A More Scalable Way of Making

Recommendations with MLIib

Xiangrui Meng :
Spark Summit 2015 databI'leS

More interested in application than implementation?

IRIS: A Large-Scale Food and Recipe
Recommendation System Using Spark

Joohyun Kim (MyFitnessPal, Under Armour)

3:30 - 4:00 PM
Imperial Ballroom (Level 2)

€databricks

About Databricks

- Founded by Apache spark creators

- Largest contributor to Spark project, committed to
keeping Spark 100% open source

- End-to-end hosted platform
https://www.databricks.com/product/databricks

€databricks

Spark MLIib

Large-scale machine learning on Apache Spark

€databricks

About MLIib

- Started in UC Berkeley AMPLab
 Shipped with Spark 0.8
* Currently (Spark 1.4)

- Contributions from 50+ organizations, 150+
Individuals

- Good coverage of algorithms

€databricks

MLIib’s Mission

MLIib’s mission is to make practical machine
learning easy and scalable.

- Easy to build machine learning applications
- Capable of learning from large-scale datasets

€databricks

A Brief History of MLIib

GLMs
k-means
ALS
gradient decent - Java/Scala
Optim Algo API
v0.8

€databricks

App

A Brief History of MLIib

naive Bayes

implicit ALS
. Python
Optim Algo API
v0.9

€databricks

App

A Brief History of MLIib

decision tree
PCA

sparse data SVD

L-BFGS

€databricks

App

A Brief History of MLIib

statistics
NMF
streaming linear regression
tree reduce Word2Vec

torrent broadcast

gap

b
r

Optim Algo API

vi.i

€databricks

1
1

App

10

A Brief History of MLIib

random forest
gradient boosted trees
streaming k-means

pipeline

Optim Algo API

vi.2

€databricks 11

A Brief History of MLIib

latent Dirichlet allocation (LDA)
multinomial logistic regression
Gaussian mixture model (GMM)
distributed block matrix
FP-growth / isotonic regression
power iteration clustering

%’ pipeline in python
ALSv2 2 model import/export
3
~
a
3
Optim Algo API

v1.3

€databricks 12

A Brief History of MLIib

GLMs with elastic-net
online LDA

ALS.recommendAll feature transformers
estimators

Python pipeline API

Optim Algo API

vi.4

€databricks

13

Alternating Least Squares (ALS)

Collaborative filtering via matrix factorization

€databricks

Collaborative Filtering

items
4
6 1 7
4 3
5 2
»
o ? 7 1
5
9 5
7 3 5
3 8
9 6

A: a rating matrix

€databricks

15

Low-Rank Assumption

» What kind of movies do you like?
- sci-fi / crime / action

Perception of preferences usually takes place in a

low dimensional latent space.
T
A5 ~ U; Uy

So the rating matrix is approximately low-rank.

A=UVT UeR™Fk V eRW¥F

€databricks

16

Objective Function

* minimize the reconstruction error

1
minimize 5 1A -UVT|%

* only check observed ratings
minimize 1 Z (a;; —u; vi)?
2 pA J v 7]
(4,5)€Q

€databricks

17

Alternating Least Squares (ALS)

If we fix U, the objective becomes convex and

Separable: 1
L T, 2
minimize ; E) E (aij —u; vj)

J i,7)€N

- Each sub-problem is a least squares problem, which

€databricks

can be solved in parallel. So we take alternating
directions to minimize the objective:

fix U, solve for V;
fix V, solve for U.

18

Complexity

* To solve a least squares problem of size n-by-k, we need
O(n k?) time. So the total computation cost is O(nnz k?2),
where nnz is the total number of ratings.

- We take the normal equation approach in ALS
AT Ax = ATD
» Solving each subproblem requires O(k?) storage. We call
LAPACK’s routine to solve this problem.

€databricks 19

ALS Implementation in MLIib

How to scale to 100,000,000,000 ratings?

€databricks

Communication Cost

The most important factor of implementing an
algorithm in parallel is the communication cost.

To make ALS scale to billions of ratings, millions of
users/items, we have to distribute ratings (A), user
factors (U), and item factors (V). How?

« all-to-all
* block-to-block

€databricks

21

Communication: All-to-All

uil v1
u2 v2

v3
= v4

- users: ul, u2, u3; items: v1, v2, v3, v4
- shuffle size: O(nnz k) (nnz: number of nonzeros, i.e., ratings)
 sending the same factor multiple times

€databricks

Communlcatlon Block-to- Block

ooo

u1 ut v

P1 u2 Q1
u2 u3 V2
uil v3

P2 u3 Q2
u3 v4

.........................

OutBIocks (P1, P2)

« for each item block, which user factors to send
 InBlocks (Q1, Q2)
« for each item, which user factors to use

..

€databricks 23

Communlcatlon Block-to- Block

ooo

u1 ut v

P1 u2 Q1
u2 u3 V2
ui v3

P2 u3 Q2
u3 v4

...

- Shuffle size is significantly reduced.

- We cache two copies of ratings — InBlocks for users and
InBlocks for items.

€databricks o4

€databricks

preparation

aaaaa

itemFactors O

uuuuu

userFactors 1 itemFactors 1
iterations

25

Compressed Storage for InBlocks

[(01, Uy, a11), (112, Uy, a12), (Ul, U2, a21), (’02, U2, a22), (U2, us, a32)]

Array of rating tuples
* huge storage overhead
- high garbage collection (GC) pressure

€databricks

26

Compressed Storage for InBlocks

([U1, U2, V1, 712,1)2], [Ul,ul, U2, U2, US], [a117 aiz, a1, az2, Cl32])

Three primitive arrays
* low GC pressure
- constructing all sub-problems together
« O(n; k2) storage

€databricks

27

Compressed Storage for InBlocks

([01, U1, V2, 02,02], [U17U2, Uy, u2, U3], [a11, azi,a12,a22, a32])

Primitive arrays with items ordered:
* solving sub-problems in sequence:
- O(k?) storage
- TimSort

€databricks

28

Compressed Storage for InBlocks

([01,02], [07 2, 5], [U1,U2,U1,U2,U3], [an, az1,0a12, 022, CL32])

Compressed items:
* no duplicated items
- map lookup for user factors

€databricks

29

Compressed Storage for InBlocks

([U17 U2]a [07 27 5]7 [0|07 O|17 O|07 0|17 1‘0]9 [a117 azi,a12, a2, 0,32])

Store block IDs and local indices instead of user IDs. For example, u3
is the first vector sent from P2.

Encode (block ID, local index) into an integer
+ use higher bits for block ID

+ use lower bits for local index

« works for ~4 billions of unique users/items

01 1 00 0000 0000 0000
gdatabricks

30

Avoid Garbage Collection

We use specialized code to replace the following:

- initial partitioning of ratings
ratings.map { r =>
((srcPart.getPartition(r.user), dstPart.getPartition(r.item)), r)
}.aggregateByKey(new RatingBlockBuilder) (
seqOp = (b, r) => b.add(r),
combOp = (b0, bl) => b@.merge(bl.build()))
.mapValues(_.build())

- map IDs to local indices

dstIds.toSet.toSeq.sorted.zipWithIndex.toMap

€databricks

31

Amazon Reviews Dataset

« Amazon Reviews: ~6.6 million users, ~2.2 million items, and ~30 million

ratings
« Tested ALS on stacked copies on a 16-node m3.2xlarge cluster with
rank=1 Os Ite ALS on Amazon Reviews Dataset
B Mahout
45 W MLib 1.2
MLIib 1.3
2 30
&
15
0
0 250 500 750 1000
num. of ratings (million)
€databricks

32

Storage Comparison

userinBlock 941MB 277MB

userOutBlock 355MB 65MB

itemInBlock 1380MB 243MB

itemQutBlock 119MB 37MB

€databricks

33

Spotify Dataset

* Spotify: 75+ million users and 30+ million songs

* Tested ALS on a subset with ~50 million users, ~5
million songs, and ~50 billion ratings.

* thanks to Chris Johnson and Anders Arpteg
- 32 r3.8xlarge nodes (~$10/hr with spot instances)
* [t took 1 hour to finish 10 iterations with rank 10.

* 10 mins to prepare in/out blocks

* 5 mins per iteration

€databricks 34

ALS Implementation in MLlIib

- Save communication by duplicating data
- Efficient storage format

- Watch out for GC

- Native LAPACK calls

€databricks

35

Future Directions

* Leverage on Project Tungsten to save some
specialized code that avoids GC.

- Solve issues with really popular items.

- Explore other recommendation algorithms, e.g.,
factorization machine.

€databricks

36

Thank you.

« Spark:
« Databricks:

databricks

