
Testing Spark: Best Practices

Anupama Shetty
Senior SDET, Analytics, Ooyala Inc

Neil Marshall
SDET, Analytics, Ooyala Inc

Spark Summit 2014

Agenda - Anu
1. Application Overview

● Batch mode
● Streaming mode with kafka

2. Test Overview
● Test environment setup
● Unit testing spark applications
● Integration testing spark applications

3. Best Practices
● Code coverage support with scoverage and scct
● Auto build trigger using jenkins hook via github

Agenda - Neil
4. Performance testing of Spark

● Architecture & technology overview
● Performance testing setup & run
● Result analysis
● Best practices

Company Overview

● Founded in 2007
● 300+ employees worldwide
● Global footprint of 200M unique users in 130 countries
● Ooyala works with the most successful broadcasts and media

companies in the world
● Reach, measure, monetize video business
● Cross-device video analytics and monetization products and

services

Application Overview
● Analytics ETL pipeline service
● Receives 5B+ player generated events such as plays, displays

on a daily basis.
● Computed metrics include player conversion rate, video

conversion rate and engagement metrics.
● Third party services used are

○ Spark 1.0 used to process player generated big data.
○ Kafka 0.9.0 with Zookeeper as our message queue
○ CDH5 HDFS as our intermediate storage file system

Spark based Log Processor details
● Supports two input data formats

○ Json
○ Thrift

● Batch Mode Support
○ Uses Spark Context
○ Consumes input data via a text file

● Streaming Mode Support
○ Uses Spark streaming context
○ Consumes data via kafka stream

Test pipeline setup

● Player simulation done using Watir (ruby gem based on
Selenium).

● Kafka(with zookeeper) setup as local virtual machine using
vagrant. VMs can be monitored using VirtualBox.

● Spark cluster run in local mode.

http://watir.com/
http://www.vagrantup.com/
https://www.virtualbox.org/
http://www.vagrantup.com/

Unit test setup - Spark in Batch mode
● Spark cluster setup for testing

○ Build your spark application jar using `sbt “assembly”`
○ Create config with spark.jar set to application jar and spark.master to “local”

■ var config = ConfigFactory parseString """spark.jar = "target/scala-2.10
/SparkLogProcessor.jar",spark.master = "local" """

○ Store local spark directory path for spark context creation
■ val sparkDir = <path to local spark directory> + “spark-0.9.0-

incubating-bin-hadoop2/assembly/target/scala-2.10/spark-assembly_2.
10-0.9.0-incubating-hadoop2.2.0.jar").mkString

● Creating spark context
○ var sc: SparkContext = new SparkContext("local", getClass.getSimpleName,

sparkDir, List(config.getString("spark.jar")))

Test Setup for batch mode using Spark Context
Before block

After block

Scala test framework “FunSpec” is
used with “ShouldMatchers” (for
assertions) and “BeforeAndAfter”
(for setup/teardown).

Kafka setup for spark streaming
● Bring up Kafka virtual

machine using Vagrantfile
with following command
`vagrant up kafkavm`

● Configure Kafka
○ Create topic

■ `bin/kafka-create-topic.sh --zookeeper "localhost:2181" --topic "thrift_pings"`
○ Consume messages using

■ `bin/kafka-console-consumer.sh --zookeeper "localhost:2181" --topic "thrift_pings" --group
"testThrift" &>/tmp/thrift-consumer-msgs.log &`

https://docs.vagrantup.com/v2/vagrantfile/
https://kafka.apache.org/

Testing streaming mode with
Spark Streaming Context

Test ‘After’ block and assertion block for spark streaming
mode

After Block Test Assertion

Testing best practices - Code Coverage
● Tracking code coverage with Scoverage and/or Scct
● Enable fork = true to avoid spark exceptions caused by spark context conflicts.
● SCCT configurations

○ ScctPlugin.instrumentSettings
○ parallelExecution in ScctTest := false
○ fork in ScctTest := true
○ Command to run it - `sbt “scct:test”`

● Scoverage configurations
○ ScoverageSbtPlugin.instrumentSettings
○ ScoverageSbtPlugin.ScoverageKeys.excludedPackages in

ScoverageSbtPlugin.scoverage := ".*benchmark.*;.*util.*”
○ parallelExecution in ScoverageSbtPlugin.scoverageTest := false
○ fork in ScoverageSbtPlugin.scoverageTest := true
○ Command to run it - `sbt “scoverage:test”`

https://github.com/scoverage/sbt-scoverage
https://github.com/mtkopone/sbt-scct

Testing best practices - Jenkins auto test build
trigger
● Requires enabling 'github-webhook' on github repo settings

page. Requires admin access for the repo.
● Jenkins job should be configured with corresponding github

repo via “GitHub Project” field.
● Test jenkins hook by triggering a test run from github repo.
● "Github pull request builder" can be used while configuring

jenkins job to auto publish test results on github pull requests
after every test run. This also lets you rerun failed tests via
github pull request.

What is a performance testing?
● A practice striving to build performance into the

implementation, design and architecture of a
system.

● Determine how a system performs in terms of
responsiveness and stability under a particular
workload.

● Can serve to investigate, measure, validate or verify
other quality attributes of a system, such as
scalability, reliability and resource usage.

What is a Gatling?

● Stress test tool

Why is Gatling selected over other
Perf Test tools as JMeter?
● Powerful scripting using Scala
● Akka + Netty
● Run multiple scenarios in one simulation
● Scenarios = code + DSL
● Graphical reports with clear & concise

graphs

How does Gatling work with Spark

● Access Web applications / services

Develop & setup a simple perf test example

A perf test will run against spark-jobserver for
word counts.

What is a spark jobserver?

● Provides a RESTful interface for submitting and
managing Apache Spark jobs, jars and job
contexts

● Scala 2.10 + CDH5/Hadoop 2.2 + Spark 0.9.0
● For more depths on jobserver, see Evan Chan

& Kelvin Chu’s Spark Query Service
presentation.

Steps to set up & run Spark-jobserver

● Clone spark-jobserver from git-hub

● Install SBT and type “sbt” in the spark-
jobserver repo

● From SBT shell, simply type “re-start”

$ git clone https://github.com/ooyala/spark-jobserver

> re-start

$ sbt

Steps to package & upload a jar to the
jobserver

● Package the test jar of the word count
example

● Upload the jar to the jobserver

$ curl --data-binary @job-server-tests/target/job-server-tests-0.3.1.jar
localhost:8090/jars/test

$ sbt job-server-tests/package

Run a request against the jobserver

$ curl -d "input.string = a b c a b see" 'http://localhost:8090/jobs?
appName=test&classPath=spark.jobserver.WordCountExample&sync=true'
{
 "status": "OK",
 "result": {
 "a": 2,
 "b": 2,
 "c": 1,
 "see": 1
 }
}⏎

Source code of Word Count Example

Script Gatling for the Word Count Example

Scenario defines steps that Gatling does during
a runtime:

Script Gatling for the Word Count Example

Setup puts users and scenarios as workflows plus
assertions together in a performance test simulation
● Inject 10 users in 10 seconds into scenarios in 2

cycles
● Ensure successful requests greater than 80%

Test Results in Terminal Window

Gatling Graph - Indicator

Gatling Graph - Active Sessions

Best Practices on Performance Tests

● Run performance tests on Jenkins
● Set up baselines for any of performance

tests with different scenarios & users

Any Questions?

References
Contact Info:
Anupama Shetty: anupama@ooyala.com
Neil Marshall: nmarshall@ooyala.com

References:
http://www.slideshare.net/AnuShetty/spark-summit2014-techtalk-testing-spark

mailto:anupama@ooyala.com
mailto:nmarshall@ooyala.com
http://www.slideshare.net/AnuShetty/spark-summit2014-techtalk-testing-spark
http://www.slideshare.net/AnuShetty/spark-summit2014-techtalk-testing-spark

