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who is Euclid Analytics?

quantify and measure retail customer behavior

assign unique random id to all wifi enabled devices

predict shopper duration, repeat visitors, etc.

smartphone

access point cloud storage

web dashboard
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data processing

process logfiles from wifi access points
obtain a small amount of information about devices

unique id
time
signal strength

search for patterns that correspond to user behavior

monitor those trends
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in a perfect world
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what our data really look like
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why we use Spark

code integration

functional programming in scala

scalable machine learning

extensible

iterative algorithms, complex data flows
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challenges

launching clusters regularly and reliably

updating and applying models

distributed optimization problems

adoption and migration
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python context

created SparkCluster class for managing AWS
clusters

use python context management to manage launch
and shutdown

provide method to execute remote jobs

with sparkClusterManager.cluster("production") as spc:

spc.execute("com.euclidanalytics.foo",arguments)

uploadDataToDatabases()

leaves authentication for config files

should anything go wrong, the context will
automatically terminate the cluster, saving resources

provide KEEP_ALIVE flag
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update and apply

data store

Spark

preprocess

data

parameters

update

compute

rollup

rollup

web serve
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binary parameter search

search to find optimal parameter in tree model

test for maximum changes in conditional entropy

do parameter search for each sensor

touch all of our data across thousands of sensors

distributed binary search

more work necessary to optimize through shuffle
steps
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large learning

RDD[data]

parameter

.map().reduce()

sc.broadcast()
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distributed learning

RDD[(key,data)]

RDD[(key,parameter)]

.map().reduceByKey()

.join()

a for loop does
weird things
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recursive search

case class modelParam(low : Double, high: Double)

val data : RDD[record] = preprocess(rawData)

def binarySearch(params: RDD[modelParam], level: Int)

: RDD[modelParam] = {

level match {

case x if (x==0) => params

case _ => {

val updated = model.compute(data, params)

.reduceByKey((a,b)=>aggregate(a,b))

.map(makeDecision)

updated.checkpoint()

binarySearch(updated, level-1)

}

}

}

val result = binarySearch(initialParams, 10)
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evolution of Spark at Euclid

pig scripts

introduced AWS redshift for simple models

migrate to Spark, Scala

run nightly job and a whole host of ETL using Spark

looking forward to streaming
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questions

Contact dstrauss@euclidanalytics.com for more
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