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Random Forest Overview
● It’s a technique to reduce the variance of 

single decision tree predictions by averaging 
the predictions of many decorrelated trees.

● The decorrelation of many decision trees is 
achieved through Bagging and/or randomly 
selecting features per tree node.



Bagging
Training Data Bootstrap Samples

 

Bagged Tree Ensemble



Random Features Per Node
● Only examine a smaller random set of 

features.
● E.g., if there are 10000 features, randomly 

select 100 features for each node and 
determine optimal split based on these.

● This decorrelates trees more and often 
works better than bagging.



Bagging vs Random Features

MNIST data set
Red : Bagging, No Random Features
Blue : No Bagging, Random Features



Random Forest in Spark
● The main challenge is to train multiple 

individual decision trees over distributed 
data.

● Additionally, in Random Forest, decision 
trees are typically fully grown. So they get 
large particularly for a large data set.



Random Forest in Spark Contd.
● Mllib already has a decision tree 

implementation but it doesn’t support 
random features and is not optimized for 
training a large number of nodes.

● We implemented our own to fit our needs.



Distributed Tree Training
● The big idea is similar to Google’s PLANET 

implementation (also adopted by Mllib).
● Individual trees are built node by node in the 

driver node.
● At each iteration, individual executors collect 

partition statistics that are required to 
determine node splits and predictions. 



Preprocessing - Feature Discretization

● For efficiency, features are discretized first.



Preprocessing - Bagging
● Approximate random sampling - with/without 

replacement. executors tag rows with 
sample counts. One column per tree.
○ Bernoulli sampling for without-replacement.
○ Poisson sampling for with-replacement.
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Mutable Node ID Tag
● Remember the last node that the row belonged to. One 

column per tree again.

● This speeds up the process considerably since we don’t 
have to pass large filters/trees to executors.
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Training/Splitting Nodes
Driver

● Ask executors to compute 
node/bin statistics (map).

● Collect/merge partition 
statistics (reduce).

● Select optimal feature/splits 
using merged partition 
statistics at bin boundaries.

● Repeat on child nodes.

Executor
● Loop through filters and 

select rows that match the 
filters.

● Collect statistics required for 
splitting at bin granularities.

● Send the aggregated 
statistics back to the driver.

Node Split Filters

Partition Statistics



Partition Statistics Aggregation
Partition 1

Bin/Label Counts

Partition 2

Bin/Label Counts

Partition 3

Bin/Label Counts

2 0 4 1 1 3 7 0 0 5 2 1

Driver

Aggregated Counts

3 8 13 2



Random Features per Node
● Unlike a single decision tree, we need to 

randomly select a smaller number of features 
per node.

● To synchronize among different executors, the 
driver passes random seeds for different trees 
to executors. The executors add the node Ids to 
the seeds and use them to randomly select 
features for different tree nodes.



Local Sub-tree Training
● Although the first few levels of trees see a lot 

of training examples, descendant nodes see 
fewer and fewer training examples.

● Once the number of training samples get 
small enough, we train small sub-trees 
locally by shuffling sub-tree training samples 
to matching executors.



Distributed Sub-tree Training
Root

Train by 
aggregating 
partition stats

subtree subtree subtree subtree

Train 
locally by 
shuffling 
training 
data



The Overall Recipe
1. Train the nodes in a breadth-first 

manner.
2. Aggregate partition statistics and find 

optimal splits.
3. If a child of a split has a size smaller 

than local_threshold, shuffle matching 
data to an executor and train locally.



Performance factors

1. Time it takes to perform 
distributed node splits.

2. Time it takes to locally train 
all the sub-trees.



Performance dependencies
● The performance of partition statistics 

aggregation is determined by two factors.
○ CPU-bound statistics collections at individual 

executors. This should scale linearly with the 
number of executors.

○ The size of the statistics and the message 
passing/network/shuffle speed. The size is 
proportional to #_of_nodes * #_of_features * 
#_of_feature_bins * size_of_statistics.



Performance dependencies
● For information gain, the statistics size is 

equal to the number of target classes.
● For regression, the statistics size is equal to 

3 - sum, square_sum, count.



Performance dependencies
● For local sub-tree training, the performance 

is largely embarassingly parallel - 
performance almost scales linearly with the 
number of executors.

● The training data shuffle performance 
depends on disk-IO and network bandwidth.



Performance scalability
● MNIST 8 million samples (784 features, 10 classes).
● 100 Trees
● No limit on tree depth or size.
● # of random features 28 (sqrt(784))
● 100% sampling without replacement.
● 9 machines in AWS, each with 32 cores.
● Measure the time to train vs the number of executors.



Performance scalability
● Blue : Training Time
● Red : Parse/Preprocess

* The number of machines is fixed at 
9. So this doesn’t tell the whole 
story. E.g., we noticed that adding 
more executors within the same 
machine will actually slow down the 
algorithm due to disk IO bottle neck 
during groupBy/shuffle.



Benefit of local training
● MNIST 8 million
● 10 trees
● 50 executors
● The local sub-

tree training 
improves 
performance 
drastically.



Large scale data testing
● 200 million samples, 1000 features, 10 classes.
● Affine-transformed MNIST data with additional 

features.
● No tree size limit.
● 100 trees
● # of random features 33
● 100% sampling without replacement.
● 50 Executors



Large scale data performance
● # of nodes per 

tree goes up 
linearly with 
training duration.



Performance comparisons
● Blue : Train
● Red : Parse
● Orange : Total
● MNIST 8m
● 10 Trees
● 50 Executors
* Wise.IO, H20 benchmarks are 
taken from blog entries and are 
not using the same machine as 
Sequoia Forest.



Random Forest vs Pruning
● Typically, Random Forest trees are not 

pruned. The following graphs show how the 
performance can be affected when leaf sizes 
get larger.



Accuracy vs Leaf Sizes
● 100 Trees
● MNIST 60000
● Testing data MNIST 10000



Pruning for large scale data ?
● For billions of rows, individual unpruned 

trees could be too large, even reaching 
hundreds of millions of nodes per tree.

● To save space and/or training-time, need to 
investigate whether some pruning could be 
beneficial from the accuracy-efficiency trade-
off point of view.



Shameless Alpine Ad.

                      =

● Alpine is one of the very first companies to 
receive an official Spark certification.

● We’re looking for brilliant machine-
learning/platform/QA engineers.



Conclusion
● Spark enables what was previously 

impossible - training many fully grown 
humongous trees on ‘big data’.

● The performance scales well with # of 
executors.

● Further studies needed to understand 
accuracy and tree-size trade-offs.


