Spark Job Server

Evan Chan and Kelvin Chu

Date

Why We Needed a Job Server

» Created at Ooyalain 2013
* Qur vision for Spark is as a multi-team big data service
* What gets repeated by every team:
» Bastion box for running Hadoop/Spark jobs
» Deploys and process monitoring
» Tracking and serializing job status, progress, and job results

» Job validation

Spark as a Service

REST API for Spark jobs and contexts. Easily operate Spark from any language or

environment.
* Runsjobsin their own Contexts or share 1 context amongst jobs
e Great for sharing cached RDDs across jobs and low-latency jobs
o Worksfor Spark Streaming as well!
» Workswith Standalone, Mesos, any Spark config
» Jars, job history and config are persisted via a pluggable AP

* Async and sync API, JSON job results

Open Source!!

http: / /github.com/oovala/spark-jobserver

Creating a Job Server Project

+ In your build.sbt, add
this

resolvers += "Ooyala Bintray" at "http://dl.bintray.com/ooyala/maven"

libraryDependencies += "ooyala.cnd" % "job-server" % "0.3.1" % "provided"

< sbt assembly -> fat jar -> upload to job server

% "provided" is used. Don’t want SBT assembly to
include the whole job server jar.

¢ Java projects should be possible too

Example Job Server Job

* A super-sinple Spark job exanple that inplenents the SparkJob trait and
* can be submitted to the job server
* /
{
val i dat e(sc , config
(config.getString(input.string))
. map(x)

. get Or El se((input.string))

runJob(sc , config) = {
dd sc.parallelize(config.getString(input.string).split(" ").toSeq)
dd. map((_, 1)).reduceByKey(+).collect().toMp

What’s Different?

 Job does not create Context, Job Server does
e Decidewhen | run the job: in own context, or in pre-created context
» Upload new jobs to diagnose your RDD issues:

» POST /contexts/newContext

» POST /jobs.... context=newContext

» Upload anew diagnostic jar... POST /jars/newDiag

* Rundiagnostic jar to dump into on cached RDDs

Submitting and Running a Job

4 curl --data-binary @./target/ nydeno.jar | ocal host:8090/]ars/denp
OK[11: 32 PM ~

4 curl -d "input.stri n\%b: Al azgx dog j unped nean dog" 'l ocal host: 8090/] obs?
appNane=denp&cl assPat h=\WWbr dCount Exanpl e&sync=t r ue'

{
"status": "OK",
"RESULT": {

"lazy": 1,
"junped": 1,
A1,

1,

"dog": 2

}

}

Retrieve Job Statuses

~/ s/ j observer (evan-working-1 =) curl 'l ocal host: 8090/ obs?limt=2'
[{
"duration": "77.744 secs",
"classPath": "ooyal a.cnd. CreateMateri al i zedVi ew',
"startTinme": "2013-11-26T20: 13: 09. 0712",
"context": "8b7059dd- ooyal a.cnd. Creat eMat eri al i zedVi ew',
"status": "FIN SHED',
"jobld": "9982f961- aaaa- 4195- 88c2- 962eae9b08d9"
o
"duration": "58.067 secs",
"classPath": "ooyal a.cnd. CreateMaterializedVi ew',
"startTime": "2013-11-26T20: 22: 03. 257Z2",
"context": "dOabebdc-ooyal a.cnd. Creat eMat eri al i zedVi ew',
"status": "FIN SHED',
"jobld": "e9317383-6a67-41c4-8291-9c140b6d8459"
31 <

Use Case: Fast Query Jobs

Spark as a Query Engine

¢ Goal: spark jobs that run in under a second and
answers queries on shared RDD data

2 Query params passed in as job config

< Need to minimize context creation overhead
¢ Thus many jobs sharing the same SparkContext

< On-heap RDD caching means no serialization loss

LR N Tl o e e e T v o g L B /3 (VO e | s g | BRG] PSS

LOW-LATENCY QUERY JOBS

» _
0
0 uel :

Executors

Cassandra

Sharing Data Between Jobs

< RDD Caching

< Benefit: no need to serialize data. Especially
useful for indexes etc.

¢ Job server provides a NamedRdds trait for thread-
safe CRUD of cached RDDs by name

% (Compare to SparkContext’s API which uses an
integer ID and is not thread safe)

- - o - —~ « bl At el

Data Concurrency

< Single writer, multiple readers

< Managing multiple updates to RDDs

Cache keeps track of which RDDs being updated
Example: thread A spark job creates RDD “A” at t0

thread B fetches RDD “A” at t1 > t0

be. i ieje i eje 1 ege

Both threads A and B, using NamedRdds, will get

L TN TEN L 1S T Y - e L o S e N A (e e s | S A e A S B

Production Usage

Persistence

< What gets persisted?
% Job status (success, error, why it failed)
< Job Configuration
% Jars

< JDBC database configuration: spark.sqldao.jdbc.url

*» jdbc:nysql://dbserver:3306/]observerdb

Deployment and Metrics

< spark-jobserver repo comes with a full suite of tests
and deploy scripts:

<% server_deploy.sh for regular server pushes
% server_package.sh for Mesos and Chronos .tar.gz

% /metricz route for codahale-metrics monitoring

2 /healthz route for health checkOo

Challenges and lLessons

» Spark is based around contexts - we need a Job Server oriented around logical jobs
* Running multiple SparkContexts in the same process

» Global use of System properties makes it impossible to start multiple contexts at

same time (but see pull request...)
» Have to be careful with SparkEnv
e Dynamic jar and class loading is tricky

» Manage threads carefully - each context uses lots of threads

Future Work

Future Plans

% Spark-contrib project list. So this and other projects
can gain visibility! (SPARK-1283)

HA mode using Akka Cluster or Mesos
HA and Hot Failover for Spark Drivers/Contexts

REST API for job progress

P e P

Swagger API documentation

HA and Hot Failover for Jobs

>
<+ Job context dies:

<+ Job server 2
notices and spins
up standby
context, restores
checkpoint

Thanks for your contributions!

¢ All of these were community contributed:
% index.html main page
¢ saving and retrieving job configuration

% Your contributions are very welcome on Github!

Architecture

Completely Asyne Design

¢ http:/ /spray.io - probably the fastest JVM HTTP
microframework

< Akka Actor based, non blocking

< Futures used to manage individual jobs. (Note that
Spark is using Scala futures to manage job stages now)

< Single JVM for now, but easy to distribute later via
remote Actors / Akka Cluster

Asyne Actor Flow

Message tlow tully documented

PosT /jok start new :‘ob workPlow with Aﬂoc'-lbbllm,gﬂg«r

wser webdg: LocalConrgmtSupervisor | Addos TobManagerdator 'maw TebResulrdstor ThFrure
POST /‘,o_b%

GerddioaContexr
MTW, TebResubrdaror)

Stort Toblevent for TobStatucdaror)
\At‘*&f& applome, qlo.ssﬂm-e_

) TP Tob valdation Tailed
k_ EffoR
(_ﬁ"._‘

SubsarbeljobTd, Webdpl, TohResulr)

CrepteJob

SubsarbeliobTd, Webdp), Qe:*§

T

TobIntlinto)
SparkTob.vatdatel)

ValdatioFailed

VatdotionFailed
s

I 4 Tk € mra LT

Thank you!

And Everybody is Hiring!!

Using Tachyon

Off-heap storage: No GC

ByteBuffer API - need to
pay deserialization cost

Can be shared across
multiple processes

Data can survive process
loss

Backed by HDFS

Does not support random
access writes

