

Spark on large Hadoop cluster and evaluation from the view point of enterprise Hadoop user and developer

Masaru Dobashi (NTT DATA)

Who am I?

- I'm Masaru Dobashi
- Chief Engineer of NTT DATA in Japan
 One of leading solution provider in Japan

- My team focusing on Open Source Software solutions
- I've been integrated several Hadoop systems for 5+years

The largest one is a 1000+ nodes cluster

In these years, also utilize Spark, Storm, and so on.

Position in NTT Group

Agenda

- Our motivation and expectation for Spark
- Characteristics of its performance with GBs, TBs and tens of TBs of data.
- Tips for the people who are planning to use Spark

- We started to use Hadoop 6 years ago
- Hadoop enables us to process massive data daily and hourly

The system image 6 years ago

Example of massive data processing

https://www.nttdocomo.co.jp/english/binary/pdf/corporate/technology/rd/technical_journal/bn/vol14_3/vol14_3_004en.pdf

- Handle variety of requirements for data processing
 - Both throughput and low latency
 - APIs useful for data analysis

This should be achieved by Spark

- Make the data management simple
 - Want to run different types of frameworks on one HDFS
 - Because multi clusters themselves impose complexity and inefficiency in data management

This should be achieved by Hadoop2.x and YARN

Recent architecture for massive data processing

Spark and other data frameworks collaborate with

Four essential points we wanted to evaluate

Basic viewpoint

The basic characteristics about scale-out. Especially about TBs and tens of TBs of data.

#	Points we wanted to evaluate	Apps used for evaluation
1	Capability to process tens of TBs of data without unpredictable decrease of performance nor unexpected hold	WordCount
2	Keep reasonable performance when data is bigger than total memory available for caching	SparkHdfsLR (Logistic Regression)
3	Keep reasonable performance of shuffle process with tens of TBs of data	GroupByTest (Large shuffle process)
4	Easy to implement the multi-stage jobs (from our business use-case)	POC of a certain project

The specification of the cluster

Total cluster size

- 4k+ Core
- 10TB+ RAM

Item	value	
CPU	E5-2620 6 core x 2 socket	
Memory	64GB 1.3GHz	
NW interface	10GBase-T x 2 port (bonding)	
Disk	3TB SATA 6Gb 7200rpm	

Software stuck

Spark 1.0.0

HDFS & YARN(CDH5.0.1)

CentOS6.5

Point1: Process time of WordCount

Point1: Resource usage of a certain slavenode

- WordCount's performance depends on Map-side process. Reduce-side process may not be bottleneck. This is because Map-side outputs small data.
- On this task, we confirmed reasonable performance, even if the input data exceeded the total memory amount.
- Tasks had the locality for data, we observed the stable throughput, (i.e. time vs. data processed)

I will talk about the case which a task lost locality, later.

Point2: Resource usage of a certain slavenode

- The cache mechanism of Spark worked for iterative applications
- RDD's cache mechanism works consistently, and enhances throughput while the amount of input data is bigger than the total memory available for caching
- It is important to minimize boxing overhead when storing data object into RDD

Point3: Process time of GroupByTest

Point3: NW usage of a certain slavenode

Actually, we saw the bottleneck of disk I/O as well as the bottleneck of NW. This is typical when we ran shuffle test whose map tasks generated massive output data.

The network resource usage of a certain slavenodes when we ran varaiety patterns of tests

- The process time seemed to be linear per input size of shuffle.
- When the shuffle data spills out to the disk, the disk access would compete among shuffle related tasks, such as *ShuffleMapTask(WRITE)*, Fetcher(READ), etc. Then, the competition deteriorate the performance.

We categorized existing Hadoop applications in a certain project and made the mock application which represents major business logics of the project.

This application resembles the log analysis to find the feature of web users.

Tips

- Today's topics
- Use cache mechanism efficiently
- Prevent skew of task allocation in the start
- Prevent too large partition size
- Practices for heap tuning
- Use RDD to manage data rather than own arrays
- Practices for implementation of DISTRIBUTE BY
- Issues
 - Missing data locality of tasks
 - Error of web UI when we ran large jobs

- We can use the cache mechanism efficiently by minimizing object stored in MemoryStore or the data store of the cache mechanism.
- The convenience and the efficiency of data size may have trade-off relationship. But the implicit conversion of Scala can solve it in a certain case.

The cost of computation of data in memory is not consequence compared with the disk I/O

- It takes a little to start all of containers when we run large jobs on large YARN cluster.
- In this case, the allocation of tasks starts before all containers are available, so that some tasks are allocated on non-data-local executors.
- Our workaround

```
val sc = new SparkContext(sparkConf)
Thread.sleep(sleeptime)
```

We inserted a little sleep time.
This reduces total processing
time as a result.
But...This is really workaround.

Ultimately, we should implement the threshold to start the task allocation. For example, the percentage of containers ready for use may be useful for this purpose.

Prevent skew of task allocation in the start(2)

Input data: 27TB

[CPU Usage]

blue: user

green: system

[Network usage]

red : in

black: out

[Disk I/O]

black: read

pink: write

- Find the good collaboration between Spark and YARN. Here are some issues to be resolved.
 - Overhead for starting containers
 - Avoid skew of task allocation when starting applications
 - If we can use I/O resource management in the future, it will realize rigorous management.

- Ensure traceability from a statement of application to the framework of Spark.
 - This is used for performance tuning and debugging.

Conclusion

Expectation1

Can scalably process tens of TBs of data without unpredictable decrease of performance nor unexpected hold

Impression

Good! ...but we need some technique for scale out

Expectation2

Keep reasonable performance when data is bigger than total memory available for caching

Impression

Good! ...but we need some technique to efficiently use the cache

Expectation3

Capability to run an application on YARN

Impression

We're evaluating now and it is under development right now.

NTTData

Global IT Innovator

Spark is a young product and has some issues to be solved.

But these issues should be resolved by the great community member.

We also contribute it!