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Who am |1??

® Chris Johnson
- Machine Learning guy from NYC
- Focused on music recommendations
- Formerly a PhD student at UT Austin
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Collaborative Filtering - “The Netflix Prize”
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Collaborative Filtering

Hey,
| like tracks P, Q, R, S!

Well,
| like tracks Q, R, S, T!

Image via Erik Bernhardsson
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Explicit Matrix Factorization

Users explicitly rate a subset of the movie catalog
Goal: predict how users will rate new movies

................................................

--------------------------------------------------

Inception
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Explicit Matrix Factorization

Approximate ratings matrix by the product of low-
dimensional user and movie matrices

Minimize RMSE (root mean squared error)
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Twi = user u's rating for movie 3
z, = user u's latent factor vector
T; = jtem ¢'s latent factor vector

B, = bias for user u
Bi = bias for item ¢
A = regularization parameter



Implicit Matrix Factorization .

Instead of explicit ratings use binary labels
1 = streamed, O = never streamed

Minimize weighted RMSE (root mean squared error) using a
function of total streams as weights
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Cui = 1 + ary; B; = bias for item ¢
Ty = user u's latent factor vector A = reqularization parameter

r; =item ¢'s latent factor vector



Alternating Least Squares (ALS) i

Instead of explicit ratings use binary labels
1 = streamed, O = never streamed

Minimize weighted RMSE (root mean squared error) using a
function of total streams as weights
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Cui = 1 + ary; B; = bias for item ¢
Ty = user u's latent factor vector A = regularization parameter

r; =item ¢'s latent factor vector



Alternating Least Squares (ALS) -

Instead of explicit ratings use binary labels
1 = streamed, O = never streamed

Minimize weighted RMSE (root mean squared error) using a

function of total streams as weights
T, = (YTC'Y + AI)~'YTCp(u)

1000100 1\ Solve for users
00100100
10100011
A Y
Users 101000100 )11
00100100 S~
10001001/ Fix songs
T
Songs f
mingy >y Cui(Pui = By i — Bu — Bi)* + A, llzell® +37; lwall?)
Pui = 1 if user w streamed track ¢ else O B3, = bias for user u
Cui = 1 + ary; B; = bias for item ¢
Ty = user u’'s latent factor vector A = regularization parameter

r; =item ¢'s latent factor vector



Alternating Least Squares (ALS) )

Instead of explicit ratings use binary labels
1 = streamed, O = never streamed

Minimize weighted RMSE (root mean squared error) using a
function of total streams as weights
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Alternating Least Squares (ALS) §

Instead of explicit ratings use binary labels
1 = streamed, O = never streamed

Minimize weighted RMSE (root mean squared error) using a
function of total streams as weights
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Alternating Least Squares (ALS) *

Instead of explicit ratings use binary labels
1 = streamed, O = never streamed

Minimize weighted RMSE (root mean squared error) using a
function of total streams as weights
Repeat until convergence...
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Alternating Least Squares (ALS) 7

Instead of explicit ratings use binary labels
1 = streamed, O = never streamed

Minimize weighted RMSE (root mean squared error) using a
function of total streams as weights

Repeat until convergence...
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Alternating Least Squares

2 def als_iteration(user, counts, solve_vecs, fixed vecs, num_factors=40, reg_param-9.8):
@param user: True if solving for user vectors
@param counts: scipy.sparse matrix containing implicit
user-item counts * alpha
@param solve_vecs: scipy.sparse vector of latent factors you
wish to solve for
@param fixed_vecs: scipy.sparse vector of fixed latent factors
@param reg_param: regularization parameter (lambda)

num_fixed - fixed_vecs.shape[?]

YTY - fixed_vecs.T.dot(fixed_vecs)

eye -~ scipy.sparse.eye(num_fixed)

lambda_eye - reg_param = scipy.sparse.eye(num_factors)

i xrange(solve_vecs.shape[d]):
user:
counts_i - counts[i].toarray()

counts_i = counts[:, i].T.toarray()
Cul - scipy.sparse.diags(counts_i, [@])
pu = counts_i.copy()
pu [numpy.where(pu 0)] 1.0
YTCulY - fixed_vecs.T.dot(Cul).dot(fixed_vecs)
YTCupu - fixed_vecs.T.dot(Cul + eye).dot(scipy.sparse.csr_matrix(pu).T)
Xu = scipy.sparse.linalg.spsolve(YTY + YTCulY + lambda_eye, YTCupu)
solve_vecs[i] = xu

solve_vecs

code: https://github.com/MrChrisJohnson/implicitMF



https://github.com/MrChrisJohnson/implicitMF
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Hadoop at Spotify 2014 i

700 Nodes in our London data center
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Implicit Matrix Factorization with Hadoop ~

item vectors

item vectors
item%L=1

— e e e = e = - = e = = o = = = e e = e = e = e = = = = = = = = = = = = = = = e = = = e = = = e = = = e = = = = = = = = = = = =y

item vectors
i% L=L-1

uK=0
1% L=L-1

Reduce step

> u%K=0

item%L=0
t %WK=0
user vectors u% K =
uU%K=0 ™ iwL=0
t u% K
user vectors oK =
u K=1 i%L=0
|IaN
user vectors u% K=K-1
u% K=K-1 i%L=0

all log entries
u%K=1
i%L=1

> uh K=1

| U%%K=K-1

Figure via Erik Bernhardsson



Implicit Matrix Factorization with Hadoop *

' One map task

|

|

| - : |
Distributed | ™ |

cache: |
All user vectors :
:

|

|

|

|

|

where u % K = x

v

— Mapper —— Emit contributions —» Reducer ——» New vector!

Distributed ™~
cache:
All item vectors
wherei % L=y

Map input:
tuples (u, i, count
where
u% K=x
and
1% L=y

Figure via Erik Bernhardsson



Hadoop suffers from 1/O overhead

HDFS HDFS HDFS HDFS
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Spark to the rescue!! Spar

Hadoop HDFS HDFS HDFS HDFS
read write. . read write
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http://www.slideshare.net/Hadoop Summit/spark-and-shark

Input



http://www.slideshare.net/Hadoop_Summit/spark-and-shark




First Attempt (broadcast everything)

For each iteration:
Compute YtY over item vectors and broadcast
Broadcast item vectors
Group ratings by user
Solve for optimal user vector

ratings user vectors
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Item vectors

]
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worker 5 worker 6

28



First Attempt (broadcast everything)

For each iteration:
Compute YtY over item vectors and broadcast

Broadcast item vectors
Group ratings by user

Solve for optimal user vector

ratings

YtY]

worker 1
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YtY

worker 2
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user vectors

YtY

worker 4

Item vectors
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First Attempt (broadcast everything)

For each iteration:
Compute YtY over item vectors and broadcast
Broadcast item vectors
Group ratings by user
Solve for optimal user vector

Item vectors

ratings user vectors
S —_— — — | N\ N\ !
© O O {RIRI0}
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YtY YtY YtY YtY YtY YtY
000 000 000 000 000
worker 1 worker 2 worker 3 worker 4 worker 5 worker 6
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First Attempt (broadcast everything)

For each iteration:
Compute YtY over item vectors and broadcast
Broadcast item vectors
Group ratings by user
Solve for optimal user vector

ratings user vectors Eem ve/c\tors
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\V VY
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First Attempt (broadcast everything)

For each iteration:
Compute YtY over item vectors and broadcast
Broadcast item vectors
Group ratings by user
Solve for optimal user vector

ratings user vectors  Item vectors
© O O iRIRIR}
V) VY
O O S
O O
- -

worker 1 worker 2 worker 3 worker 4 worker 5 worker 6
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First Attempt (broadcast everything)

def ALSIteration(ratings: RDD[(Int, Int, Double)],
users: RDD[(Int, DenseVector([Double])],
items: RDD[(Int, DenseVector[Double])]) = {
val YtY: Broadcast [DenseMatrix[Double]] = sc.broadcast(
items
.map{case(item: Int, vector: DenseVector([Double]) =>
vector * vector.t
}.reduce{(ml: DenseMatrix[Double], m2: DenseMatrix[Double]) =>
ml + m2}
)

val itemMap = sc.broadcast(
items
.toLocallterator
. toMap

)

ratings
.map{case(user: Int, item: Int, rating: Double) =>
(user, (item, rating))}
.groupByKey
.map{case(user: Int, ratings: Iterable[(Int, Double)]) =>
solveVectors(user, ratings, itemMap, YtY)

}

33



First Attempt (broadcast everything)

def ANQLteration(ratings: RDD[(Int, Int, Double)],

users: RDD[(Int, DenseVector[Doublgdr],
items: RDD[(Int, DenseVector[Dould®])])

{

val YtY: Brod
items
.map{case(item’\§
vector * vecto
}.reduce{(ml: Dense
ml + m2}
)

ast [DenseMatrix[Double]] = sgfbroadcast(

¥r[Double] ) =>

t, vector: DenseVe

rix [Doubleld’m2: DenseMatrix[Double]) =>

val itemMap = sc.broadcas
items
.toLocallterator
. toMap
)

ratings
.map{case/@Ber: Int, item: Int, rating: Doulqg) =>
(usergitem, rating))}

.gro Key

.ma@Pcase(user: Int, ratings: Iterable[(Int, Doubl®

golveVectors(user, ratings, itemMap, YtY)

) =>

Cons:

Unnecessarily shuffling all data across wire each iteration.
Not caching ratings data

Unnecessarily sending a full copy of user/item vectors to all workers.
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Second Attempt (full gridify)

Group ratings matrix into K x L, partition, and cache
For each iteration:
Compute YtY over item vectors and broadcast
For each item vector send a copy to each rating block in the item % L column
Compute intermediate terms for each block (partition)
Group by user, aggregate intermediate terms, and solve for optimal user vector

ratings user vectors  Item vectors

VAN VAN

{RIRIA}

|\ |\

worker 1 worker 2 worker 3 worker 4 worker 5 worker 6
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Second Attempt (full gridify)

Group ratings matrix into K x L, partition, and cache
For each iteration:
Compute YtY over item vectors and broadcast
For each item vector send a copy to each rating block in the item % L column
Compute intermediate terms for each block (partition)
Group by user, aggregate intermediate terms, and solve for optimal user vector

ratings user vectors  Item vectors
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Second Attempt (full gridify)

Group ratings matrix into K x L, partition, and cache
For each iteration:
Compute YtY over item vectors and broadcast
For each item vector send a copy to each rating block in the item % L column
Compute intermediate terms for each block (partition)
Group by user, aggregate intermediate terms, and solve for optimal user vector

Item vectors
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ratings user vectors

= Z O o = £\ 00 goO

worker 4

worker 1 worker 2 worker 3 worker 5 worker 6
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Second Attempt (full gridify)

Group ratings matrix into K x L, partition, and cache
For each iteration:
Compute YtY over item vectors and broadcast
For each item vector send a copy to each rating block in the item % L column
Compute intermediate terms for each block (partition)
Group by user, aggregate intermediate terms, and solve for optimal user vector

ratings user vectors  Item vectors
[T B —] - my
iRIRIR}
j | V) VY
YtY vey[ | O yev [ Yty Yo ] e[ ]

worker 1 worker 2 worker 3 worker 4 worker 5 worker 6
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Second Attempt (full gridify)

Group ratings matrix into K x L, partition, and cache
For each iteration:
Compute YtY over item vectors and broadcast
For each item vector send a copy to each rating block in the item % L column
Compute intermediate terms for each block (partition)
Group by user, aggregate intermediate terms, and solve for optimal user vector

ratings user vectors  Item vectors
i | — = O\ /\'
¥
Y
YtY vey[ | O yev [ Yty Yo ] e[ ]

0 0 0 0 0

worker 1 worker 2 worker 3 worker 4 worker 5 worker 6
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Second Attempt (full gridify)

Group ratings matrix into K x L, partition, and cache

For each iteration:

Compute YtY over item vectors and broadcast

For each item vector send a copy to each rating block in the item % L column
Compute intermediate terms for each block (partition)
Group by user, aggregate intermediate terms, and solve for optimal user vector

ratings

user vectors

Item vectors

T T
\V VU
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YtY]
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worker 1 W
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Second Attempt (full gridify)

Group ratings matrix into K x L, partition, and cache
For each iteration:
Compute YtY over item vectors and broadcast
For each item vector send a copy to each rating block in the item % L column
Compute intermediate terms for each block (partition)
Group by user, aggregate intermediate terms, and solve for optimal user vector

ratings user vectors  Item vectors
T B —] -~ my
i BIRIN}
j | V) VY
O O O O O O3
- -
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Second Attempt

def fullGridify(ratings: RDD[Ratingl],
k: Int,
1: Int,
partitioner: Partitioner)= {

ratings
.map{r: Rating =>
val row = r.user % kK
val column = r.item % 1
(((row * 1) + column), r)
}.groupByKey(partitioner)
.mapValues{itr: Iterable[Rating] =>
itr.tolList.groupBy(_.user)
}.persist(StoragelLevel.MEMORY_AND_DISK)
}

def updateVectors(ratingsByBlock: RDD[(Int, Map[Int, List[Ratingl])],
itemsByBlock: RDD[(Int, Map[Int, VectorDatal)l,
partitioner: Partitioner) = {

val yty: DenseMatrix[Double] = computeYtY(itemsByBlock)
val joinedVectorsRatings = joinVectorsRatings(ratingsByBlock, itemsByBlock, k, 1, user, partitioner)

val aggregatedTerms: RDD[(Int, Iterable[(Int, DenseMatrix[Double], DenseVector[Doublel)])] =
aggregateTerms(joinedVectorsRatings, alpha, k, user, rank, partitioner)

solveVectors(aggregatedTerms, yty, lambda, user)

}



Second Attempt

def fullGridify(ratings: RDD[Ratingl],
k: Int,
1: Int,
partitioner: Partitioner)= {

ratings
.map{r: Rating =>
val row = r.user % k
val column = r.item % 1
(((row * 1) + column), r)
}.groupByKey(partitioner)
.mapValues{itr: Iterable[Rating] =>
itr.tolList.groupBy(_.user)
}.persist(StoragelLevel.MEMORY_AND_DISK)

}

def updateVectors(ratingsByBlock: RDD[(Int, Map[Int, List[Ratingl])],
itemsByBlock: RDD[(Int, Map[Int, VectorDatal)l,
partitioner: Partitioner) = {

val yty: DenseMatrix[Double] = computeYtY(itemsByBlock)

val joinedVectorsRatings = joinVectorsRatings(ratingsByBlock, itemsByBlock, k, 1, user, partitioner)

val aggregatedTerms: RDD[(Int, Iterable[(Int, DenseMatrix[Double], DenseVector[Double])]l)] =
aggregateTerms(joinedVectorsRatings, alpha, k, user, rank, partitioner)

solveVectors(aggregatedTerms, yty, lambda, user)

}

Pros
Ratings get cached and never shuffled
Each partition only requires a subset of item (or user) vectors in memory each iteration

Potentially requires less local memory than a “half gridify” scheme

Cons
Sending lots of intermediate data over wire each iteration in order to aggregate and solve for optimal vectors

More 10 overhead than a “half gridify” scheme
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Third Attempt (half gridify)

Partition ratings matrix into K user (row) and item (column) blocks, partition, and cache

For each iteration:
Compute YtY over item vectors and broadcast
For each item vector, send a copy to each user rating partition that requires it (potentially

all partitions)
Each partition aggregates intermediate terms and solves for optimal user vectors

ratings user vectors item vectors
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Third Attempt (half gridify)

Partition ratings matrix into K user (row) and item (column) blocks, partition, and cache
For each iteration:
Compute YtY over item vectors and broadcast

For each item vector, send a copy to each user rating partition that requires it (potentially
all partitions)

Each partition aggregates intermediate terms and solves for optimal user vectors

ratings user vectors item vectors
H H ——] 77T
| | L
| | \V WV
‘ ‘ | |
v
—

worker 1 worker 2 worker 3 worker 4 worker 5 worker 6



46

Third Attempt (half gridify)

Partition ratings matrix into K user (row) and item (column) blocks, partition, and cache

For each iteration:
Compute YtY over item vectors and broadcast
For each item vector, send a copy to each user rating partition that requires it (potentially

all partitions)
Each partition aggregates intermediate terms and solves for optimal user vectors

ratings user vectors item vectors
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Third Attempt (half gridify)

Partition ratings matrix into K user (row) and item (column) blocks, partition, and cache

For each iteration:
Compute YtY over item vectors and broadcast
For each item vector, send a copy to each user rating partition that requires it (potentially

all partitions)
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Each partition aggregates intermediate terms and solves for optimal user vectors
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Third Attempt (half gridify)

Partition ratings matrix into K user (row) and item (column) blocks, partition, and cache
For each iteration:
Compute YtY over item vectors and broadcast

For each item vector, send a copy to each user rating partition that requires it (potentially
all partitions)

Each partition aggregates intermediate terms and solves for optimal user vectors

ratings user vectors item vectors
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Third Attempt (half gridify)

Partition ratings matrix into K user (row) and item (column) blocks, partition, and cache

For each iteration:
Compute YtY over item vectors and broadcast
For each item vector, send a copy to each user rating partition that requires it (potentially

all partitions)
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Each partition aggregates intermediate terms and solves for optimal user vectors
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Third Attempt (half gridify)

Partition ratings matrix into K user (row) and item (column) blocks, partition, and cache

For each iteration:
Compute YtY over item vectors and broadcast
For each item vector, send a copy to each user rating partition that requires it (potentially

all partitions)
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Each partition aggregates intermediate terms and solves for optimal user vectors
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approach.
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Third Attempt (half gridify)

private def updateFeatures(
products: RDD[(Int, Array[Array[Double]])],
productOutLinks: RDD[(Int, OutLinkBlock)],
userInLinks: RDD[(Int, InLinkBlock)l],
partitioner: Partitioner, ]
rank: Int, Actual MLLib code!
lambda: Double,
alpha: Double,
YtY: Option[Broadcast [DoubleMatrix]])
: ROD[(Int, Array[Array[Double]l)] =
{
val numBlocks = products.partitions.size
productOutLinks. join(products).flatMap { case (bid, (outLinkBlock, factors)) =>
val toSend = Array.fill(numBlocks)(new ArrayBuffer[Array[Double]])
for (p <- @ until outLinkBlock.elementIds.length; userBlock <- @ until numBlocks) {
if (outLinkBlock.shouldSend(p) (userBlock)) {
toSend(userBlock) += factors(p)
}
}
toSend.zipWithIndex.map{ case (buf, idx) => (idx, (bid, buf.toArray)) }
}.groupByKey(partitioner)
.join(userInLinks)
.mapValues{ case (messages, inLinkBlock) =>
updateBlock(messages, inLinkBlock, rank, lambda, alpha, YtY)
}

Pros
Ratings get cached and never shuffled

Once item vectors are joined with ratings partitions each partition has enough information to solve optimal user
vectors without any additional shuffling/aggregation (which occurs with the “full gridify” scheme)

Cons
Each partition could potentially require a copy of each item vector (which may not all fit in memory)
Potentially requires more local memory than “full gridify” scheme



52

ALS Running Times

Dataset consisting of Spotify streaming data for 2 Million users and 500k artists
Note: full dataset consists of 40M users and 20M songs but we haven’t yet successfully run with Spark

All jobs run using 40 latent factors
Spark jobs used 200 executors with 8G containers
Hadoop job used 1k mappers, 300 reducers

Spark (full Spark (half

Hadoop gridify) gridify)

10 hours 3.5 hours 1.5 hours

Via Xiangrui Meng (Databricks) http://stanford.edu/~rezab/sparkworkshop/slides/xiangrui.pdf



http://stanford.edu/~rezab/sparkworkshop/slides/xiangrui.pdf
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ALS Running Times

MATLAB 15443
Mahout 4206
GraphlLab 291
MLlib 481

 Dataset: scaled version of Netflix data (9X in size).
e Cluster: 9 machines.

 MLIib is an order of magnitude faster than Mahout.
* MLIlib is within factor of 2 of GraphlLab.

Via Xiangrui Meng (Databricks) http://stanford.edu/~rezab/sparkworkshop/slides/xiangrui.pdf



http://stanford.edu/~rezab/sparkworkshop/slides/xiangrui.pdf

























