
Productionizing a 24/7 Spark
Streaming Service on YARN

Issac Buenrostro, Arup Malakar

Spark Summit 2014
July 1, 2014

About Ooyala

Founded in 2007

300+ employees worldwide

Global footprint of 200M unique users in 130 countries

Ooyala works with the most successful broadcasts and media companies in the
world

Reach, measure, monetize video business

Cross-device video analytics and monetization
products and services

Ooyala Analytics ETL

1. Ingest and process 5B+ events/day
2. Decode -> Enrich -> Persist

Run 24/7, <2 min latency, <1% data loss,
reduce COGS, minimal human interaction.

Plays/Displays, Conversion Rate, Geo, Device, OS, Unique, Engagement, etc.

Architecture diagram

HTTP
Receiver KAFKA

Spark
Streaming
on YARN

HDFS

Take-Home Message
Yes, there are issues with Spark Streaming

However:

● Allows flexibility not available in other
frameworks

● Issues are not huge, working on resolving
them

● Awareness / best practices

Hybrid Processing

Batch
● Easy reprocessing
● More historical

awareness
● Consistency

guarantees

Streaming
● Real time
● Lower scheduling

needs

Why Spark?

One codebase to maintain and test

Same framework for Batch and Streaming

Easily maintainable cluster (vs Storm)

Out-of-the-box YARN integration

Why YARN?
● Eliminate operational cost of maintaining a

separate spark cluster
● Better H/W utilization
● Easy upgrade

○ 0.9 to 0.9.1 upgrade just a dependency change
○ vs upgrading a dedicated cluster

● Leverage the expertise dealing with
YARN/hadoop

YARN Pitfalls

● 384 MB overhead per container

● Disconnect between Spark/YARN UI

● YARN classpath automatically added to
Spark

Outline
1. Launching streaming applications

a. 24/7 running
2. Instrumentation

a. tracking of workers
3. Consuming streaming data

a. fixing consumption speed/reliability issues
4. Logging

a. Reducing amount of logs
5. Persisting streaming data

Launching in YARN
Traditional launching (Spark 0.9.1):

export SPARK_JAR=/usr/lib/spark-assembly-1.1.0-SNAPSHOT-hadoop2.2.0.jar

java -cp /etc/hadoop/conf:AppJar.jar:spark-assembly.jar org.apache.spark.
deploy.yarn.Client --jar AppJar.jar --addJars /jars/config.jar --class ooyala.app.
MainClass --arg arg1 --arg arg2 --name MyApp

● Launches application in YARN
● Tracks application until done (not great for streaming)

Launching - Streaming way
Streaming launching:

java -cp /etc/hadoop/conf:AppJar.jar:spark-assembly.jar org.apache.spark.yarn.
StreamingClient --jar AppJar.jar --addJars /jars/config.jar --class ooyala.app.
MainClass --arg arg1 --arg arg2 --name MyApp

● Launch application IF not running
● Connect to old application if already exists
● Tracks application until done
● Does not kill application if crashed

Launching - Relaunching

Use upstart with Streaming launcher

● Launch application from remote host
● If launcher fails, application unaffected
● On launcher start, connect to existing app
● If application fails, upstream re-launches it

Failure Cases

Processing stops, consuming continues

Broadcast variables get GCed (SPARK-1697)

Consumers fail silently (SPARK-1975)

Out of Memory if consuming too fast (SPARK-

1341)

Instrumentation - Custom Sources

Codahale Metrics

val source = new Source {
 override def sourceName = "ooyala.example.metrics"
 override def metricRegistry = new MetricRegistry
 val numReqMeter = metricRegistry.meter("numRequests")
}
SparkEnv.get.metricsSystem.registerSource(source)
source.numReqMeter.mark()

Instrumentation
// Create an instrumentation

val instrumentation = new SparkInstrumentation("ooyala.examples.metrics")

// Create an accumulator

val numReqs = sc.accumulator(0L)

// Register accumulator in the instrumentation

instrumentation.source.registerDailyAccumulator(numReqs, "numReqs")

// Register the instrumentation with Spark

// Must be done after all accumulators have already been registered

instrumentation.register()

Instrumentation - Custom Sinks
class DatadogSink(val property: Properties, val registry: MetricRegistry) extends
Sink {
 val DD_API_KEY = "apikey"
 val apikey = propertyToOption(DD_API_KEY).get

 val reporter = DatadogReporter.forRegistry(registry)
 .convertRatesTo(TimeUnit.SECONDS)
 .convertDurationsTo(TimeUnit.MILLISECONDS)
 .build(transport, host)

 override def start() { reporter.start(pollPeriod, pollUnit) }
 override def stop() { reporter.stop() }
}

Instrumentation - Example

Consuming Data - Docs Way

val conf = new SparkConf().setAppName(name).setMaster(sparkMaster)

val sc = new SparkContext(conf)
val ssc = new StreamingContext(sc, Seconds(60))

val dStream =
 KafkaUtils.createStream(ssc, zkConnect, consumerGroup, Map(topic -> 10),
StorageLevel.MEMORY_ONLY).map(x => x._2)

Consuming Data - Issues

All consumers in same node

Consumption could be too fast

Consumption independent of processing

(1.0.0) ReceiverTracker stuck (SPARK-1975)

Consuming Data - Fixes
val conf = new SparkConf().setAppName(name).setMaster(sparkMaster)
 .set("spark.streaming.receiver.maxRate", maxRate.toString) // throttling

val sc = new SparkContext(conf)
val ssc = new StreamingContext(sc, Seconds(60))

val kafkaInputs = (1 to numPartitions).map { _ =>
 KafkaUtils.createStream(ssc, zkConnect, consumerGroup, Map(topic -> 1),
 StorageLevel.MEMORY_ONLY).map(x => x._2)
}
val dStream = ssc.union(kafkaInputs)

Consuming Data - Data Loss

Streaming data replicated across nodes
● Up to one batch lost on crash
● Data loss if tasks hang
● Kafka autocommit may prevent recovery

Disable autocommit? Keep track of finished
offsets?

Logging - Where to Find
● YARN makes log available in HDFS for old jobs

● Logs of running jobs are available in the YARN UI.

● Spark should link to hadoop log UI from SPARK UI

● SPARK_LOG4J_CONF makes it easy to set custom
log4j configuration file; maybe conflicts with YARN cp
(SPARK-2007)

Logging - Reduced Logs
● Too much logging => slow application, logs hard to interpret
● Set log level to WARN for certain spark packages, set

additivity to false
○ log4j.logger.org.apache.spark.rdd.NewHadoopRDD=WARN,

<appender>
○ log4j.additivity.org.apache.spark.rdd.NewHadoopRDD=false

● Recommended for:
○ log4j.logger.org.apache.spark.{storage, scheduler,

CacheTracker, CacheTrackerActor, MapOutputTrackerActor,
MapOutputTracker, executor}

Streaming Outputs

Atomic writing ensures consistency (temp + move)

Fine control of output using forEachRdd, mapPartitions

CompletionIterator provides finer control on file closing

e.g. Ooyala ETL uses columnar parquet files in HDFS

Conclusion

● Real-time pipeline required for low latency

● Message drops hard to avoid / reprocessing is hard

● Hybrid model of real time followed by batch processing
gives best of both worlds

● Instrumentation is key to a healthy real-time pipeline

● Logging needs major fixing

QUESTIONS
Issac Buenrostro - buenrostro@ooyala.com

Arup Malakar - arup@ooyala.com

Code samples at:
https://gist.github.com/9b94736c2bad2f4b8e23.git

mailto:buenrostro@ooyala.com
mailto:arup@ooyala.com

What is Spark?

Open-source data analytics cluster computing
framework
● In-memory distributed computing
● MapReduce framework with friendly API
● Integrable with Hadoop/YARN
● Includes Shark(SQL), Streaming, MLib,

GraphX

What is YARN?
Resource management platform for Hadoop
clusters

● Part of hadoop since v2.0
● Hadoop map/reduce runs on top of YARN
● Allows for running of custom applications
● Integration with Spark, Storm

Who are we?

Analytics ETL development team at Ooyala
● Video Displays, Plays
● Conversion rate
● Viewership

○ Unique viewers
○ Geographic, Devices, Operating System, Browser
○ Engagement (Which segment of the video is more popular etc)
○ Advertising analytics

● Social

