
Sequoia Forest
A Scalable Random Forest
Implementation on Spark

Sung Hwan Chung, Alpine Data Labs

Random Forest Overview
● It’s a technique to reduce the variance of

single decision tree predictions by averaging
the predictions of many decorrelated trees.

● The decorrelation of many decision trees is
achieved through Bagging and/or randomly
selecting features per tree node.

Bagging
Training Data Bootstrap Samples

Bagged Tree Ensemble

Random Features Per Node
● Only examine a smaller random set of

features.
● E.g., if there are 10000 features, randomly

select 100 features for each node and
determine optimal split based on these.

● This decorrelates trees more and often
works better than bagging.

Bagging vs Random Features

MNIST data set
Red : Bagging, No Random Features
Blue : No Bagging, Random Features

Random Forest in Spark
● The main challenge is to train multiple

individual decision trees over distributed
data.

● Additionally, in Random Forest, decision
trees are typically fully grown. So they get
large particularly for a large data set.

Random Forest in Spark Contd.
● Mllib already has a decision tree

implementation but it doesn’t support
random features and is not optimized for
training a large number of nodes.

● We implemented our own to fit our needs.

Distributed Tree Training
● The big idea is similar to Google’s PLANET

implementation (also adopted by Mllib).
● Individual trees are built node by node in the

driver node.
● At each iteration, individual executors collect

partition statistics that are required to
determine node splits and predictions.

Preprocessing - Feature Discretization

● For efficiency, features are discretized first.

Preprocessing - Bagging
● Approximate random sampling - with/without

replacement. executors tag rows with
sample counts. One column per tree.
○ Bernoulli sampling for without-replacement.
○ Poisson sampling for with-replacement.

Sample Row
Sample Row

2
1

0
2

1
2

Sample counts

Mutable Node ID Tag
● Remember the last node that the row belonged to. One

column per tree again.

● This speeds up the process considerably since we don’t
have to pass large filters/trees to executors.

Sample Row
Sample Row

2
1

0
2

1
2

Sample counts

6
6

7
7

4
3

Last node IDs

Training/Splitting Nodes
Driver

● Ask executors to compute
node/bin statistics (map).

● Collect/merge partition
statistics (reduce).

● Select optimal feature/splits
using merged partition
statistics at bin boundaries.

● Repeat on child nodes.

Executor
● Loop through filters and

select rows that match the
filters.

● Collect statistics required for
splitting at bin granularities.

● Send the aggregated
statistics back to the driver.

Node Split Filters

Partition Statistics

Partition Statistics Aggregation
Partition 1

Bin/Label Counts

Partition 2

Bin/Label Counts

Partition 3

Bin/Label Counts

2 0 4 1 1 3 7 0 0 5 2 1

Driver

Aggregated Counts

3 8 13 2

Random Features per Node
● Unlike a single decision tree, we need to

randomly select a smaller number of features
per node.

● To synchronize among different executors, the
driver passes random seeds for different trees
to executors. The executors add the node Ids to
the seeds and use them to randomly select
features for different tree nodes.

Local Sub-tree Training
● Although the first few levels of trees see a lot

of training examples, descendant nodes see
fewer and fewer training examples.

● Once the number of training samples get
small enough, we train small sub-trees
locally by shuffling sub-tree training samples
to matching executors.

Distributed Sub-tree Training
Root

Train by
aggregating
partition stats

subtree subtree subtree subtree

Train
locally by
shuffling
training
data

The Overall Recipe
1. Train the nodes in a breadth-first

manner.
2. Aggregate partition statistics and find

optimal splits.
3. If a child of a split has a size smaller

than local_threshold, shuffle matching
data to an executor and train locally.

Performance factors

1. Time it takes to perform
distributed node splits.

2. Time it takes to locally train
all the sub-trees.

Performance dependencies
● The performance of partition statistics

aggregation is determined by two factors.
○ CPU-bound statistics collections at individual

executors. This should scale linearly with the
number of executors.

○ The size of the statistics and the message
passing/network/shuffle speed. The size is
proportional to #_of_nodes * #_of_features *
#_of_feature_bins * size_of_statistics.

Performance dependencies
● For information gain, the statistics size is

equal to the number of target classes.
● For regression, the statistics size is equal to

3 - sum, square_sum, count.

Performance dependencies
● For local sub-tree training, the performance

is largely embarassingly parallel -
performance almost scales linearly with the
number of executors.

● The training data shuffle performance
depends on disk-IO and network bandwidth.

Performance scalability
● MNIST 8 million samples (784 features, 10 classes).
● 100 Trees
● No limit on tree depth or size.
● # of random features 28 (sqrt(784))
● 100% sampling without replacement.
● 9 machines in AWS, each with 32 cores.
● Measure the time to train vs the number of executors.

Performance scalability
● Blue : Training Time
● Red : Parse/Preprocess

* The number of machines is fixed at
9. So this doesn’t tell the whole
story. E.g., we noticed that adding
more executors within the same
machine will actually slow down the
algorithm due to disk IO bottle neck
during groupBy/shuffle.

Benefit of local training
● MNIST 8 million
● 10 trees
● 50 executors
● The local sub-

tree training
improves
performance
drastically.

Large scale data testing
● 200 million samples, 1000 features, 10 classes.
● Affine-transformed MNIST data with additional

features.
● No tree size limit.
● 100 trees
● # of random features 33
● 100% sampling without replacement.
● 50 Executors

Large scale data performance
● # of nodes per

tree goes up
linearly with
training duration.

Performance comparisons
● Blue : Train
● Red : Parse
● Orange : Total
● MNIST 8m
● 10 Trees
● 50 Executors
* Wise.IO, H20 benchmarks are
taken from blog entries and are
not using the same machine as
Sequoia Forest.

Random Forest vs Pruning
● Typically, Random Forest trees are not

pruned. The following graphs show how the
performance can be affected when leaf sizes
get larger.

Accuracy vs Leaf Sizes
● 100 Trees
● MNIST 60000
● Testing data MNIST 10000

Pruning for large scale data ?
● For billions of rows, individual unpruned

trees could be too large, even reaching
hundreds of millions of nodes per tree.

● To save space and/or training-time, need to
investigate whether some pruning could be
beneficial from the accuracy-efficiency trade-
off point of view.

Shameless Alpine Ad.

 =

● Alpine is one of the very first companies to
receive an official Spark certification.

● We’re looking for brilliant machine-
learning/platform/QA engineers.

Conclusion
● Spark enables what was previously

impossible - training many fully grown
humongous trees on ‘big data’.

● The performance scales well with # of
executors.

● Further studies needed to understand
accuracy and tree-size trade-offs.

