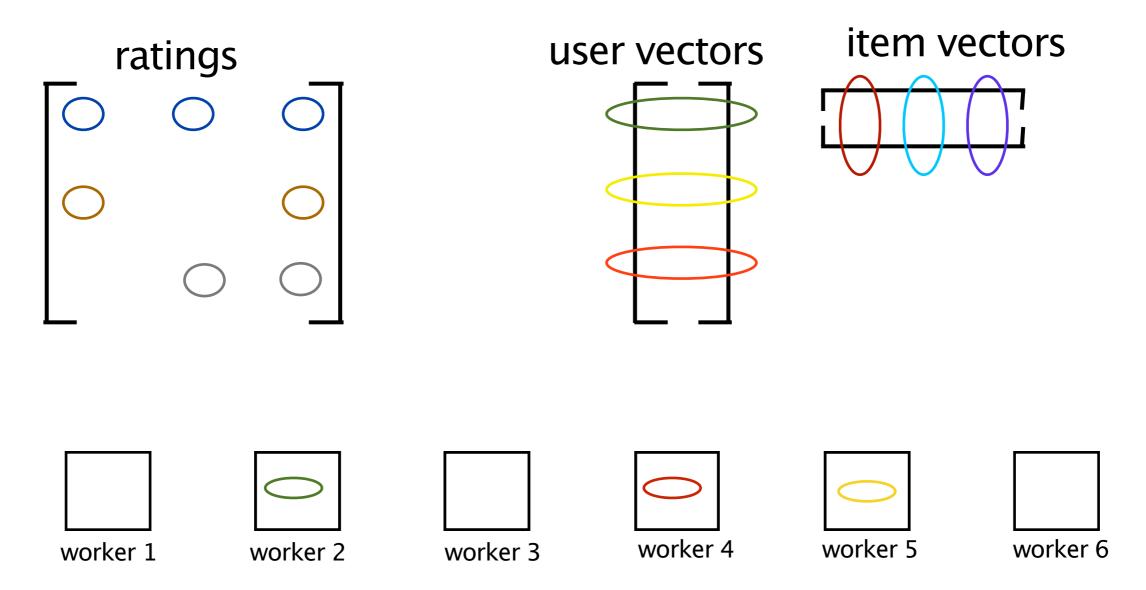




- For each iteration:
 - 1. Compute YtY over item vectors and broadcast
 - 2. Broadcast item vectors
 - 3. Group ratings by user
 - 4. Solve for optimal user vector



- For each iteration:
 - 1. Compute YtY over item vectors and broadcast
 - 2. Broadcast item vectors
 - 3. Group ratings by user
 - 4. Solve for optimal user vector



```
def ALSIteration(ratings: RDD[(Int, Int, Double)],
                 users: RDD[(Int, DenseVector[Double])],
                 items: RDD[(Int, DenseVector[Double])]) = {
 val YtY: Broadcast[DenseMatrix[Double]] = sc.broadcast(
    .map{case(item: Int, vector: DenseVector[Double]) =>
      vector * vector.t
   }.reduce{(m1: DenseMatrix[Double], m2: DenseMatrix[Double]) =>
     m1 + m2
 val itemMap = sc.broadcast(
   items
   .toLocalIterator
   .toMap
  ratings
    .map{case(user: Int, item: Int, rating: Double) =>
     (user, (item, rating))}
   .groupByKey
    .map{case(user: Int, ratings: Iterable[(Int, Double)]) =>
     solveVectors(user, ratings, itemMap, YtY)
```

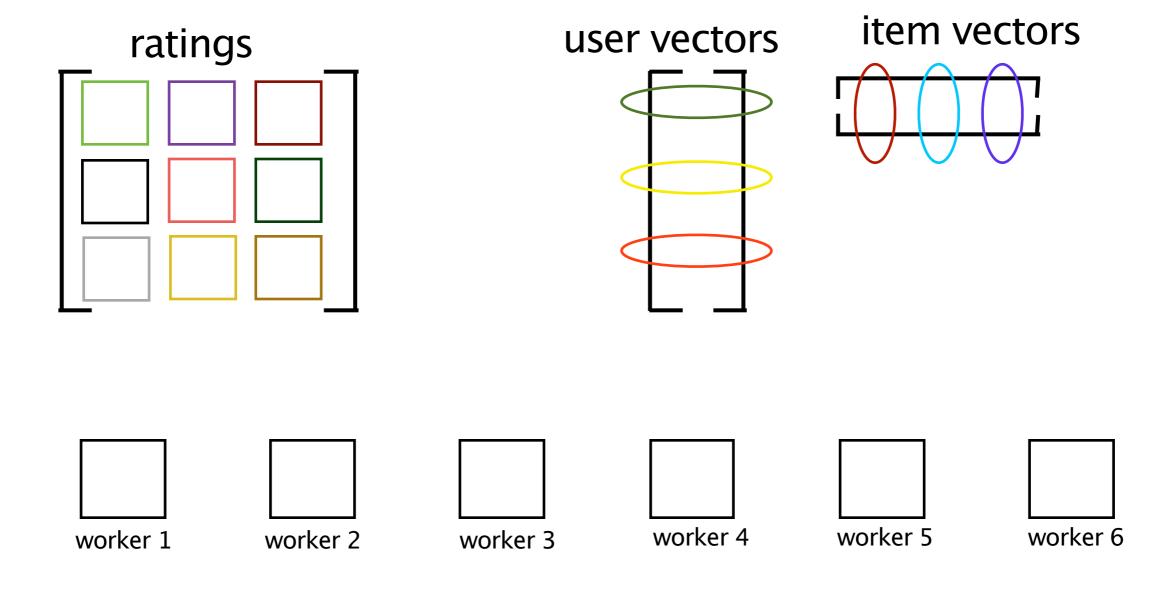
```
def AL Iteration(ratings: RDD[(Int, Int, Double)],
                 users: RDD[(Int, DenseVector[Double /],
                 items: RDD[(Int, DenseVector[Double])]) = {
 val YtY: Broa cast[DenseMatrix[Double]] = sp broadcast(
    items
    .map{case(item: Int, vector: DenseVector[Double]) =>
     vector * vector
   }.reduce{(m1: Denset trix[Double] m2: DenseMatrix[Double]) =>
     m1 + m2
 val itemMap = sc.broadcast
    items
    .toLocalIterator
    .toMap
  ratings
    .map{case ser: Int, item: Int, rating: Doub
      (user (item, rating))}
    .group yKey
    .mar (case(user: Int, ratings: Iterable[(Int, Double
      solveVectors(user, ratings, itemMap, YtY)
```

Cons:

- Unnecessarily shuffling all data across wire each iteration.
- Not caching ratings data
- Unnecessarily sending a full copy of user/item vectors to all workers.

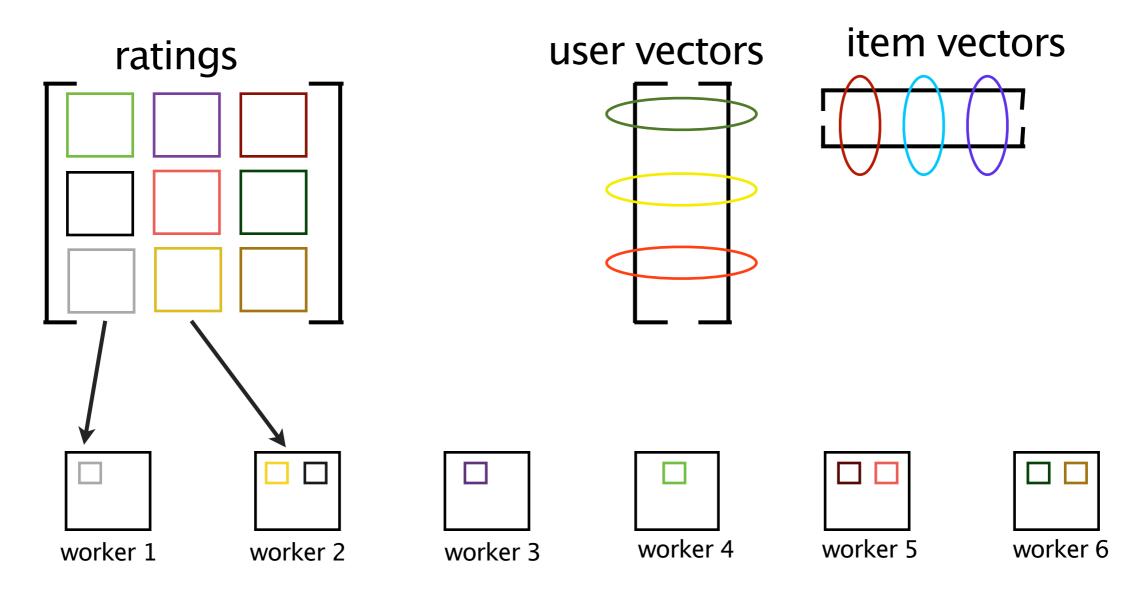
Second Attempt (full gridify)

- Group ratings matrix into K x L, partition, and cache
- For each iteration:
 - 1. Compute YtY over item vectors and broadcast
 - 2. For each item vector send a copy to each rating block in the item % L column
 - 3. Compute intermediate terms for each block (partition)
 - 4. Group by user, aggregate intermediate terms, and solve for optimal user vector

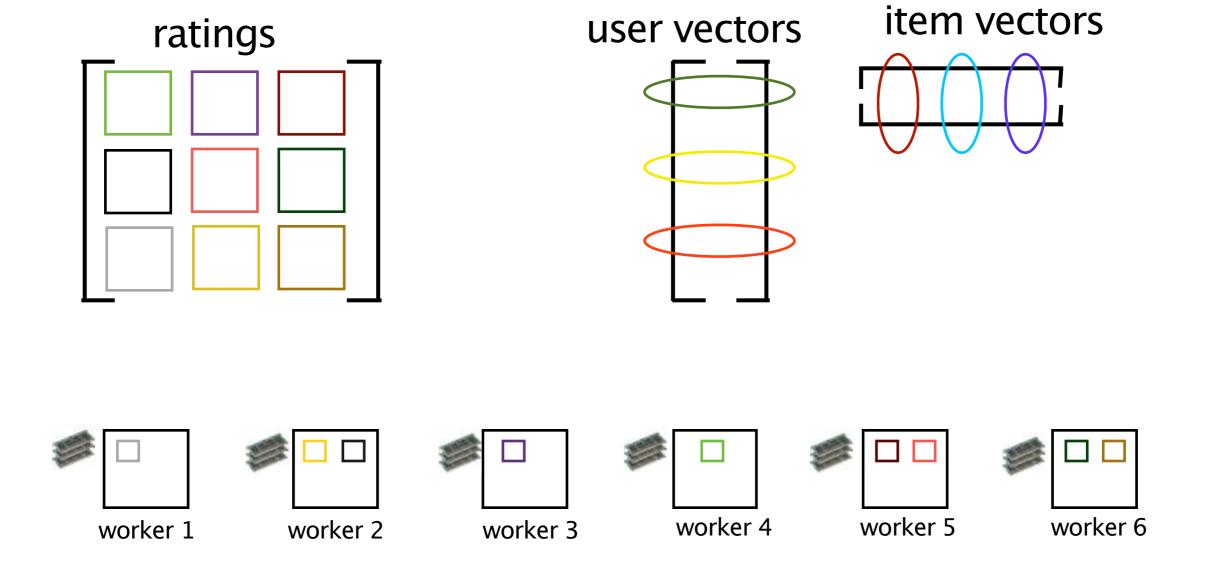


Second Attempt (full gridify)

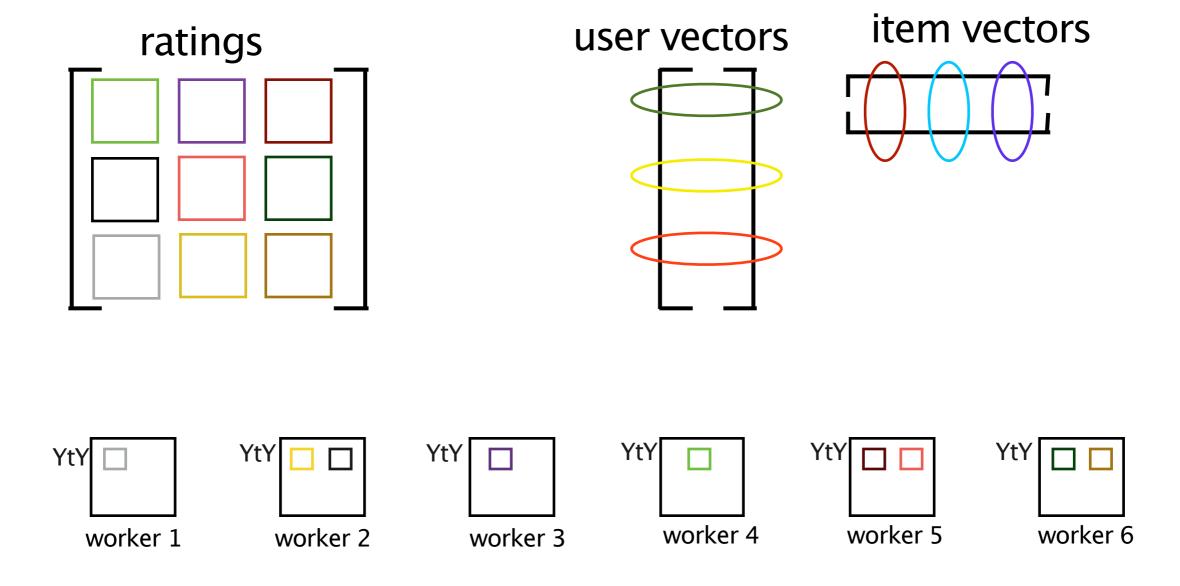
- Group ratings matrix into K x L, partition, and cache
- For each iteration:
 - 1. Compute YtY over item vectors and broadcast
 - 2. For each item vector send a copy to each rating block in the item % L column
 - 3. Compute intermediate terms for each block (partition)
 - 4. Group by user, aggregate intermediate terms, and solve for optimal user vector



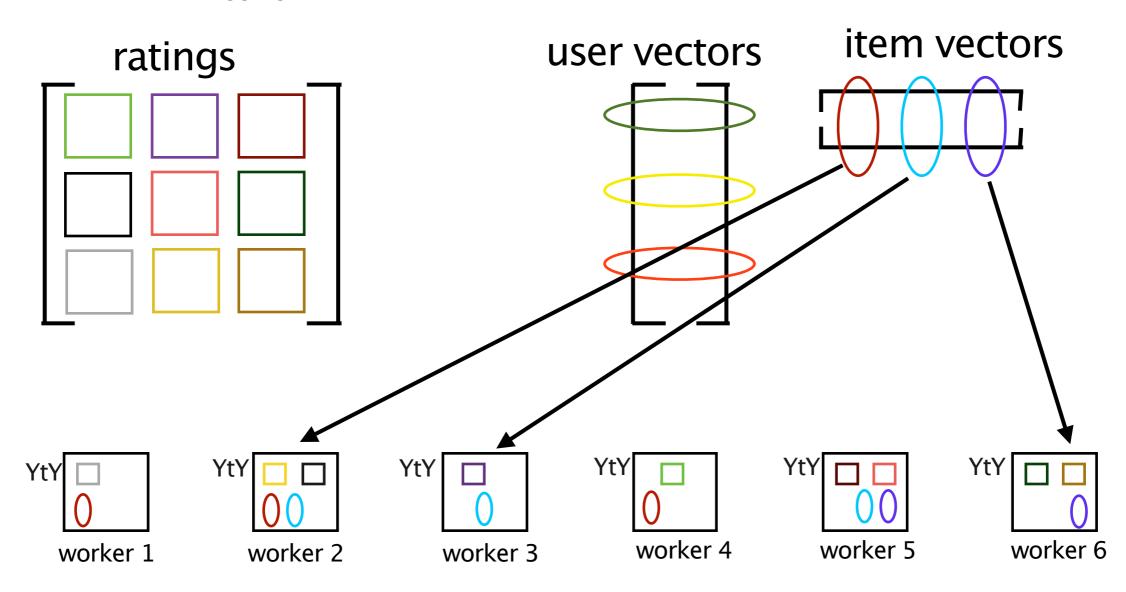
- Group ratings matrix into K x L, partition, and cache
- For each iteration:
 - 1. Compute YtY over item vectors and broadcast
 - 2. For each item vector send a copy to each rating block in the item % L column
 - 3. Compute intermediate terms for each block (partition)
 - 4. Group by user, aggregate intermediate terms, and solve for optimal user vector



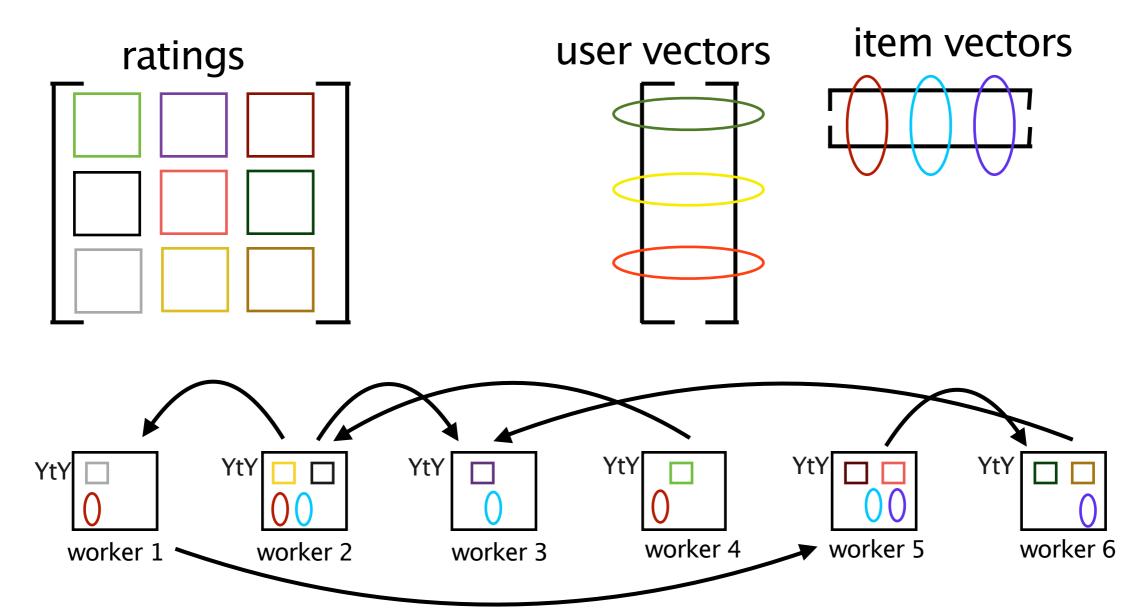
- Group ratings matrix into K x L, partition, and cache
- For each iteration:
 - 1. Compute YtY over item vectors and broadcast
 - 2. For each item vector send a copy to each rating block in the item % L column
 - 3. Compute intermediate terms for each block (partition)
 - 4. Group by user, aggregate intermediate terms, and solve for optimal user vector



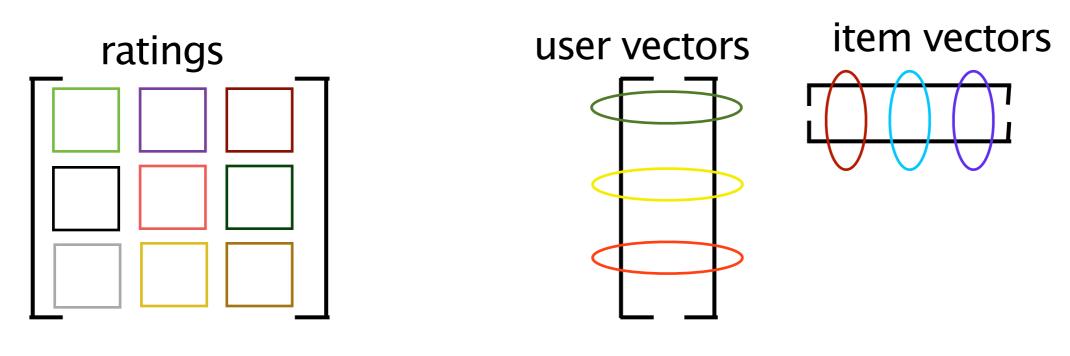
- Group ratings matrix into K x L, partition, and cache
- For each iteration:
 - 1. Compute YtY over item vectors and broadcast
 - 2. For each item vector send a copy to each rating block in the item % L column
 - 3. Compute intermediate terms for each block (partition)
 - 4. Group by user, aggregate intermediate terms, and solve for optimal user vector

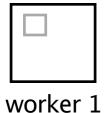


- Group ratings matrix into K x L, partition, and cache
- For each iteration:
 - 1. Compute YtY over item vectors and broadcast
 - 2. For each item vector send a copy to each rating block in the item % L column
 - 3. Compute intermediate terms for each block (partition)
 - 4. Group by user, aggregate intermediate terms, and solve for optimal user vector



- Group ratings matrix into K x L, partition, and cache
- For each iteration:
 - 1. Compute YtY over item vectors and broadcast
 - 2. For each item vector send a copy to each rating block in the item % L column
 - 3. Compute intermediate terms for each block (partition)
 - 4. Group by user, aggregate intermediate terms, and solve for optimal user vector





worker 2

worker 5

worker 6

Second Attempt

```
def fullGridify(ratings: RDD[Rating],
                k: Int,
                l: Int.
                partitioner: Partitioner)= {
  ratings
    .map{r: Rating =>
      val row = r.user % k
      val column = r.item % l
      (((row * l) + column), r)
    }.groupByKey(partitioner)
    .mapValues{itr: Iterable[Rating] =>
      itr.toList.groupBy(_.user)
    }.persist(StorageLevel.MEMORY AND DISK)
def updateVectors(ratingsByBlock: RDD[(Int, Map[Int, List[Rating]])],
                  itemsByBlock: RDD[(Int, Map[Int, VectorData])],
                  partitioner: Partitioner) = {
  val yty: DenseMatrix[Double] = computeYtY(itemsByBlock)
  val joinedVectorsRatings = joinVectorsRatings(ratingsByBlock, itemsByBlock, k, l, user, partitioner)
  val aggregatedTerms: RDD[(Int, Iterable[(Int, DenseMatrix[Double], DenseVector[Double])])] =
    aggregateTerms(joinedVectorsRatings, alpha, k, user, rank, partitioner)
  solveVectors(aggregatedTerms, yty, lambda, user)
```

Second Attempt

```
def fullGridify(ratings: RDD[Rating],
                k: Int.
                l: Int.
                partitioner: Partitioner)= {
  ratings
    .map{r: Rating =>
      val row = r.user % k
      val column = r.item % l
      (((row * l) + column), r)
    }.groupByKey(partitioner)
    .mapValues{itr: Iterable[Rating] =>
      itr.toList.groupBy(_.user)
    }.persist(StorageLevel.MEMORY AND DISK)
def updateVectors(ratingsByBlock: RDD[(Int, Map[Int, List[Rating]])],
                  itemsByBlock: RDD[(Int, Map[Int, VectorData])],
                  partitioner: Partitioner) = {
  val yty: DenseMatrix[Double] = computeYtY(itemsByBlock)
  val joinedVectorsRatings = joinVectorsRatings(ratingsByBlock, itemsByBlock, k, l, user, partitioner)
  val aggregatedTerms: RDD[(Int, Iterable[(Int, DenseMatrix[Double], DenseVector[Double])])] =
    aggregateTerms(joinedVectorsRatings, alpha, k, user, rank, partitioner)
  solveVectors(aggregatedTerms, yty, lambda, user)
```

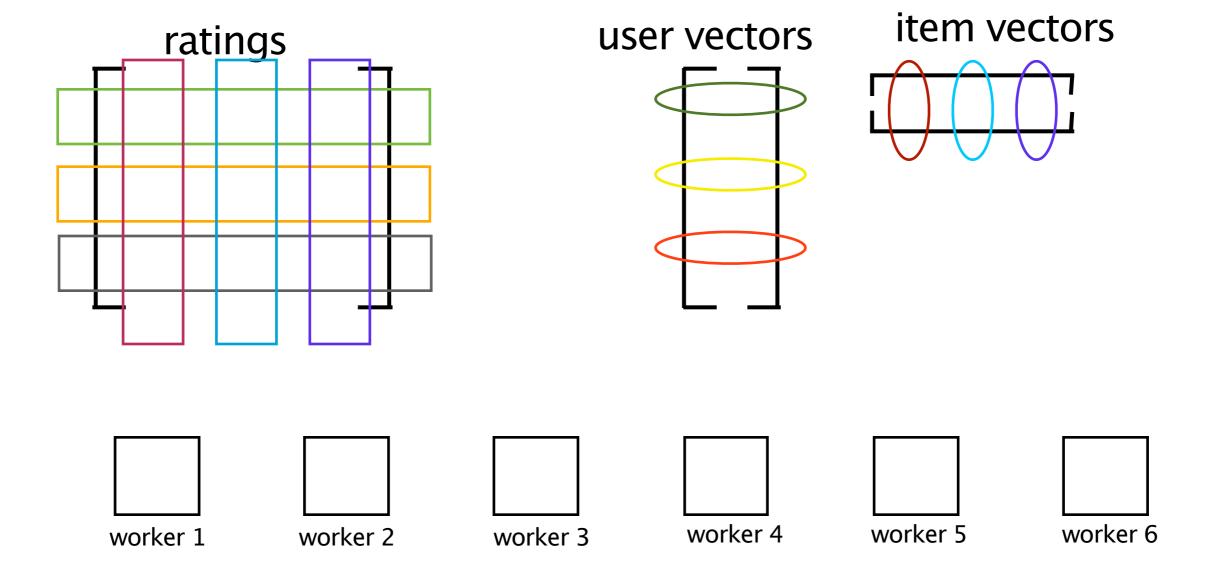
Pros

- Ratings get cached and never shuffled
- Each partition only requires a subset of item (or user) vectors in memory each iteration
- Potentially requires less local memory than a "half gridify" scheme

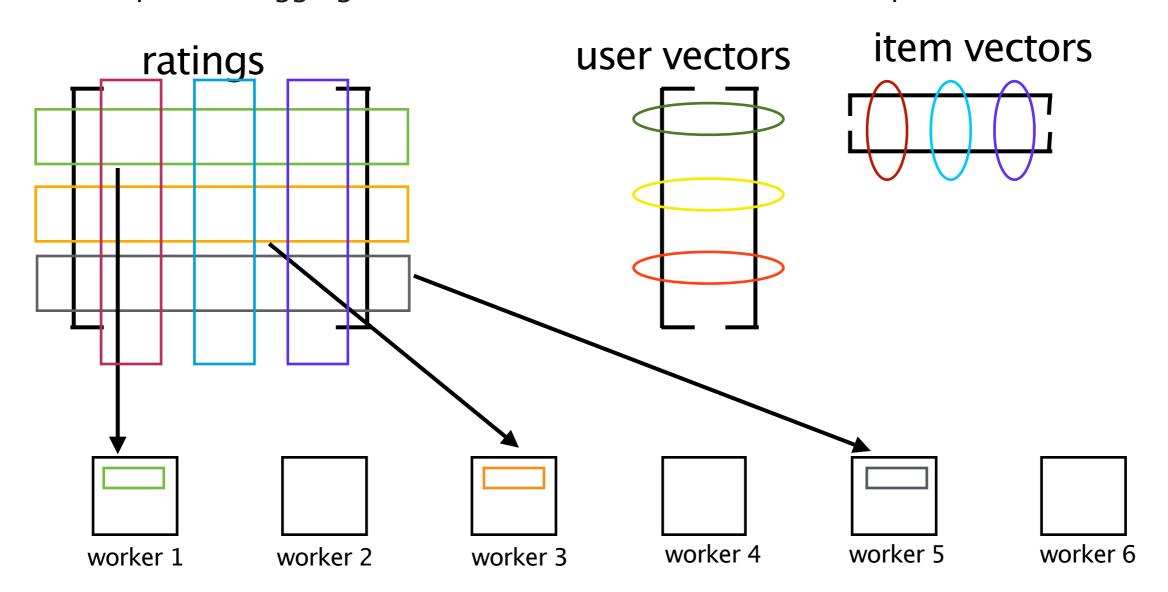
Cons

- Sending lots of intermediate data over wire each iteration in order to aggregate and solve for optimal vectors
- More IO overhead than a "half gridify" scheme

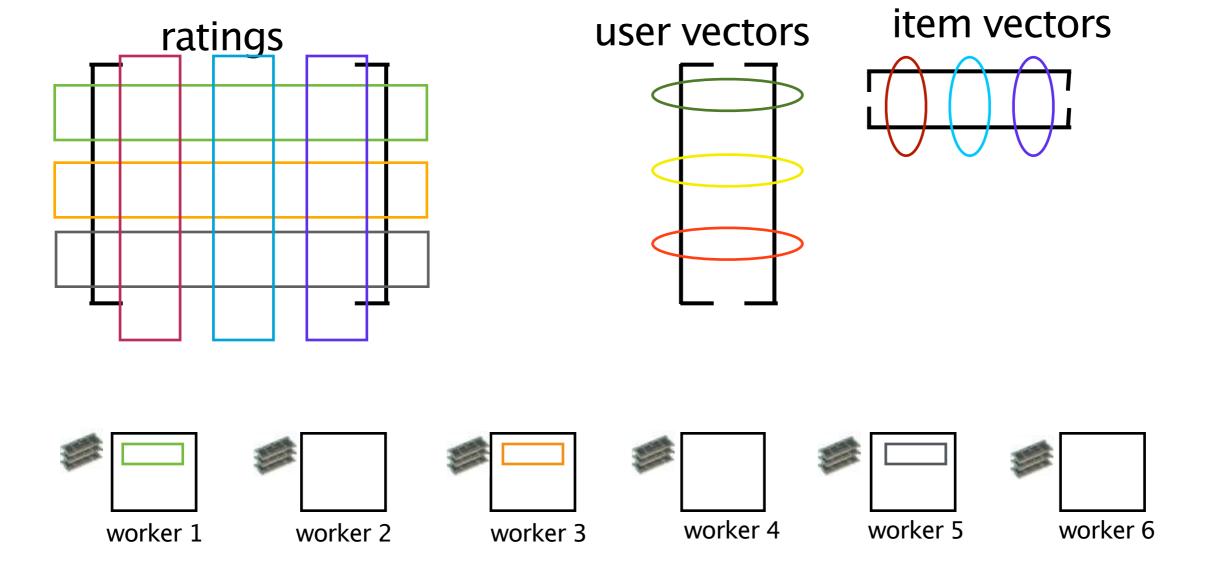
- Partition ratings matrix into K user (row) and item (column) blocks, partition, and cache
- For each iteration:
 - 1. Compute YtY over item vectors and broadcast
 - 2. For each item vector, send a copy to each user rating partition that requires it (potentially all partitions)
 - 3. Each partition aggregates intermediate terms and solves for optimal user vectors



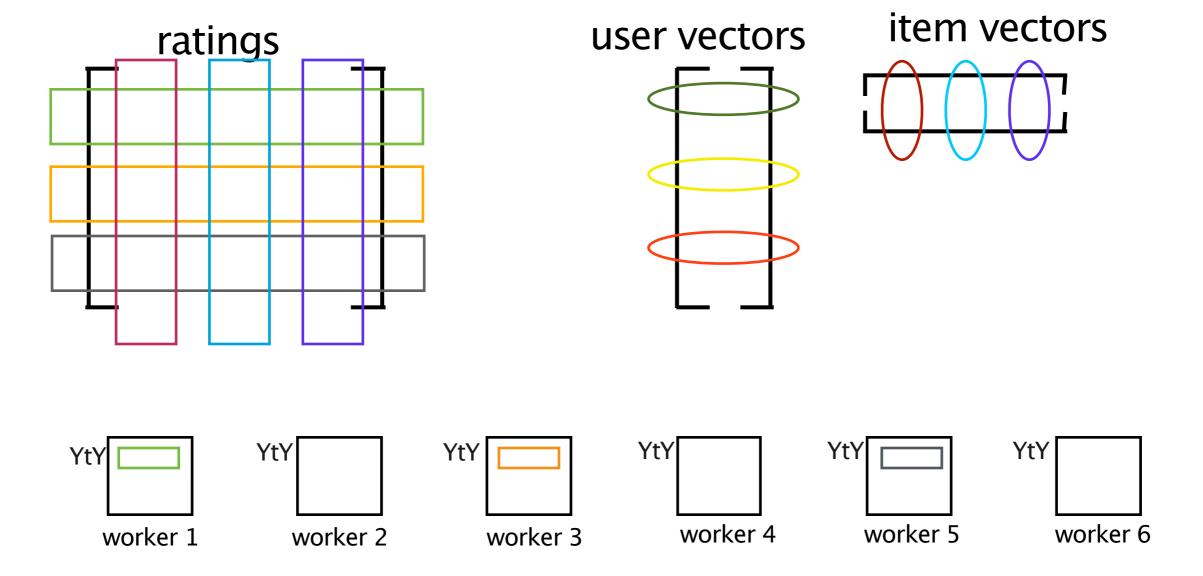
- Partition ratings matrix into K user (row) and item (column) blocks, partition, and cache
- For each iteration:
 - 1. Compute YtY over item vectors and broadcast
 - 2. For each item vector, send a copy to each user rating partition that requires it (potentially all partitions)
 - 3. Each partition aggregates intermediate terms and solves for optimal user vectors



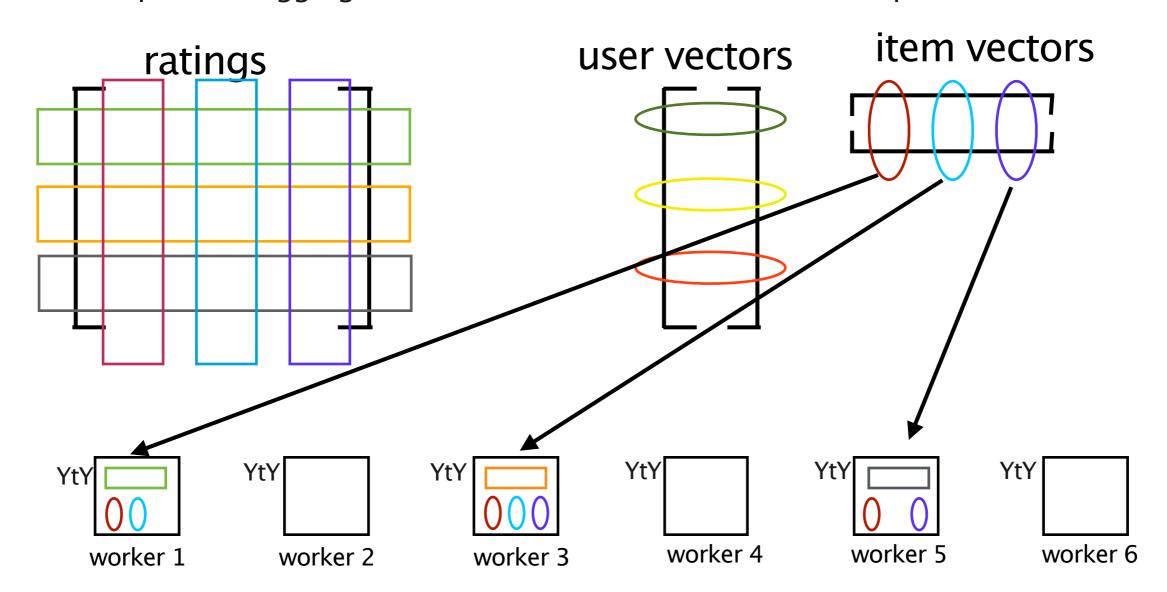
- Partition ratings matrix into K user (row) and item (column) blocks, partition, and cache
- For each iteration:
 - 1. Compute YtY over item vectors and broadcast
 - 2. For each item vector, send a copy to each user rating partition that requires it (potentially all partitions)
 - 3. Each partition aggregates intermediate terms and solves for optimal user vectors



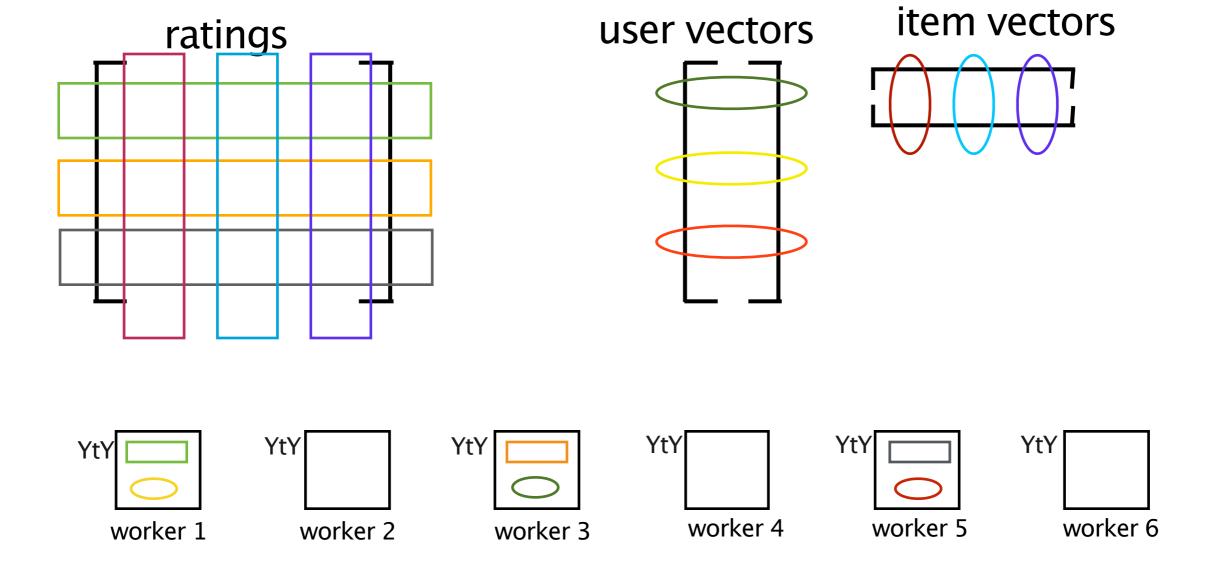
- Partition ratings matrix into K user (row) and item (column) blocks, partition, and cache
- For each iteration:
 - 1. Compute YtY over item vectors and broadcast
 - 2. For each item vector, send a copy to each user rating partition that requires it (potentially all partitions)
 - 3. Each partition aggregates intermediate terms and solves for optimal user vectors



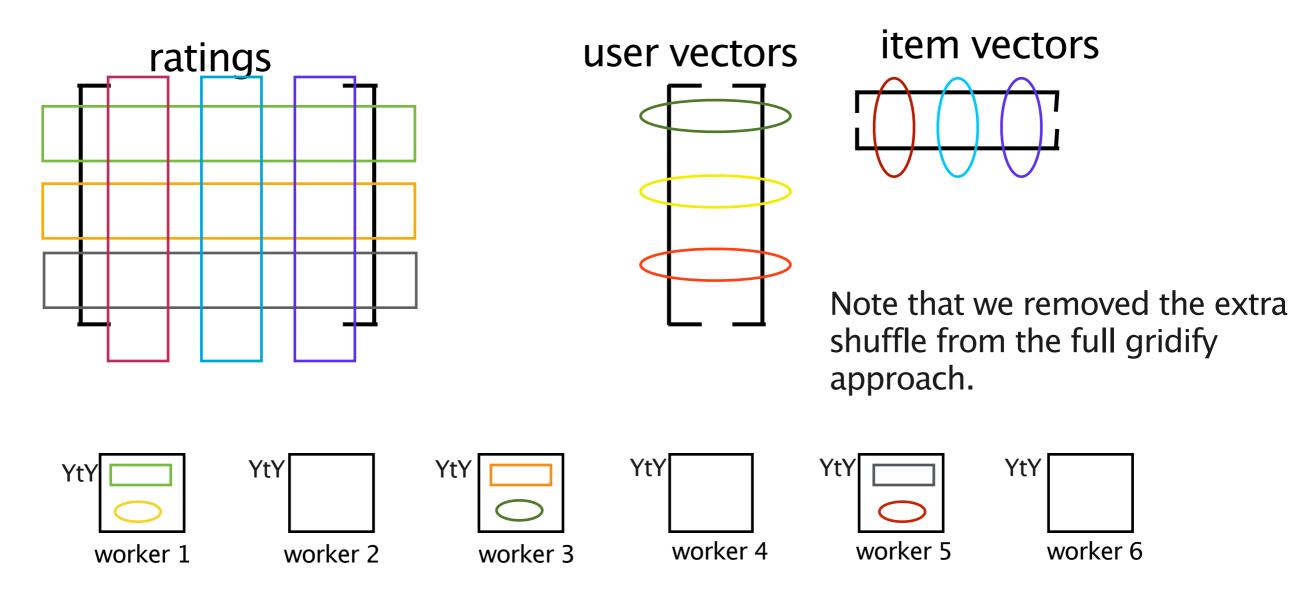
- Partition ratings matrix into K user (row) and item (column) blocks, partition, and cache
- For each iteration:
 - 1. Compute YtY over item vectors and broadcast
 - 2. For each item vector, send a copy to each user rating partition that requires it (potentially all partitions)
 - 3. Each partition aggregates intermediate terms and solves for optimal user vectors



- Partition ratings matrix into K user (row) and item (column) blocks, partition, and cache
- For each iteration:
 - 1. Compute YtY over item vectors and broadcast
 - 2. For each item vector, send a copy to each user rating partition that requires it (potentially all partitions)
 - 3. Each partition aggregates intermediate terms and solves for optimal user vectors



- Partition ratings matrix into K user (row) and item (column) blocks, partition, and cache
- For each iteration:
 - 1. Compute YtY over item vectors and broadcast
 - 2. For each item vector, send a copy to each user rating partition that requires it (potentially all partitions)
 - 3. Each partition aggregates intermediate terms and solves for optimal user vectors



```
private def updateFeatures(
   products: RDD[(Int, Array[Array[Double]])],
   productOutLinks: RDD[(Int, OutLinkBlock)],
   userInLinks: RDD[(Int, InLinkBlock)],
   partitioner: Partitioner,
                                                               Actual MLLib code!
   rank: Int.
   lambda: Double,
   alpha: Double,
   YtY: Option[Broadcast[DoubleMatrix]])
  : RDD[(Int, Array[Array[Double]])] =
 val numBlocks = products.partitions.size
  productOutLinks.join(products).flatMap { case (bid, (outLinkBlock, factors)) =>
     val toSend = Array.fill(numBlocks)(new ArrayBuffer[Array[Double]])
     for (p <- 0 until outLinkBlock.elementIds.length; userBlock <- 0 until numBlocks) {
        if (outLinkBlock.shouldSend(p)(userBlock)) {
         toSend(userBlock) += factors(p)
     toSend.zipWithIndex.map{ case (buf, idx) => (idx, (bid, buf.toArray)) }
  }.groupByKey(partitioner)
  .join(userInLinks)
   .mapValues{ case (messages, inLinkBlock) =>
     updateBlock(messages, inLinkBlock, rank, lambda, alpha, YtY)
```

Pros

- Ratings get cached and never shuffled
- Once item vectors are joined with ratings partitions each partition has enough information to solve optimal user vectors without any additional shuffling/aggregation (which occurs with the "full gridify" scheme)

Cons

- Each partition could potentially require a copy of each item vector (which may not all fit in memory)
- Potentially requires more local memory than "full gridify" scheme

ALS Running Times

- Dataset consisting of Spotify streaming data for 2 Million users and 500k artists
 - Note: full dataset consists of 40M users and 20M songs but we haven't yet successfully run with Spark
- All jobs run using 40 latent factors
- Spark jobs used 200 executors with 8G containers
- Hadoop job used 1k mappers, 300 reducers

Hadoop	Spark (full gridify)	Spark (half gridify)
10 hours	3.5 hours	1.5 hours

ALS Running Times

System	Wall-clock time (seconds)
MATLAB	15443
Mahout	4206
GraphLab	291
MLlib	481

- Dataset: scaled version of Netflix data (9X in size).
- Cluster: 9 machines.
- MLlib is an order of magnitude faster than Mahout.
- MLlib is within factor of 2 of GraphLab.

