
Date

Spark Job Server
Evan Chan and Kelvin Chu

Overview

Why We Needed a Job Server

Created at Ooyala in 2013

Our vision for Spark is as a multi-team big data service

What gets repeated by every team:

Bastion box for running Hadoop/Spark jobs

Deploys and process monitoring

Tracking and serializing job status, progress, and job results

Job validation

No easy way to kill jobs

•

•

•

•

•

•

•

•

Spark as a Service

REST API for Spark jobs and contexts. Easily operate Spark from any language or

environment.

Runs jobs in their own Contexts or share 1 context amongst jobs

Great for sharing cached RDDs across jobs and low-latency jobs

Works for Spark Streaming as well!

Works with Standalone, Mesos, any Spark config

Jars, job history and config are persisted via a pluggable API

Async and sync API, JSON job results

•

•

•

•

•

•

•

http://github.com/ooyala/spark-jobserver

Open Source!!

Creating a Job Server Project

sbt assembly -> fat jar -> upload to job server

"provided" is used. Don’t want SBT assembly to
include the whole job server jar.

Java projects should be possible too

✤

✤

✤

resolvers += "Ooyala Bintray" at "http://dl.bintray.com/ooyala/maven"

libraryDependencies += "ooyala.cnd" % "job-server" % "0.3.1" % "provided"

In your build.sbt, add
this

✤

Example Job Server Job

/**
* A super-simple Spark job example that implements the SparkJob trait and
* can be submitted to the job server.
*/
object WordCountExample extends SparkJob {
 override def validate(sc: SparkContext, config: Config): SparkJobValidation = {
 Try(config.getString(“input.string”))
 .map(x => SparkJobValid)
 .getOrElse(SparkJobInvalid(“No input.string”))
 }

 override def runJob(sc: SparkContext, config: Config): Any = {
 val dd = sc.parallelize(config.getString(“input.string”).split(" ").toSeq)
 dd.map((_, 1)).reduceByKey(_ + _).collect().toMap
 }
}

What’s Different?

Job does not create Context, Job Server does

Decide when I run the job: in own context, or in pre-created context

Upload new jobs to diagnose your RDD issues:

POST /contexts/newContext

POST /jobs context=newContext

Upload a new diagnostic jar... POST /jars/newDiag

Run diagnostic jar to dump into on cached RDDs

•

•

•

•

•

•

•

Submitting and Running a Job

✦ curl --data-binary @../target/mydemo.jar localhost:8090/jars/demo

OK[11:32 PM] ~

✦ curl -d "input.string = A lazy dog jumped mean dog" 'localhost:8090/jobs?
appName=demo&classPath=WordCountExample&sync=true'

{

 "status": "OK",

 "RESULT": {

 "lazy": 1,

 "jumped": 1,

 "A": 1,

 "mean": 1,

 "dog": 2

 }

}

Retrieve Job Statuses

~/s/jobserver (evan-working-1 ↩=) curl 'localhost:8090/jobs?limit=2'

[{

 "duration": "77.744 secs",

 "classPath": "ooyala.cnd.CreateMaterializedView",

 "startTime": "2013-11-26T20:13:09.071Z",

 "context": "8b7059dd-ooyala.cnd.CreateMaterializedView",

 "status": "FINISHED",

 "jobId": "9982f961-aaaa-4195-88c2-962eae9b08d9"

}, {

 "duration": "58.067 secs",

 "classPath": "ooyala.cnd.CreateMaterializedView",

 "startTime": "2013-11-26T20:22:03.257Z",

 "context": "d0a5ebdc-ooyala.cnd.CreateMaterializedView",

 "status": "FINISHED",

 "jobId": "e9317383-6a67-41c4-8291-9c140b6d8459"

}]⏎

Use Case: Fast Query Jobs

Spark as a Query Engine

Goal: spark jobs that run in under a second and
answers queries on shared RDD data

Query params passed in as job config

Need to minimize context creation overhead

Thus many jobs sharing the same SparkContext

On-heap RDD caching means no serialization loss

Need to consider concurrent jobs (fair scheduling)

✤

✤

✤

✤

✤

✤

LOW-LATENCY QUERY JOBS

RDD
Load Data Query JobSpark

Executors

Cassandra

REST Job Server

Query Job

Query

Result

Query

Result

new SparkContext

Create
query

context

Load
some
data

Sharing Data Between Jobs

RDD Caching

Benefit: no need to serialize data. Especially
useful for indexes etc.

Job server provides a NamedRdds trait for thread-
safe CRUD of cached RDDs by name

(Compare to SparkContext’s API which uses an
integer ID and is not thread safe)

For example, at Ooyala a number of fields are

✤

✤

✤

✤

✤

Data Concurrency

Single writer, multiple readers

Managing multiple updates to RDDs

Cache keeps track of which RDDs being updated

Example: thread A spark job creates RDD “A” at t0

thread B fetches RDD “A” at t1 > t0

Both threads A and B, using NamedRdds, will get
the RDD at time t2 when thread A finishes creating

✤

✤

✤

✤

✤

✤

Production Usage

Persistence

What gets persisted?

Job status (success, error, why it failed)

Job Configuration

Jars

JDBC database configuration: spark.sqldao.jdbc.url

jdbc:mysql://dbserver:3306/jobserverdb

✤

✤

✤

✤

✤

✤

Deployment and Metrics

spark-jobserver repo comes with a full suite of tests
and deploy scripts:

server_deploy.sh for regular server pushes

server_package.sh for Mesos and Chronos .tar.gz

/metricz route for codahale-metrics monitoring

/healthz route for health check0o

✤

✤

✤

✤

✤

Challenges and Lessons

Spark is based around contexts - we need a Job Server oriented around logical jobs

Running multiple SparkContexts in the same process

Global use of System properties makes it impossible to start multiple contexts at

same time (but see pull request...)

Have to be careful with SparkEnv

Dynamic jar and class loading is tricky

Manage threads carefully - each context uses lots of threads

•

•

•

•

•

•

Future Work

Future Plans

Spark-contrib project list. So this and other projects
can gain visibility! (SPARK-1283)

HA mode using Akka Cluster or Mesos

HA and Hot Failover for Spark Drivers/Contexts

REST API for job progress

Swagger API documentation

✤

✤

✤

✤

✤

HA and Hot Failover for Jobs

Job Server
1

Job Server
2

Active Job
Context

HDFS

Standby
Job

Context

Gossip

Checkpoint

Job context dies:

Job server 2
notices and spins
up standby
context, restores
checkpoint

✤

✤

Thanks for your contributions!

All of these were community contributed:

index.html main page

saving and retrieving job configuration

Your contributions are very welcome on Github!

✤

✤

✤

✤

Architecture

Completely Async Design

http://spray.io - probably the fastest JVM HTTP
microframework

Akka Actor based, non blocking

Futures used to manage individual jobs. (Note that
Spark is using Scala futures to manage job stages now)

Single JVM for now, but easy to distribute later via
remote Actors / Akka Cluster

✤

✤

✤

✤

Async Actor Flow

Spray web
API

Request
actor

Local
Supervisor

Job
Manager

Job 1
Future

Job 2
Future

Job Status
Actor

Job Result
Actor

Message flow fully documented

Thank you!

And Everybody is Hiring!!

Using Tachyon

Pros Cons

Off-heap storage: No GC ByteBuffer API - need to
pay deserialization cost

Can be shared across
multiple processes

Data can survive process
loss

Backed by HDFS Does not support random
access writes

