
A More Scalable Way of Making 
Recommendations with MLlib

Xiangrui Meng
Spark Summit 2015



More interested in application than implementation?

iRIS: A Large-Scale Food and Recipe 
Recommendation System Using Spark

Joohyun Kim (MyFitnessPal, Under Armour)
3:30 – 4:00 PM
Imperial Ballroom (Level 2)

2



About Databricks
• Founded by Apache spark creators

• Largest contributor to Spark project, committed to 
keeping Spark 100% open source

• End-to-end hosted platform
https://www.databricks.com/product/databricks

3



Spark MLlib

Large-scale machine learning on Apache Spark



About MLlib
• Started in UC Berkeley AMPLab
• Shipped with Spark 0.8

• Currently (Spark 1.4)
• Contributions from 50+ organizations, 150+ 
individuals
• Good coverage of algorithms

5



MLlib’s Mission

MLlib’s mission is to make practical machine 
learning easy and scalable.

• Easy to build machine learning applications
• Capable of learning from large-scale datasets

6



7

A Brief History of MLlib

Optim Algo API App

v0.8

GLMs
k-means

ALS

Java/Scalagradient decent



8

A Brief History of MLlib

Optim Algo API App

v0.9

Python

naive Bayes
implicit ALS



9

A Brief History of MLlib

Optim Algo API App

v1.0

decision tree
PCA
SVDsparse data

L-BFGS



10

A Brief History of MLlib

v1.1

Optim Algo API App

tree reduce
torrent broadcast

statistics
NMF

streaming linear regression
Word2Vec

gap



11

A Brief History of MLlib

v1.2

Optim Algo API App

pipeline

random forest
gradient boosted trees

streaming k-means



12

A Brief History of MLlib

v1.3

Optim Algo API App

ALSv2

latent Dirichlet allocation (LDA)
multinomial logistic regression

Gaussian mixture model (GMM)
distributed block matrix

FP-growth / isotonic regression
power iteration clustering

pipeline in python
model import/export

Spark Packages



13

A Brief History of MLlib

Optim Algo API App

GLMs with elastic-net
online LDA

ALS.recommendAll feature transformers
estimators

Python pipeline API

v1.4

OWL-QN



Alternating Least Squares (ALS)

Collaborative filtering via matrix factorization



15

Collaborative Filtering
items

us
er

s

A: a rating matrix



Low-Rank Assumption
•What kind of movies do you like?
• sci-fi / crime / action
Perception of preferences usually takes place in a 
low dimensional latent space.

So the rating matrix is approximately low-rank.

16

A ⇡ UV T , U 2 Rm⇥k, V 2 Rn⇥k

aij ⇡ uT
i vj



Objective Function

• minimize the reconstruction error

• only check observed ratings

17

minimize
1

2
kA� UV T k2F

minimize
1

2

X

(i,j)2⌦

(aij � uT
i vj)

2



Alternating Least Squares (ALS)
• If we fix U, the objective becomes convex and 

separable:

• Each sub-problem is a least squares problem, which 
can be solved in parallel. So we take alternating 
directions to minimize the objective:

• fix U, solve for V;
• fix V, solve for U.

18

minimize
1

2

X

j

0

@
X

i,(i,j)2⌦

(aij � uT
i vj)

2

1

A



Complexity
• To solve a least squares problem of size n-by-k, we need 

O(n k2) time. So the total computation cost is O(nnz k2), 
where nnz is the total number of ratings.

• We take the normal equation approach in ALS

• Solving each subproblem requires O(k2) storage. We call 
LAPACK’s routine to solve this problem.

19

A

T
Ax = A

T
b



ALS Implementation in MLlib

How to scale to 100,000,000,000 ratings?



Communication Cost

The most important factor of implementing an 
algorithm in parallel is the communication cost.
To make ALS scale to billions of ratings, millions of 
users/items, we have to distribute ratings (A), user 
factors (U), and item factors (V). How?
• all-to-all
• block-to-block
• …

21



Communication: All-to-All

• users: u1, u2, u3; items: v1, v2, v3, v4
• shuffle size: O(nnz k) (nnz: number of nonzeros, i.e., ratings)
• sending the same factor multiple times

22



Communication: Block-to-Block

• OutBlocks (P1, P2)
• for each item block, which user factors to send

• InBlocks (Q1, Q2)
• for each item, which user factors to use

23



Communication: Block-to-Block

• Shuffle size is significantly reduced.
• We cache two copies of ratings — InBlocks for users and 

InBlocks for items.

24



DAG Visualization of an ALS Job

25

ratingBlocks
itemOutBlocks

userInBlocks itemInBlocks

userOutBlocks

itemFactors 0

userFactors 1 itemFactors 1
preparation iterations



Compressed Storage for InBlocks

Array of rating tuples
• huge storage overhead
• high garbage collection (GC) pressure

 

26

[(v1, u1, a11), (v2, u1, a12), (v1, u2, a21), (v2, u2, a22), (v2, u3, a32)]



Compressed Storage for InBlocks

Three primitive arrays
• low GC pressure
• constructing all sub-problems together

• O(nj k2) storage

 

27

([v1, v2, v1, v2, v2], [u1, u1, u2, u2, u3], [a11, a12, a21, a22, a32])



Compressed Storage for InBlocks

Primitive arrays with items ordered:
• solving sub-problems in sequence:

• O(k2) storage
• TimSort

 

28

([v1, v1, v2, v2, v2], [u1, u2, u1, u2, u3], [a11, a21, a12, a22, a32])



Compressed Storage for InBlocks

Compressed items:
• no duplicated items
• map lookup for user factors

29

([v1, v2], [0, 2, 5], [u1, u2, u1, u2, u3], [a11, a21, a12, a22, a32])



Compressed Storage for InBlocks

Store block IDs and local indices instead of user IDs. For example, u3 
is the first vector sent from P2.

Encode (block ID, local index) into an integer
• use higher bits for block ID
• use lower bits for local index
• works for ~4 billions of unique users/items 

01 | 00 0000 0000 0000
30

([v1, v2], [0, 2, 5], [0|0, 0|1, 0|0, 0|1, 1|0], [a11, a21, a12, a22, a32])



Avoid Garbage Collection

We use specialized code to replace the following:
• initial partitioning of ratings
     ratings.map { r => 
       ((srcPart.getPartition(r.user), dstPart.getPartition(r.item)), r) 
     }.aggregateByKey(new RatingBlockBuilder)( 
         seqOp = (b, r) => b.add(r), 
         combOp = (b0, b1) => b0.merge(b1.build())) 
       .mapValues(_.build()) 

• map IDs to local indices
dstIds.toSet.toSeq.sorted.zipWithIndex.toMap

31



Amazon Reviews Dataset
• Amazon Reviews: ~6.6 million users, ~2.2 million items, and ~30 million 

ratings
• Tested ALS on stacked copies on a 16-node m3.2xlarge cluster with 

rank=10, iter=10:

32



Storage Comparison

33

1.2 1.3/1.4

userInBlock 941MB 277MB

userOutBlock 355MB 65MB

itemInBlock 1380MB 243MB

itemOutBlock 119MB 37MB



Spotify Dataset
• Spotify: 75+ million users and 30+ million songs
• Tested ALS on a subset with ~50 million users, ~5 

million songs, and ~50 billion ratings.
• thanks to Chris Johnson and Anders Arpteg

• 32 r3.8xlarge nodes (~$10/hr with spot instances)
• It took 1 hour to finish 10 iterations with rank 10.
• 10 mins to prepare in/out blocks
• 5 mins per iteration

34



ALS Implementation in MLlib

• Save communication by duplicating data
• Efficient storage format
• Watch out for GC
• Native LAPACK calls

35



Future Directions
• Leverage on Project Tungsten to save some 
specialized code that avoids GC.
• Solve issues with really popular items.
• Explore other recommendation algorithms, e.g., 
factorization machine.

36



Thank you.
• Spark: http://spark.apache.org
• Databricks: http://databricks.com


