
Write Once, Run Anywhere
Pat McDonough

Write Once, Run
Anywhere…

Write Once, Run
Anywhere…

You Might Have Heard
This Before!

Java, According to
Wikipedia

Java, According to
Wikipedia

Java is a computer programming language…
specifically designed to have as few

implementation dependencies as possible. It is
intended to let application developers "write

once, run anywhere" (WORA)

Java & “WORA” in the First
Decade

Java Client Applications

• Apps with GUIs (AWT or Swing)
could be deployed to any OS
with a JVM

Java & “WORA” in the First
Decade

Java Client Applications

• Apps with GUIs (AWT or Swing)
could be deployed to any OS
with a JVM

Neat!

• … but not all that useful - people
don’t want non-native GUIs

Java & “WORA” in the First
Decade

Java & “WORA” in the First
Decade

Applets

• A way to deliver “rich” GUIs
to many different platforms
through the browser

[Insert Ugly Applet
Here]

Java & “WORA” in the First
Decade

Applets

• A way to deliver “rich” GUIs
to many different platforms
through the browser

Neat!

[Insert Ugly Applet
Here]

Java & “WORA” in the First
Decade

Applets

• A way to deliver “rich” GUIs
to many different platforms
through the browser

Neat!

• … but basically ended at
producing many gimmicky
website animations

[Insert Ugly Applet
Here]

Java & “WORA” in the First
Decade

Back-end Applications!

• Windows Desktop for an IDE

• Unix Server for Production

Neat!

• … And actually useful too

Java & “WORA” in the First
Decade

• Back-end Java starts to formalize
around standards —> J2EE

• Core libraries, deployment
formats, etc.

• Vendors Offer J2EE App Servers

• Ironically, this immediately lead to no
more WORA

• Specific App Servers required
a specific SDK

• … or even a specific IDE

Java & “WORA” in the First
Decade

• Fixing WORA on the back-end:

• Fall back to the Least
Common Denominator —>
Servlets (usually via Tomcat)

• Spring comes about to dominate
as the SDK of choice for Java
back-end applications

• “…specifically designed to
have as few implementation
dependencies as possible”

So yes, you’ve heard
this before

So yes, you’ve heard
this before

Which examples apply to
the state of Big Data

Ecosystem?

• Vendor Standards Open Source

• Data has overwhelmed us

• Distributed Systems Are The New Standard
(specifically, Data Parallel systems)

Important Changes Since
Then

Big Data Platforms Are Everywhere Now…
But Where Are the Big Data Applications?

“Big Data Applications” don’t exist very far beyond connecting
ODBC/JDBC or simple ETL integrations

Why?!

• Too many disparate systems to piece together

• Complicated matrix of compile-time and runtime
dependencies across distributions

• i.e. each distribution effectively has it’s own SDK

The Big Data Ecosystem
Needs a Common SDK

The Big Data Ecosystem
Needs a Common SDK

Apache Spark is the
answer

Spark
An SDK for Big Data

Applications

SQL MLlib Streaming GraphX

Core

Spark
An SDK for Big Data

Applications

SQL MLlib Streaming GraphX

Core

Unified System With Libraries to
Build a Complete Solution

!
Full-featured Programming

Environment

Single, Consistent Interface for
Developers to Write Against

!
Runtimes available on several

platforms

Spark
An SDK for Big Data

Applications

SQL MLlib Streaming GraphX

Core

Unified System With Libraries to
Build a Complete Solution

!
Full-featured Programming

Environment

Develop Big Data Applications
SQL MLlib Streaming GraphX

Core

Python/Scala/Java

Dependencies

Your Application

Develop Big Data Applications
SQL MLlib Streaming GraphX

Core

Python/Scala/Java
Spark APIs

Dependencies

Develop Applications…
… using your preferred language,
… using existing libraries,
… using Spark’s Public APIs
 (SparkContext, RDDs)

Your Application

Work With Data
SQL MLlib Streaming GraphX

Core

HDFS* Local S3 JDBC Cassandra …Data

Python/Scala/Java

Dependencies

Your Application

Work With Data
SQL MLlib Streaming GraphX

Core

HDFS* Local S3 JDBC Cassandra …Data

Python/Scala/Java

Dependencies

Your Application

Spark Internals Care For
Scheduling Data Operations

Data
Access &

Scheduling

Spark APIs

Run Your Applications
SQL MLlib Streaming GraphX

Core

Python/Scala/Java

Dependencies

Your Application

YARN Mesos Spark
Standalone Cluster

Run Your Applications
SQL MLlib Streaming GraphX

Core

Python/Scala/Java

Dependencies

Your Application

Submit Your Application and the
Spark Runtime to a Cluster

Manager

YARN Mesos Spark
Standalone Cluster

The Complete Picture
SQL MLlib Streaming GraphX

Core

HDFS* Local S3 JDBC Cassandra …Data

Python/Scala/Java

Dependencies

Your Application

YARN Mesos Spark
Standalone Clusters

The Complete Picture
SQL MLlib Streaming GraphX

Core

HDFS* Local S3 JDBC Cassandra …Data

Python/Scala/Java

Dependencies

Your Application

YARN Mesos Spark
Standalone Clusters

Spark Abstracts Runtime
Dependencies from Developers

How Spark Handles Hadoop
Dependencies

• The Spark library is compiled with
compatibility to a specific Hadoop
version

• At runtime, Spark uses reflection to find
any Hadoop classes it needs

Examples:

Apache Hadoop 2.2.X  
mvn -Pyarn -Phadoop-2.2 \  
-Dhadoop.version=2.2.0 \  
-DskipTests clean package

CDH 4.2.0 with MapReduce v1  
mvn -Dhadoop.version=2.0.0-
mr1-cdh4.2.0 -DskipTests \  
clean package

SQL MLlib Streaming GraphX

Core

How Spark Handles Hadoop
Dependencies

• The Spark library is compiled with
compatibility to a specific Hadoop
version

• At runtime, Spark uses reflection to find
any Hadoop classes it needs

Examples:

Apache Hadoop 2.2.X  
mvn -Pyarn -Phadoop-2.2 \  
-Dhadoop.version=2.2.0 \  
-DskipTests clean package

CDH 4.2.0 with MapReduce v1  
mvn -Dhadoop.version=2.0.0-
mr1-cdh4.2.0 -DskipTests \  
clean package

SQL MLlib Streaming GraphX

Core

Hadoop
Client

Spark Support Included on
Big Data Platforms

• While this build process is very
easy, it’s even easier to have the
runtime pre-built…

• Platform support also indicates
stronger integration testing,
supported, and integrated
management tools

SQL MLlib Streaming GraphX

Core

Hadoop
Client

Spark 1.0

Spark-Submit

• Spark-submit provides a
consistent manner to launch jobs
regardless of which platform

• Includes an important clean-up to
make configurations more
consistent

Run on a Spark standalone cluster
./bin/spark-submit \
 --class org.apache.spark.examples.SparkPi \
 --master spark://207.184.161.138:7077 \
 --executor-memory 20G \
 --total-executor-cores 100 \
 /path/to/examples.jar \
 1000 !
Run on a YARN cluster
export HADOOP_CONF_DIR=XXX
./bin/spark-submit \
 --class org.apache.spark.examples.SparkPi \
 --master yarn-cluster \
 --executor-memory 20G \
 --num-executors 50 \
 /path/to/examples.jar \
 1000

Spark SQL
• We actually wrestled with the name

a bit because it’s not only about
SQL

• SparkSQL introduces SchemaRDDs
and an Optimizer (Catalyst)

• SQL is actually not the only
developer interface - there is also a
DSL

• This provides a deeper integration
for any structured data

val sqlContext = new org.apache.spark.sql.SQLContext(sc)
import sqlContext._
val people: RDD[Person] = ... // An RDD of case class objects… !
// The following is the same as
// ‘SELECT name FROM people WHERE age >= 10 AND age <= 19'
val teenagers = people.where('age >= 10).where('age <= 19).select('name)

Databricks Is Committed to Growing
Apache Spark’s Developer Ecosystem

• Developer Training, Online Materials, Free Resources

• Strong Commitment to Open Source

• Certification Programs

We’re Hiring!

• Evangelists

• Trainers

• Solutions Architects

• Software Engineers

http://databricks.com/about-us

