

A More Scalable Way of Making Recommendations with MLlib

Xiangrui Meng
Spark Summit 2015

More interested in application than implementation?

iRIS: A Large-Scale Food and Recipe Recommendation System Using Spark

Joohyun Kim (MyFitnessPal, Under Armour)

3:30 – 4:00 PM

Imperial Ballroom (Level 2)

About Databricks

- Founded by Apache spark creators
- Largest contributor to Spark project, committed to keeping Spark 100% open source
- End-to-end hosted platform
<https://www.databricks.com/product/databricks>

Spark MLlib

Large-scale machine learning on Apache Spark

About MLlib

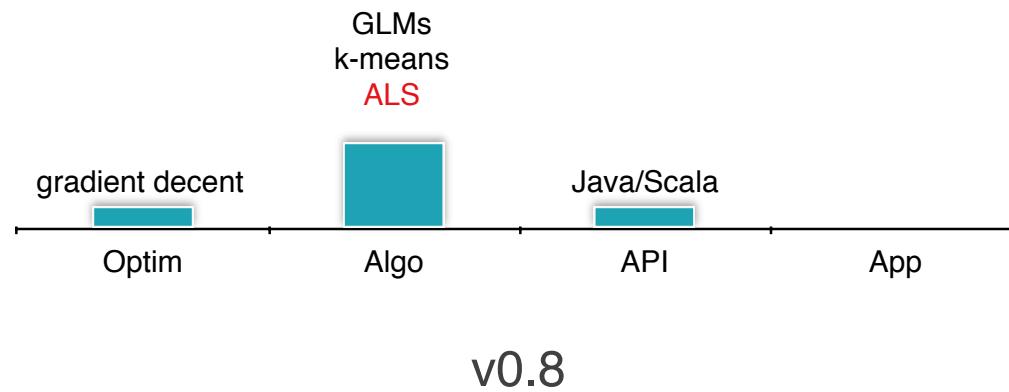
- Started in UC Berkeley AMPLab
 - Shipped with Spark 0.8
- Currently (Spark 1.4)
 - Contributions from 50+ organizations, 150+ individuals
 - Good coverage of algorithms

MLlib's Mission

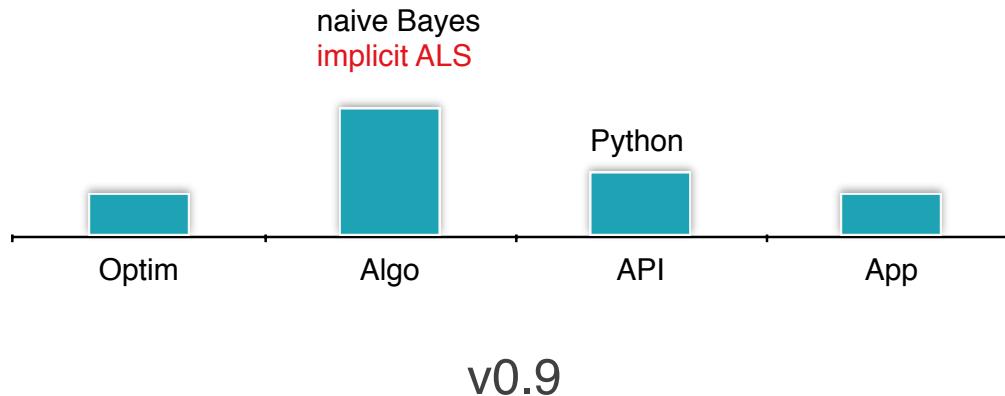
MLlib's mission is to make practical machine learning easy and scalable.

- Easy to build machine learning applications
- Capable of learning from large-scale datasets

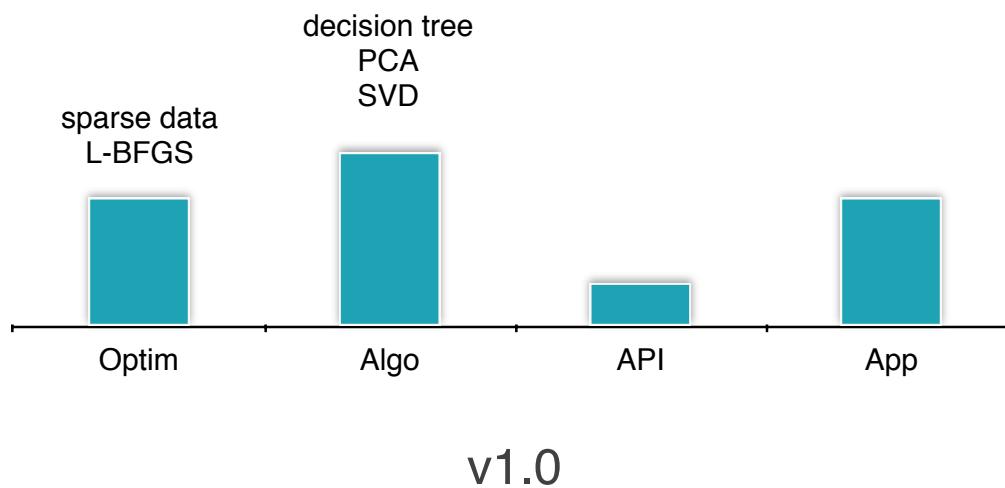
A Brief History of MLlib



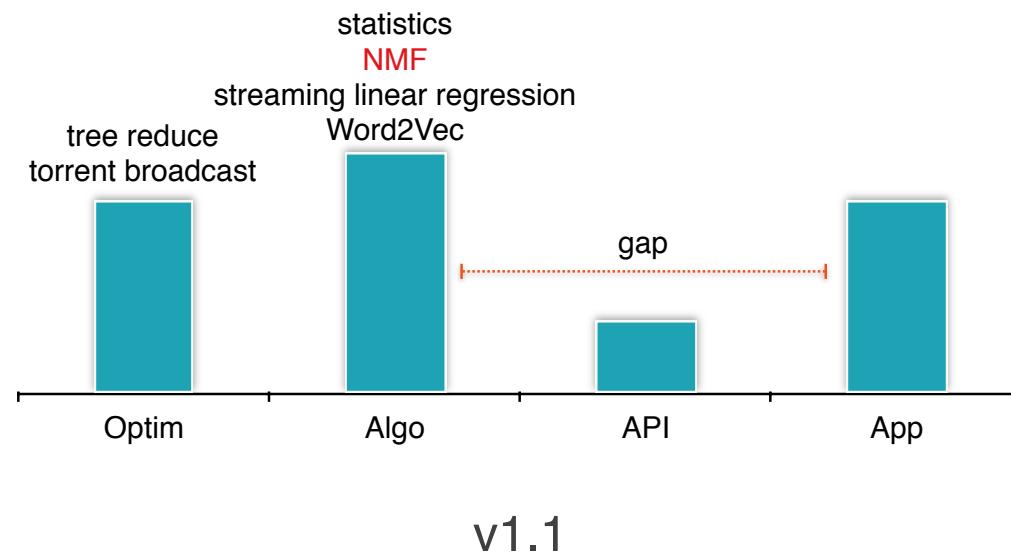
A Brief History of MLlib



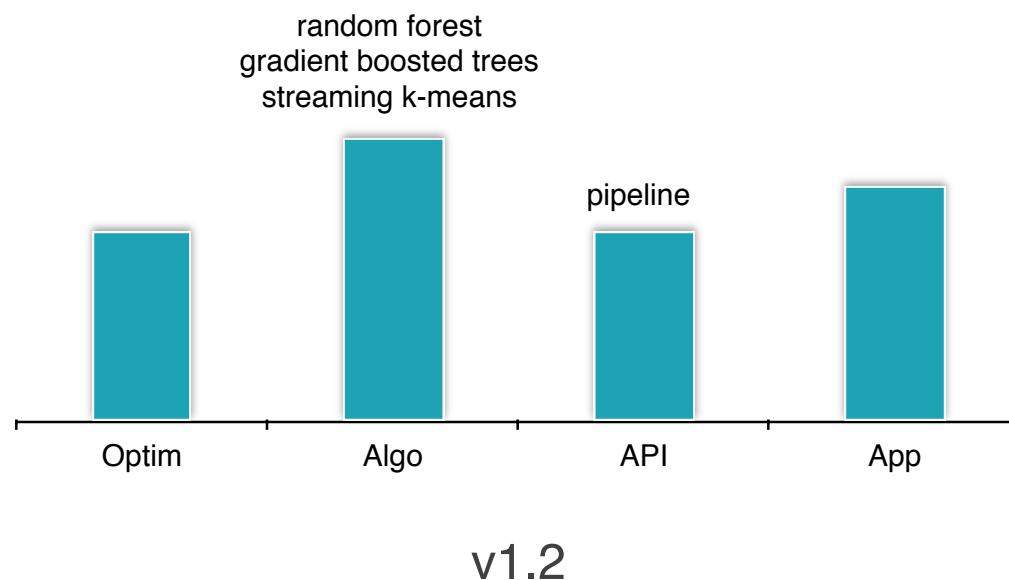
A Brief History of MLlib



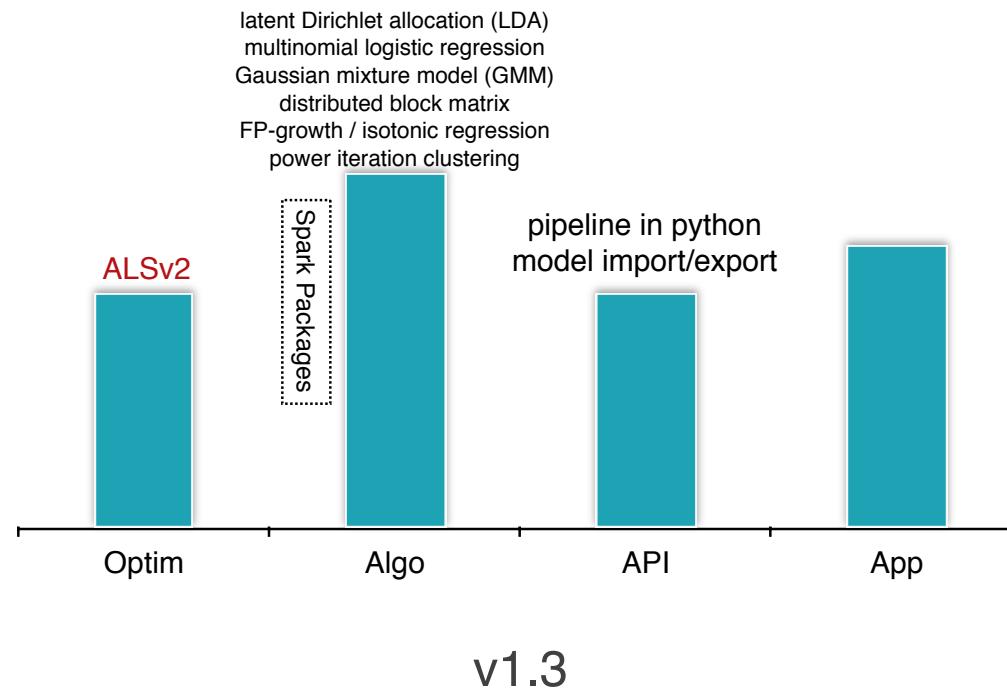
A Brief History of MLlib



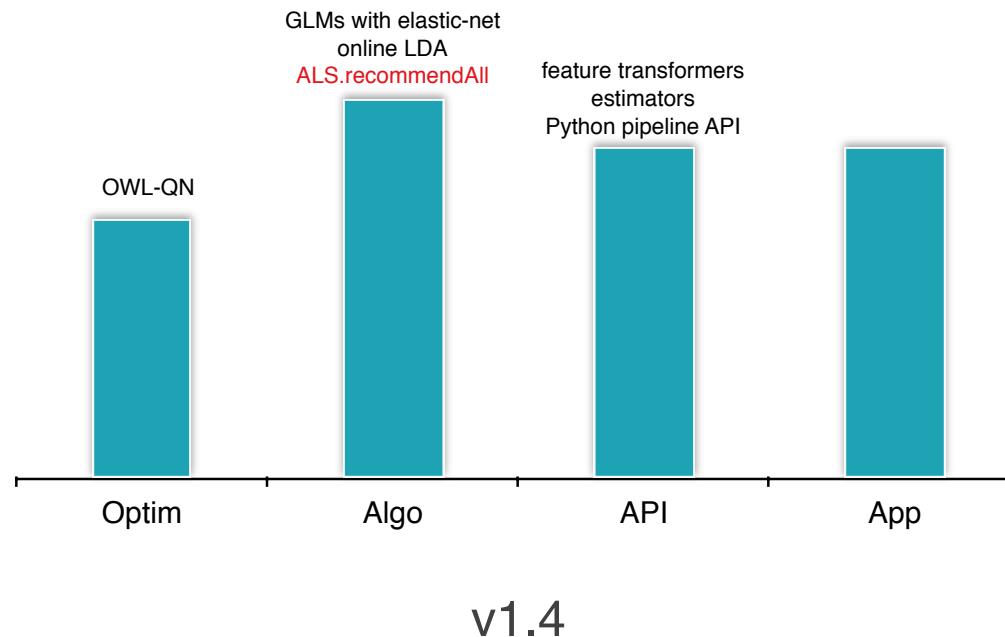
A Brief History of MLlib



A Brief History of MLlib



A Brief History of MLlib



Alternating Least Squares (ALS)

Collaborative filtering via matrix factorization

Collaborative Filtering

		items		
		6	4	8
		1	7	
users		4	3	5
		5	2	3
		?	7	1
9			5	
7			3	5
3		8		2
		9	6	

A: a rating matrix

Low-Rank Assumption

- What kind of movies do you like?
- sci-fi / crime / action

Perception of preferences usually takes place in a low dimensional latent space.

$$a_{ij} \approx u_i^T v_j$$

So the rating matrix is approximately low-rank.

$$A \approx UV^T, \quad U \in \mathbb{R}^{m \times k}, V \in \mathbb{R}^{n \times k}$$

Objective Function

- minimize the reconstruction error

$$\text{minimize } \frac{1}{2} \|A - UV^T\|_F^2$$

- only check observed ratings

$$\text{minimize } \frac{1}{2} \sum_{(i,j) \in \Omega} (a_{ij} - u_i^T v_j)^2$$

Alternating Least Squares (ALS)

- If we fix U , the objective becomes convex and separable:

$$\text{minimize } \frac{1}{2} \sum_j \left(\sum_{i, (i,j) \in \Omega} (a_{ij} - u_i^T v_j)^2 \right)$$

- Each sub-problem is a least squares problem, which can be solved in parallel. So we take alternating directions to minimize the objective:
 - fix U , solve for V ;
 - fix V , solve for U .

Complexity

- To solve a least squares problem of size n -by- k , we need $O(n k^2)$ time. So the total computation cost is $O(nnz k^2)$, where nnz is the total number of ratings.
- We take the normal equation approach in ALS
$$A^T A x = A^T b$$
- Solving each subproblem requires $O(k^2)$ storage. We call LAPACK's routine to solve this problem.

ALS Implementation in MLlib

How to scale to 100,000,000,000 ratings?

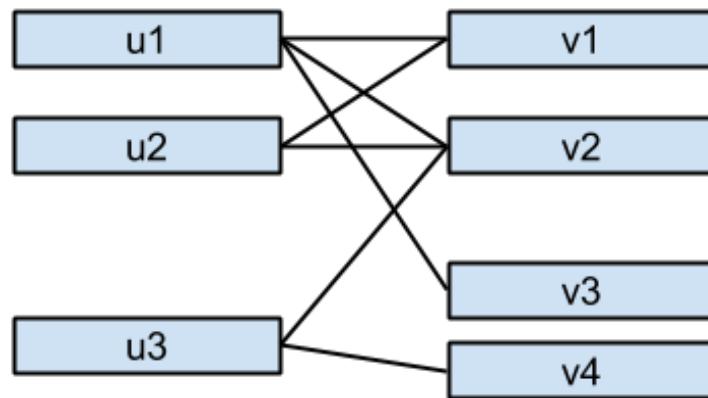
Communication Cost

The most important factor of implementing an algorithm in parallel is the communication cost.

To make ALS scale to billions of ratings, millions of users/items, we have to distribute ratings (A), user factors (U), and item factors (V). How?

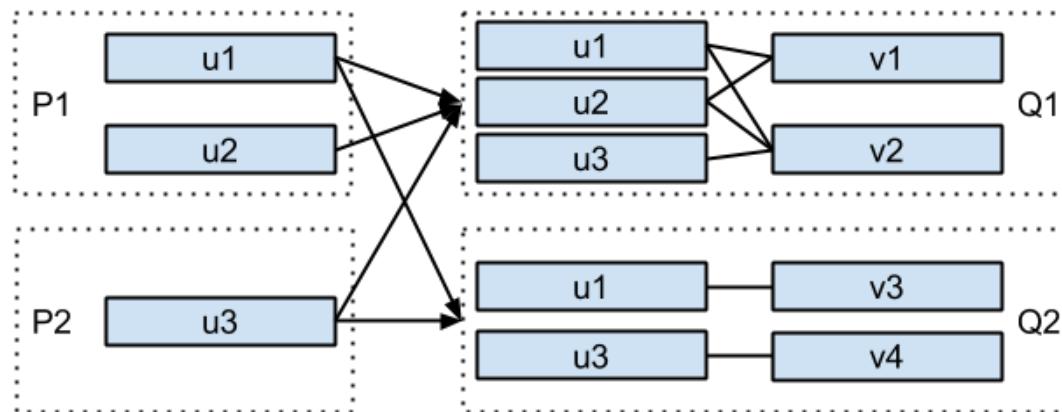
- all-to-all
- block-to-block
- ...

Communication: All-to-All



- users: u1, u2, u3; items: v1, v2, v3, v4
- shuffle size: $O(nnz k)$ (nnz : number of nonzeros, i.e., ratings)
- sending the same factor multiple times

Communication: Block-to-Block



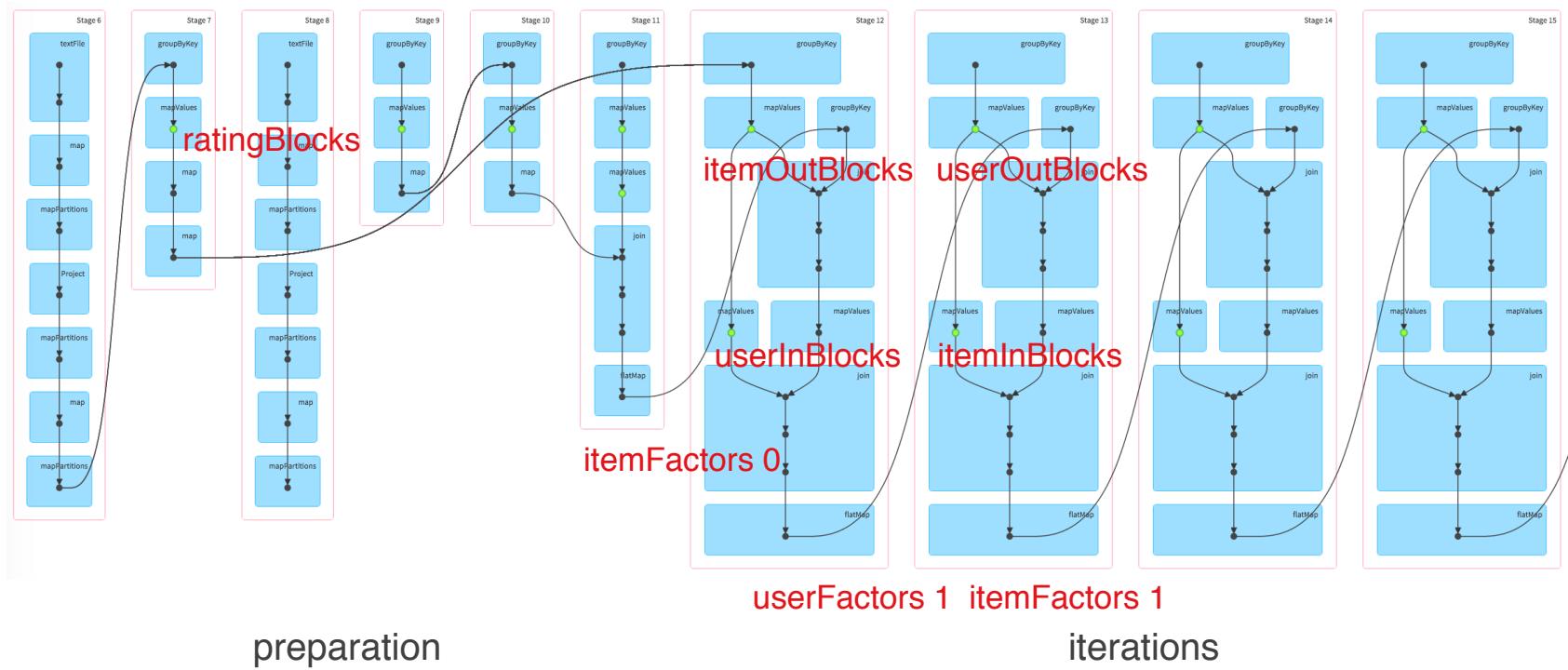
- OutBlocks (P1, P2)
 - for each item block, which user factors to send
- InBlocks (Q1, Q2)
 - for each item, which user factors to use

Communication: Block-to-Block



- Shuffle size is significantly reduced.
- We cache two copies of ratings — InBlocks for users and InBlocks for items.

DAG Visualization of an ALS Job



Compressed Storage for InBlocks

$[(v_1, u_1, a_{11}), (v_2, u_1, a_{12}), (v_1, u_2, a_{21}), (v_2, u_2, a_{22}), (v_2, u_3, a_{32})]$

Array of rating tuples

- huge storage overhead
- high garbage collection (GC) pressure

Compressed Storage for InBlocks

$([v_1, v_2, v_1, v_2, v_2], [u_1, u_1, u_2, u_2, u_3], [a_{11}, a_{12}, a_{21}, a_{22}, a_{32}])$

Three primitive arrays

- low GC pressure
- constructing all sub-problems together
 - $O(n_j k^2)$ storage

Compressed Storage for InBlocks

$([v_1, v_1, v_2, v_2, v_2], [u_1, u_2, u_1, u_2, u_3], [a_{11}, a_{21}, a_{12}, a_{22}, a_{32}])$

Primitive arrays with items ordered:

- solving sub-problems in sequence:
 - $O(k^2)$ storage
 - TimSort

Compressed Storage for InBlocks

$([v_1, v_2], [0, 2, 5], [u_1, u_2, u_1, u_2, u_3], [a_{11}, a_{21}, a_{12}, a_{22}, a_{32}])$

Compressed items:

- no duplicated items
- map lookup for user factors

Compressed Storage for InBlocks

$([v1, v2], [0, 2, 5], [0|0, 0|1, 0|0, 0|1, 1|0], [a_{11}, a_{21}, a_{12}, a_{22}, a_{32}])$

Store block IDs and local indices instead of user IDs. For example, u3 is the first vector sent from P2.

Encode (block ID, local index) into an integer

- use higher bits for block ID
- use lower bits for local index
- works for ~4 billions of unique users/items

01 | 00 0000 0000 0000

Avoid Garbage Collection

We use specialized code to replace the following:

- initial partitioning of ratings

```
ratings.map { r =>
  ((srcPart.getPartition(r.user), dstPart.getPartition(r.item)), r)
}.aggregateByKey(new RatingBlockBuilder)(
  seq0p = (b, r) => b.add(r),
  comb0p = (b0, b1) => b0.merge(b1.build()))
.mapValues(_.build())
```

- map IDs to local indices

```
dstIds.toSet.toSeq.sorted.zipWithIndex.toMap
```

Amazon Reviews Dataset

- Amazon Reviews: ~6.6 million users, ~2.2 million items, and ~30 million ratings
- Tested ALS on stacked copies on a 16-node m3.2xlarge cluster with rank=10, ite

Storage Comparison

	1.2	1.3/1.4
userInBlock	941MB	277MB
userOutBlock	355MB	65MB
itemInBlock	1380MB	243MB
itemOutBlock	119MB	37MB

Spotify Dataset

- Spotify: 75+ million users and 30+ million songs
- Tested ALS on a subset with ~50 million users, ~5 million songs, and ~50 billion ratings.
 - thanks to Chris Johnson and Anders Arpteg
- 32 r3.8xlarge nodes (~\$10/hr with spot instances)
- It took 1 hour to finish 10 iterations with rank 10.
 - 10 mins to prepare in/out blocks
 - 5 mins per iteration

ALS Implementation in MLlib

- Save communication by duplicating data
- Efficient storage format
- Watch out for GC
- Native LAPACK calls

Future Directions

- Leverage on Project Tungsten to save some specialized code that avoids GC.
- Solve issues with really popular items.
- Explore other recommendation algorithms, e.g., factorization machine.

Thank you.

- Spark: <http://spark.apache.org>
- Databricks: <http://databricks.com>

