

Using Spark to Generate Analytics for
International Cable TV Video Distribution

Christopher Burdorf
NBC Universal

Problem Definition

● Gigabytes of metadata associated with international video
distribution stored in Oracle and flat files needs to be
processed to analyze usage

● Store resulting data in Hbase/Hadoop – media Ids with usage
over weeks, months, years, in total and on a per channel basis

● Query Hbase tables, generate graphs and display them in a web
page.

● Generate report listing media files ordered by least recent usage
– for offlining purposes

● Generate histogram of days since last aired for media on storage
cluster

Spark usage

● Queries from Oracle database get paths to schedule files stored on
Isilon

● Schedule files are read and media ID's, air times, etc are stored in
Scala classes and then to RDDs

● Spark map/reduceByKey is then used to produce counts for each
media ID usage per country location based on week/month/year

● Spark join used to compute list of online media files (data from
Oracle) and their last usage date (from schedule files). The result is
sorted in ascending order on the most recent broadcast timestamp
field.

HBase/WebApp

● Broadcast frequency count data written from Spark App to
CSV format then bulk-loaded into HBase

● Java/Spring web app queries HBase generates and
displays graphs to web pages on demand.

● Spark App executed and HBase updated nightly

Production Environment

● Linux
● Oracle
● Clustered storage system
● Spark/Scala
● Java/Spring Web App

Mesos Cluster configuration

● 18 cores, 23GB ram

Partitions from Spark app

Added rdd_0_3 in memory on server1:33229 (size: 42.9 KB, free: 883.2 MB)

 Added rdd_0_7 in memory on server1:33229 (size: 42.8 KB, free: 883.1 MB)

Added rdd_0_16 in memory on server2:45795 (size: 43.0 KB, free: 883.2 MB)

 Added rdd_0_15 in memory on server2:45795 (size: 42.9 KB, free: 883.1 MB)

 Added rdd_0_14 in memory on server2:45795 (size: 42.8 KB, free: 883.1 MB)

 Added rdd_0_2 in memory on server2:45795 (size: 43.0 KB, free: 883.0 MB)

Added rdd_0_13 in memory on server2:45795 (size: 43.2 KB, free: 883.0 MB)

Added rdd_0_10 in memory on server2:45795 (size: 42.9 KB, free: 882.9 MB)

 Added rdd_0_17 in memory on server2:45795 (size: 43.1 KB, free: 882.9 MB)

Added rdd_0_12 in memory on server2:45795 (size: 42.8 KB, free: 882.9 MB)

Added rdd_0_8 in memory on server2:45795 (size: 43.1 KB, free: 882.8 MB)

Added rdd_0_6 in memory on server2:45795 (size: 43.0 KB, free: 882.8 MB)

Added rdd_0_11 in memory on server2:45795 (size: 42.9 KB, free: 882.7 MB)

Added rdd_0_9 in memory on server2:45795 (size: 42.8 KB, free: 882.7 MB)

Added rdd_0_1 in memory on server4:43454 (size: 42.8 KB, free: 883.2 MB)

 Added rdd_0_5 in memory on server4:43454 (size: 42.9 KB, free: 883.1 MB)

Added rdd_0_0 in memory on server3:41154 (size: 43.0 KB, free: 883.2 MB)

Added rdd_0_4 in memory on server3:41154 (size: 42.9 KB, free: 883.1 MB)
●

Shuffle Spill

Results

Per channel

Per channel

Storage cluster utilization
days since last aired per media file

Conclusions
● Performance improvements

● Small data: 10x faster on 18 core vs 1 core even
though a good portion of the app is sequential file and
DB I/O.

● Large data: not even possible on 1 box in cluster – runs
out of memory.

● Spark/Scala super fun programming env – thanks to all
developers

● Mesos cluster management wonderful ease of use
● Minor issue: Mesos Mac OSX build
● Future work

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

