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Spark MLlib

MLlib is an Apache Spark component focusing on 
machine learning: 

• initial contribution from AMPLab, UC Berkeley 

• shipped with Spark since version 0.8 (Sep 2013) 

• 50 contributors

2



Algorithms

• classification: logistic regression, linear support vector machine 
(SVM), naive Bayes, classification tree 

• regression: generalized linear models (GLMs), regression tree 

• collaborative filtering: alternating least squares (ALS), non-negative 
matrix factorization (NMF) 

• clustering: k-means 

• decomposition: singular value decomposition (SVD), principal 
component analysis (PCA)
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What’s new in v1.0
• new user guide and code examples 

• API stability 

• sparse data support 

• regression and classification tree 

• distributed matrices 

• tall-and-skinny PCA and SVD 

• L-BFGS 

• binary classification model evaluation
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Sparse data support



“large-scale sparse problems”



Sparsity is almost everywhere

Sparse datasets appear almost everywhere in the world 
of big data, where the sparsity may come from many 
sources, e.g., 

• feature transformation:  
one-hot encoding, interaction, and bucketing, 

• large feature space: n-grams, 

• missing data: rating matrix, 

• low-rank structure: images and signals.
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One-hot encoding

Converts a categorical feature to numerical, e.g., 

• country: {Germany, Brazil, Argentina, …} 

• Germany -> 0, Brazil -> 1, Argentina -> 2, … 

• Germany -> [1, 0, 0, 0, …], Brazil -> [0, 1, 0, 0, …], 
Argentina -> [0, 0, 1, 0, …], … 

• density: 1/#categories
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Bucketing

Converts a numerical feature to categorical, e.g., 

• second of day: [0, 24*3600) 

• hour of day: [0, 24) 

• 4:33am -> [0, 0, 0, 0, 1, 0, …] 

• density: 1/#buckets
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Sparsity is almost everywhere

The Netflix Prize: 

• number of users: 480,189 

• number of movies: 17,770 

• number of observed ratings: 100,480,507 

• density = 1.17%
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Sparsity is almost everywhere

rcv1.binary (test): 

• number of examples: 677,399 

• number of features: 47,236 

• density: 0.15% 

• storage: 270GB (dense) or 600MB (sparse)
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Sparsity in a broader sense

real-world data =                 + noise
sparse 

— or — 

low-rank
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A dense image …
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… is sparse under wavelet basis
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A huge rating matrix …

Amazon reviews: 

• Number of users: 6,643,669 

• Number of products: 2,441,053 

• Number of reviews: 34,686,770
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… is approximately low-rank
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Exploiting sparsity

• As a user 

• recognize sparsity 

• As a developer 

• utilize sparsity
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Exploiting sparsity
• In Spark v1.0, MLlib adds support for sparse input data 

in Scala, Java, and Python. 

• MLlib takes advantage of sparsity in both storage and 
computation in 
• collaborative filtering, 
• linear methods (linear SVM, logistic regression, etc), 
• naive Bayes, 
• k-means, 
• summary statistics, 
• singular value decomposition.
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Open-source linear algebra packages

We benchmarked several JVM-based open-source 
linear algebra packages on the operations we need to 
implement sparse data support. 
• breeze 

• matrix-toolkits-java 

• mahout-math 

• commons-math3 

• jblas
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Sparse representation of features

20

dense : 1. 0. 0. 0. 0. 0. 3.

sparse :

8
><

>:

size : 7

indices : 0 6

values : 1. 3.



Create/save/load sparse data

Create a sparse vector representing [1., 0., 3.] 
• in Scala: Vectors.sparse(3, Array(0, 2), Array(1., 3.)) 

• in Java: Vectors.sparse(3, new int[] {0, 2}, new double[] {1., 3.}) 

• in Python: Vectors.sparse(3, [0, 2], [1., 3.]) 

Create a labeled point with a sparse feature vector 

• Scala/Java/Python: LabeledPoint(label, sparseVector)
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Create/save/load sparse data

Save a sparse training data set (RDD[LabeledPoint]) 

• in LIBSVM format 

• MLUtils.saveAsLibSVMFile(rdd, dir) -> 1 1:1.0 3:3.0 

• in MLlib’s format (v1.1) 

• rdd.saveAsTextFile(dir) -> (3,[0,2],[1.,3.])
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Create/save/load sparse data

Load a sparse training dataset 

• in LIBSVM format 

• MLUtils.loadLibSVMFile(sc, path) 

• in MLlib’s format (v1.1) 

• MLUtils.loadLabeledData(sc, path)
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O(nnz)



Exploiting sparsity in k-means

Training set: 
• number of examples: 12 million 

• number of features: 500 

• density: 10% 

!

Not only did we save 40GB of storage by switching to the sparse 
format, but we also received a 4x speedup.

dense sparse
storage 47GB 7GB
time 240s 58s
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Implementation of sparse k-means

Algorithm: 

• For each point, find its closest center. 
 

• Update cluster centers.

li = argmin
j

kxi � cjk22

cj =

P
i,li=j xjP
i,li=j 1
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Implementation of sparse k-means
The points are usually sparse, but the centers are most likely to be 
dense. Computing the distance takes O(d) time. So the time complexity 
is O(n d k) per iteration. We don’t take any advantage of sparsity on the 
running time. However, we have 

kx� ck22 = kxk22 + kck22 � 2hx, ci

Computing the inner product only needs non-zero elements. So we 
can cache the norms of the points and of the centers, and then only 
need the inner products to obtain the distances. This reduce the 
running time to O(nnz k + d k) per iteration.
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Exploiting sparsity in linear methods

• The essential part of the computation in a gradient-
based method is computing the sum of gradients.  

• For linear methods, the gradient is sparse if the 
feature vector is sparse.
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Exploiting sparsity in linear methods

Proposal: 

g = points.map(p => grad(w, p)).reduce(_ + _) 

Cons: 

• Creating many small objects. 

• Adding sparse vectors.
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Exploiting sparsity in linear methods

MLlib’s implementation 

• does not add sparse vectors together, 

• instead, adds sparse vectors directly to a dense 
vector for each partition and then computes the sum 
• fast random access 

• no temporary object creation
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Exploiting sparsity in summary statistics

Multivariate summary statistics: 

• count / mean / max / min / nnz / variance 

MLlib’s implementation 

• computes the variance accurately in a single pass, 

• ignores the zero values during the pass.
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• Top singular values can be computed via the 
eigenvalue decomposition of the Gram matrix. 

!

• Lanczos algorithm computes eigenvalue 
decomposition, which only needs a routine that 
multiplies a matrix with a vector. 

Singular value decomposition

(ATA)v =
X

i

(aTi v)ai

�j(A) =
q
�j(ATA)
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Exploiting sparsity in SVD

!

• v is dense in general, while {a_i} are sparse. 

• The inner product can be computed quickly. 

• Computing the sum is the same as in linear methods.

(ATA)v =
X

i

(aTi v)ai
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Make the right choice



Sparse vs. dense

• Storage 

• sparse format: 12 nnz + 4 bytes. 

• dense format: 8n bytes 

• Speed  

• problem dependent



Pick algorithms that fit your data

36



ALS vs. SVD
Both algorithms compute low-rank matrix factorizations. 

• ALS 

• is scalable on both directions 

• ignores unobserved entries (explicit feedback) 

• SVD 

• is scalable on one direction 

• treats unobserved entries as zeros

37



Acknowledgement
• David Hall (breeze) 

• Sam Halliday (netlib-java) 

• Xusen Yin (summary statistics) 

• Reza Zadeh (tall-and-skinny SVD & PCA) 

• Li Pu (SVD via Lanczos) 

• Tor Myklebust (NMF)

38



Summary

• Real-world data = sparse/low-rank + noise 

• MLlib supports sparse data in 
• linear methods / naive Bayes / k-means / collaborative filtering / 

summary statistics / singular value decomposition 

• As a user, recognize sparsity. 
• As a developer, utilize sparsity.
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Thank You!


