


● Data scientist at Cloudera
● Recently lead Apache Spark development at 

Cloudera
● Before that, committing on Apache YARN 

and MapReduce
● Hadoop PMC member





Traditional Operating System

Storage:
File System

Execution/Scheduling:
Processes/Kernel 

Scheduler



Hadoop

Storage:
Hadoop Distributed 
File System (HDFS)

Execution/Scheduling:
YARN!





HDFS

Impala MapReduce Spark



Engineering - 50% Finance - 30% Marketing - 20%

Spark MR

Impala

Spark

MR

Impala

Spark

MR

Impala

HDFS



HDFS

Impala MapReduce Spark

YARN



● Run Spark alongside other Hadoop 
workloads
○ Leverage existing clusters
○ Data locality



● Manage workloads using advanced policies
○ Allocate shares to different teams and 

users
○ Hierarchical queues
○ Queue placement policies



● Take advantage of Hadoop’s security
○ Run on Kerberized clusters





● Late 2012 / Spark 0.6 - experimental project 
at Yahoo

● Late 2013 / Spark 0.8 - pulled into Spark, 
Hadoop-0.23 only

● Early 2014 / Spark 0.9 - Hadoop 2.2 line as 
well, support for spark-shell

● Early 2014 / Spark 0.9.1 / CDH 5.0 - Stable!
● Mid 2014 / Spark 1.0.0 / CDH 5.1 - Easier 

app submission with spark-submit





ResourceManager

NodeManager NodeManager



ResourceManager

NodeManager NodeManager

Container Container Container



ResourceManager

NodeManager NodeManager

Client



ResourceManager

NodeManager NodeManager

Container

Application 
Master

Client



ResourceManager

NodeManager NodeManager

Container

Map Task

Container

Application 
Master

Container

Reduce Task

Client







 
Node 

Manager
Spark 

ExecutorApp Master / 
ExecutorLauncher

Task
Task

Node
Manager

Spark 
Executor

Task
TaskResourceManager

Client /
Spark Driver



 
Node 

Manager
Spark 

ExecutorApp Master / 
Spark Driver

Task
Task

Node
Manager

Spark 
Executor

Task
TaskResourceManager

Client



● When running a job, Spark tries to place 
tasks alongside HDFS blocks

● Problem: Spark needs to ask YARN for 
executors before it runs its jobs



● Solution: Tell Spark what files you’re going 
to touch when creating SparkContext

val locData = InputFormatInfo.computePreferredLocations
(Seq(new InputFormatInfo(conf, classOf
[TextInputFormat], new Path(“myfile.txt”)))

val sc = new SparkContext(conf, locData)





● Spark holds on to full 
resources even when 
app is idle

● Give back to cluster

● Requires container-
resizing (YARN-1197)



● Spark History Server
● Generic YARN history (YARN-321)



● Looking at logs should be easier
● Better documentation on data locality
● Remove unnecessary sleeps
● Long-running apps on secure clusters 

(YARN-941)




