


● Data scientist at Cloudera
● Recently lead Apache Spark development at 

Cloudera
● Before that, committing on Apache YARN 

and MapReduce
● Hadoop PMC member
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● Run Spark alongside other Hadoop 
workloads
○ Leverage existing clusters
○ Data locality



● Manage workloads using advanced policies
○ Allocate shares to different teams and 

users
○ Hierarchical queues
○ Queue placement policies



● Take advantage of Hadoop’s security
○ Run on Kerberized clusters





● Late 2012 / Spark 0.6 - experimental project 
at Yahoo

● Late 2013 / Spark 0.8 - pulled into Spark, 
Hadoop-0.23 only

● Early 2014 / Spark 0.9 - Hadoop 2.2 line as 
well, support for spark-shell

● Early 2014 / Spark 0.9.1 / CDH 5.0 - Stable!
● Mid 2014 / Spark 1.0.0 / CDH 5.1 - Easier 

app submission with spark-submit
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● When running a job, Spark tries to place 
tasks alongside HDFS blocks

● Problem: Spark needs to ask YARN for 
executors before it runs its jobs



● Solution: Tell Spark what files you’re going 
to touch when creating SparkContext

val locData = InputFormatInfo.computePreferredLocations
(Seq(new InputFormatInfo(conf, classOf
[TextInputFormat], new Path(“myfile.txt”)))

val sc = new SparkContext(conf, locData)





● Spark holds on to full 
resources even when 
app is idle

● Give back to cluster

● Requires container-
resizing (YARN-1197)



● Spark History Server
● Generic YARN history (YARN-321)



● Looking at logs should be easier
● Better documentation on data locality
● Remove unnecessary sleeps
● Long-running apps on secure clusters 

(YARN-941)




