
1Copyright © 2014 NTT DATA Corporation

Masaru Dobashi (NTT DATA)

Spark on large Hadoop cluster and evaluation from the
view point of enterprise Hadoop user and developer

2Copyright © 2014 NTT DATA Corporation

Who am I?

 I’m Masaru Dobashi

Chief Engineer of NTT DATA in Japan

My team focusing on Open Source Software solutions

I’ve been integrated several Hadoop systems for 5+years

In these years, also utilize Spark, Storm, and so on.

One of leading solution provider in Japan

The largest one is a 1000+ nodes cluster

Elephant in
resort island

3Copyright © 2014 NTT DATA Corporation

Position in NTT Group

NTT Group
Total Asset：
¥19.6,536 trillion

Operating Revenues：
¥10.7007 trillion

Number of Employees：
227,168

Number of Consolidated
Subsidiaries：
827
(AS of Mar. 31, 2013)

NIPPON TELEGRAPH AND

TELEPHONE

CORPORATION

(Holding Company)

※ 【】NTT's Voting Rights Ratio（as of Mar. 31, 2013)

NIPPON TELEGRAPH AND

TELEPHONE EAST CORPORATION

【100%】

NIPPON TELEGRAPH AND

TELEPHONE WEST CORPORATION

【 100% 】

NTT Communications Corporation

【100%】
Dimension Data Holdings plc.

【100%】

NTT DOCOMO, INC.

【66.7%】

NTT DATA CORPORATION

【54.2%】

Regional Communications Business

Long-Distance and International Communications Business

Mobile Communications Business

Data Communications Business

・Planning management strategies

for the NTT Group.

・Encouraging fundamental R&D

efforts

Net Sales: USD 13.2 billion
(June, 2014; USD 1 = JPY 102)

Employees: 75,000 (January, 2014)

http://www.nttdocomo.co.jp/
http://www.nttdocomo.co.jp/
http://www.ntt-east.co.jp/en/
http://www.ntt-east.co.jp/en/
http://www.ntt-west.co.jp/english/
http://www.ntt-west.co.jp/english/

4Copyright © 2014 NTT DATA Corporation

Agenda

Our motivation and expectation for Spark

Characteristics of its performance with GBs, TBs and
tens of TBs of data.

Tips for the people who are planning to use Spark

Copyright © 2014 NTT DATA Corporation 5Copyright © 2012 NTT DATA Corporation 5

Motivation

6Copyright © 2014 NTT DATA Corporation

Hadoop has become the base of data processing

We started to use Hadoop 6 years ago

Hadoop enables us to process massive data
daily and hourly

Hadoop(MapReduce, HDFS)

Hive
Pig

Data loader Outer system

batch
Daily/Hourly

The system image 6 years ago

7Copyright © 2014 NTT DATA Corporation

Example of massive data processing

https://www.nttdocomo.co.jp/english/binary/pdf/corporate/technology/rd/technical_journal/bn/vol14_3/vol14_3_004en.pdf

NTT DOCOMO’s project supports the
research of society and industry
using large-scale operational data.

NTT DOCOMO supports growth in society and industry

Incoming data
30 billion + / day

1 TB / day

Generated data
PBs of data

8Copyright © 2014 NTT DATA Corporation

Demands for data processing have diversified

Handle variety of requirements for data processing

Both throughput and low latency

APIs useful for data analysis

Make the data management simple

Want to run different types of frameworks on one HDFS

Because multi clusters themselves impose complexity and
inefficiency in data management

This should be achieved by Spark

This should be achieved by Hadoop2.x and YARN

9Copyright © 2014 NTT DATA Corporation

Recent architecture for massive data processing

 Spark and other data frameworks collaborate with
each other

RabbitMQ, Kafka

Flume, Fluentd

Outside service
Hadoop(YARN, HDFS)

Storm
SparkStreaming Outside service

Visualization service

HBase

MapReduce
Hive
Pig

Dataflow

batch

on-memory

stream

Messaging
KVS/cache

Spark processes data on
HDFS and run on YARN
with other framework

Spark

Copyright © 2014 NTT DATA Corporation 10Copyright © 2012 NTT DATA Corporation 10

The evaluation of Spark on YARN

11Copyright © 2014 NTT DATA Corporation

Four essential points we wanted to evaluate

Points we wanted to evaluate Apps used for evaluation

1 Capability to process tens of TBs of data without unpredictable
decrease of performance nor unexpected hold

WordCount

2 Keep reasonable performance when data is bigger than total
memory available for caching

SparkHdfsLR
(Logistic Regression)

3 Keep reasonable performance of shuffle process with tens of TBs of
data

GroupByTest
(Large shuffle process)

4 Easy to implement the multi-stage jobs (from our business use-case) POC of a certain project

The basic characteristics about scale-out.
Especially about TBs and tens of TBs of data.

Basic viewpoint

12Copyright © 2014 NTT DATA Corporation

The specification of the cluster

Item value

CPU E5-2620 6 core x 2 socket

Memory 64GB 1.3GHz

NW interface 10GBase-T x 2 port (bonding)

Disk 3TB SATA 6Gb 7200rpm

10G NW with top of rack switch

10G NW with core switch

CentOS6.5

HDFS &
YARN(CDH5.0.1)

Spark 1.0.0

Software stuck

Total cluster size
• 4k+ Core
• 10TB+ RAM

13Copyright © 2014 NTT DATA Corporation

Point1: Process time of WordCount

Total heap size of executors

We ran tests two times per each
data size. OS cache was cleared
before the each execution started.
The process time seemed to be
linear per input data size.

We found reasonable
performance, even if all of data

cannot be held on cache

We found reasonable
performance, even if all of data

cannot be held on cache

14Copyright © 2014 NTT DATA Corporation

Point1: Resource usage of a certain slavenode

[CPU Usage]
blue: user
green: system

[Network usage]
red : in
black: out

[Disk I/O]
black: read
pink : write

Map
(448s)

Reduce
(98s)

About
400MB/sec/server

Because of locality,
there’re few NW I/O.
This is ideal situation.

Input data: 27TB

15Copyright © 2014 NTT DATA Corporation

Point1: Summary

WordCount’s performance depends on Map-side
process. Reduce-side process may not be bottleneck.
This is because Map-side outputs small data.

On this task, we confirmed reasonable performance,
even if the input data exceeded the total memory
amount.

Tasks had the locality for data, we observed the
stable throughput, (i.e. time vs. data processed)

I will talk about the case which a task lost locality, later.

16Copyright © 2014 NTT DATA Corporation

Point2: Process time of SparkHdfsLR

We ran the logistic regression with 3
cycles of computation. We found
ideal difference between cycles. The
difference of process time between
cycle 1 and others seemed to
depend on the cache usage.

Available cache size per server (16 GB * 3 * 0.6 = 26GB)

Cache is effective

Cache is effective, even
if executor cannot hold

all of data

Using memory
and disk

Using memory
and disk

100%
cached

73%
cached

33%
cached

16%
cached

17Copyright © 2014 NTT DATA Corporation

Point2: Resource usage of a certain slavenode

[CPU Usage]
blue: user
green: system

[Network
usage]

red : in
black: out

[Disk I/O]
black: read
pink : write

8GB input per server 16GB input per server

600 sec 85sec89sec 1229sec 297sec316sec

Part of data use disk,
because cache cannot

hold all of data

I/O wait

Cache mechanism
prevented the disk

usage

18Copyright © 2014 NTT DATA Corporation

Point2: Summary

The cache mechanism of Spark worked for iterative
applications

RDD’s cache mechanism works consistently, and
enhances throughput while the amount of input data
is bigger than the total memory available for caching

 It is important to minimize boxing overhead when
storing data object into RDD

19Copyright © 2014 NTT DATA Corporation

Point3: Process time of GroupByTest

Starting fetched shuffle-data
spilling to disks, but no

impact on total Elapsed Time

We didn’t find drastic
changes of gradient, when
we processed these size of

data

20Copyright © 2014 NTT DATA Corporation

 Actually, we saw the bottleneck of disk I/O as well as the bottleneck of
NW. This is typical when we ran shuffle test whose map tasks generated
massive output data.

Point3: NW usage of a certain slavenode

Small shuffle on one rack
We saw no spill to disk.

Large shuffle on one rack
We saw spill to disk.

500 ～ 600MByte / s

100 ～ 200MByte / s

Large shuffle on cluster
We saw bottleneck of
the core switch

100 ～ 120MByte / s

Trial to confirm 10G Bandwidth Networking The network resource usage of a certain slavenodes when we ran varaiety patterns of tests

Shuffle phase

Shuffle phase

Shuffle phase

cpu util was 100%
at this time

Job start Job finish

21Copyright © 2014 NTT DATA Corporation

Point3: Summary

The process time seemed to be linear per input size
of shuffle.

When the shuffle data spills out to the disk, the disk
access would compete among shuffle related tasks,
such as ShuffleMapTask(WRITE), Fetcher(READ), etc.
Then, the competition deteriorate the performance.

22Copyright © 2014 NTT DATA Corporation

Point4: Example application of POC

We categorized existing Hadoop applications in a
certain project and made the mock application which
represents major business logics of the project.

Groups by different categories

(1)Distribute + Sort

(2)Compute (3)Compute

(4-1) Group + Count

(4-2) Group + Count

(5-1) Join + Group + Sum

(5-2) Join + Group + Sum

These computation is different from each
applications. For example, calculating difference

of values between data records.

These computation is different from each
applications. For example, calculating difference

of values between data records.

This application resembles the log analysis
to find the feature of web users.

23Copyright © 2014 NTT DATA Corporation

Point4: Lesson learned from this POC

Tips

Use cache mechanism efficiently

Prevent skew of task allocation in the start

Prevent too large partition size

Practices for heap tuning

Use RDD to manage data rather than own arrays

Practices for implementation of DISTRIBUTE BY

 Issues

Missing data locality of tasks

Error of web UI when we ran large jobs

Today’s topics

24Copyright © 2014 NTT DATA Corporation

Use cache mechanism efficiently

We can use the cache mechanism efficiently by
minimizing object stored in MemoryStore or the data
store of the cache mechanism.

The convenience and the efficiency of data size may
have trade-off relationship. But the implicit
conversion of Scala can solve it in a certain case.

Rich data format
(like case class)

+
Simple function

Simple data format
(Byte, Int, …)

+
Rich function

The cost of computation of data in memory is not consequence
compared with the disk I/O

25Copyright © 2014 NTT DATA Corporation

Prevent skew of task allocation in the start(1)

 It takes a little to start all of containers when we run
large jobs on large YARN cluster.

 In this case, the allocation of tasks starts before all
containers are available, so that some tasks are
allocated on non-data-local executors.

Our workaround

val sc = new SparkContext(sparkConf)
Thread.sleep(sleeptime)

We inserted a little sleep time.
This reduces total processing

time as a result.
But...This is really workaround.

Ultimately, we should implement the threshold to start the task allocation.
For example, the percentage of containers ready for use may be useful
for this purpose.

26Copyright © 2014 NTT DATA Corporation

Prevent skew of task allocation in the start(2)

[CPU Usage]
blue: user
green: system

[Network usage]
red : in
black: out

[Disk I/O]
black: read
pink : write

Map
(609s)

Reduce
(103s)

Because of lack of
locality, data transfer

occurred.

Input data: 27TB
Example of slavenode’s resource usage

Copyright © 2014 NTT DATA Corporation 27Copyright © 2012 NTT DATA Corporation 27

Future work and conclusion

28Copyright © 2014 NTT DATA Corporation

Future work

 Find the good collaboration between Spark and YARN.
Here are some issues to be resolved.

Overhead for starting containers

Avoid skew of task allocation when starting applications

If we can use I/O resource management in the future, it
will realize rigorous management.

Ensure traceability from a statement of application to
the framework of Spark.

This is used for performance tuning and debugging.

29Copyright © 2014 NTT DATA Corporation

Conclusion

Can scalably process tens of TBs of data without unpredictable
decrease of performance nor unexpected hold

Impression
Good! …but we need some technique for scale out

Expectation1

Keep reasonable performance when data is bigger
than total memory available for caching

Impression
Good! …but we need some technique to efficiently use the cache

Expectation2

Capability to run an application on YARN

Impression
We’re evaluating now and it is under development right now.

Expectation3

Copyright © 2011 NTT DATA Corporation

Copyright © 2014 NTT DATA Corporation

Copyright © 2011 NTT DATA Corporation

Copyright © 2012 NTT DATA Corporation

Spark is a young product and has some issues to be solved.
But these issues should be resolved by the great community member.

We also contribute it!

