Productionizing a 24/7 Spark
Streaming Service on YARN

Issac Buenrostro, Arup Malakar

2 OOYALA

Spark Summit 2014
July 1, 2014

About Ooyala ¥1010)7.\ W\

Cross-device video analytics and monetization
products and services

Founded in 2007
300+ employees worldwide
Global footprint of 200M unique users in 130 countries

Ooyala works with the most successful broadcasts and media companies in the
"elgle

Reach, measure, monetize video business

Ooyala Analytics ETL

1. Ingest and process 5B+ events/day
2. Decode -> Enrich -> Persist

Plays/Displays, Conversion Rate, Geo, Device, OS, Unique, Engagement, etc.

Run 24/7, <2 min latency, <1% data loss,
reduce COGS, minimal human interaction.

Architecture diagram

HTTP Spark

Streaming

R :
ecelver on YARN

Take-Home Message

Yes, there are issues with Spark Streaming
However:

e Allows flexibility not available in other
frameworks

e [ssues are not huge, working on resolving
them

e Awareness / best practices

Hybrid Processing

Batch Streaming

e Easyreprocessing e Realtime

e More historical e |[ower scheduling
awareness needs

e Consistency
guarantees

Why Spark?

One codebase to maintain and test
Same framework for Batch and Streaming
Easily maintainable cluster (vs Storm)

Out-of-the-box YARN integration

Why YARN?

e Eliminate operational cost of maintaining a
separate spark cluster
e Better H/W utilization

e Easy upgrade
o 0.9 to 0.9.1 upgrade just a dependency change
o Vs upgrading a dedicated cluster

e |everage the expertise dealing with
YARN/hadoop

YARN Pitfalls

e 384 MB overhead per container
e Disconnect between Spark/YARN Ul

e YARN classpath automatically added to
Spark

Outline

1.

2.

3.

5.

Launching streaming applications
a. 24/7 running

Instrumentation

a. tracking of workers

Consuming streaming data
a. fixing consumption speed/reliability issues

Logging
a. Reducing amount of logs
Persisting streaming data

Launching in YARN

Traditional launching (Spark 0.9.1):

export SPARK JAR=/usr/lib/spark-assembly-1.1.0-SNAPSHOT-hadoop2.2.0.jar

java -cp /etc/hadoop/conf:Appdar.jar:spark-assembly.jar org.apache.spark.
deploy.yarn.Client --jar AppJar.jar --addJars /jars/config.jar --class ooyala.app.
MainClass --arg arg1 --arg arg2 --name MyApp

e Launches application in YARN
e Tracks application until done (not great for streaming)

Launching - Streaming way

Streaming launching:

java -cp /etc/hadoop/conf:Appdar.jar:spark-assembly.jar org.apache.spark.yarn.
StreamingClient --jar AppdJar.jar --addJars /jars/config.jar --class ooyala.app.

MainClass --arg arg1 --arg arg2 --name MyApp

Launch application IF not running
Connect to old application if already exists
Tracks application until done

Does not kill application if crashed

Launching - Relaunching

Use upstart with Streaming launcher

Launch application from remote host

If launcher fails, application unaffected

On launcher start, connect to existing app
If application fails, upstream re-launches it

sprK Stages Storage Environment Executors Streaming

Executors (5)

Memory: 0.0 B Used (8.4 GB Total)
Disk: 0.0 B Used

Executor RDD Disk Active Failed Complete Total
Address Blocks Memory Used Used Tasks Tasks Tasks Tasks

cdhb-staging- 0 0.0B/2013.0 0.0B 0 0 682454 682454
datab.services.ooyala.net:58065 MB

cdh5-staging- 0 0.0B/2013.0 0. 318970 318970

data2.services.ooyala.net:53181 Spark Stages

cdhb5-staging-

. .nn- Total Duration: 6.6 h
namenode.services.ooyala.net:33

Scheduling Mode: FIFO
cdh5-staging- Active Stages: 1
data6.services.ooyala.net:32839 Completed Stages: 795
Failed Stages: 0

<driver> cdh5-staging- Active St ™)
ctive Stages

data4.services.ooyala.net:56575
Stage Id Description Submitted Duration Tasks: Succeeded/Total Shuffle Read

796 (kill) map at core.scala:224 2014/06/15 16:44:00 3s 980/4470

Completed Stages (795)

Stage Id Description Submitted Duration Tasks: Succeeded/Total Shuffle Read
793 collect at core.scala:247 2014/06/15 16:43:29 4s 20/20 21.7 MB

794 map at core.scala:224 2014/06/15 16:43:01 28s 4550/4550

791 collect at core.scala:247 2014/06/15 16:42:24 2s 20/20

792 map at core.scala:224 2014/06/15 16:42:01 4607/4607

789 collect at core.scala:247 2014/06/15 16:41:15 20/20

790 map at core.scala:224 2014/06/15 16:41:01 4564/4564

787 collect at core.scala:247 2014/06/15 16:40:15 20/20

Streaming

Started at: Sun Jun 15 10:07:31 UTC 2014

Time since start: 6 hours 38 minutes 40 seconds
Network receivers: 50

Batch interval: 1 minute

Processed batches: 398

Waiting batches: 1

Statistics over last 100 processed batches

Receiver Statistics

Records in last batch Minimum rate Median rate Maximum rate
Receiver Status Location [2014/06/15 16:46:12] [records/sec] [records/sec] [records/sec] Last Error

KafkaReceiver-0 ACTIVE cdh5-staging- 1158 15 20 26
namenode.services.ooyala.net

KafkaReceiver-1 ACTIVE cdh5-staging-
namenode.services.ooyala.net

KafkaReceiver-2 ACTIVE cdhb-staging-
namenode.services.ooyala.net

KafkaReceiver-3 ACTIVE cdh5-staging-
data5.services.ooyala.net

KafkaReceiver-4 ACTIVE cdh5-staging-
data5.services.ooyala.net

Batch Processing Statistics

Metric Last batch Minimum 25th percentile Median 75th percentile Maximum
Processing Time 28 seconds 388 ms 9 seconds 3 ms 11 seconds 389 ms 13 seconds 340 ms 15 seconds 923 ms 36 seconds 302 ms
Scheduling Delay 0ms 0ms 0ms 0Oms 1ms 4 ms

Total Delay 23 seconds 388 ms 9 seconds 3 ms 11 seconds 389 ms 13 seconds 341 ms 15 seconds 923 ms 36 seconds 303 ms

Failure Cases

Processing stops, consuming continues
Broadcast variables get GCed (SPARK-1697)
Consumers fail silently (SPARK-1975)

Out of Memory if consuming too fast (SPARK-
1341)

Instrumentation - Custom Sources

Codahale Metrics

val = new {
override def = "ooyala.example.metrics"
override def = new
val = metricRegistry.meter("numRequests")
}

.get.metricsSystem.registerSource(source)
source.numRegMeter.mark()

Instrumentation

val = new ("ooyala.examples.metrics")

val = sc.accumulator(OL)

instrumentation.source.registerDailyAccumulator(numRegs, "numReqs")

instrumentation.register()

Instrumentation - Custom Sinks

class (val : , val
{
val = "apikey"
val = property ToOption().get
val = forRegistry(registry)
.convertRatesTo(:)
.convertDurationsTo(:)

Jbuild(transport, host)

override def () { reporter.start(pollPeriod, pollUnit) }
override def () { reporter.stop() }

}

) extends

Instrumentation - Example

g DATADOG Events Dashboards - Infrastructure ~Metrics + Team Integrations ~
Sample Spark Dashboard Edit Board

Spark Application Processing Rate Spark Memory Remaining

10K
1K

% *
6K

0.5K 4K

2K
0 T T T T
0 19:00 : 21:00 22:00
T

21:30

Running Jobs Processing Rate Records Processed (Today)

757.77 14.84w

Consuming Data - Docs Way

val

val
val

val

= new ().setAppName(name).setMaster(sparkMaster)
= new (conf)
= new (sc, (60))

.createStream(ssc, zkConnect, consumerGroup,
)-map(x =>Xx._2)

(topic ->

),

Consuming Data - Issues

All consumers in same node
Consumption could be too fast
Consumption independent of processing

(1.0.0) ReceiverTracker stuck (SPARK-1975)

Consuming Data - Fixes

val = new ().setAppName(name).setMaster(sparkMaster)
.set("spark.streaming.receiver.maxRate", maxRate.toString)

val sc = new (conf)
val = new (sc, (60))
val = (1 to numPartitions).map { _ =>
.createStream(ssc, zkConnect, consumerGroup, (topic -> 1),
).map(x => x._2)
}

val = ssc.union(kafkalnputs)

Consuming Data - Data Loss

Streaming data replicated across nodes

e Up to one batch lost on crash
e Data loss if tasks hang
e Kafka autocommit may prevent recovery

Disable autocommit? Keep track of finished
offsets?

Logging - Where to Find

e YARN makes log available in HDFS for old jobs
e Logs of running jobs are available in the YARN UI.
e Spark should link to hadoop log Ul from SPARK Ul

e SPARK LOG4J CONF makes it easy to set custom
log4j configuration file; maybe conflicts with YARN cp
(SPARK-2007)

Logging - Reduced Logs

e Too0 much logging => slow application, logs hard to interpret
e Setlog level to WARN for certain spark packages, set
additivity to false

o log4j.logger.org.apache.spark.rdd.NewHadoopRDD=WARN,
<appender>

o log4j.additivity.org.apache.spark.rdd.NewHadoopRDD=false
e Recommended for:

o log4j.logger.org.apache.spark.{storage, scheduler,
CacheTracker, CacheTrackerActor, MapOutputTrackerActor,
MapOutputTracker, executor}

Streaming Outputs

Atomic writing ensures consistency (temp + move)
Fine control of output using forEachRdd, mapPartitions

Completionlterator provides finer control on file closing

e.g. Ooyala ETL uses columnar parquet files in HDFS

Conclusion

e Real-time pipeline required for low latency
e Message drops hard to avoid / reprocessing is hard

e Hybrid model of real time followed by batch processing
gives best of both worlds

e |[nstrumentation is key to a healthy real-time pipeline

e Logging needs maijor fixing

QUESTIONS

Issac Buenrostro - buenrostro@oovala.com

Arup Malakar - arup@ooyala.com

Code samples at:
https://gist.github.com/9b94736c2bad2f4b8e23.qit

mailto:buenrostro@ooyala.com
mailto:arup@ooyala.com

What is Spark?

Open-source data analytics cluster computing
framework

e In-memory distributed computing

e MapReduce framework with friendly API

e [ntegrable with Hadoop/YARN

e [ncludes Shark(SQL), Streaming, MLib,
GraphX

What is YARN?

Resource management platform for Hadoop
clusters

Part of hadoop since v2.0

Hadoop map/reduce runs on top of YARN
Allows for running of custom applications
Integration with Spark, Storm

Who are we?

Analytics ETL development team at Ooyala

e Video Displays, Plays
e Conversion rate
e \iewership
o Unique viewers
o Geographic, Devices, Operating System, Browser
o Engagement (Which segment of the video is more popular etc)
o Advertising analytics
e Social

