
Recipes for Running Spark
Streaming Apps in Production

Tathagata “TD” Das

Spark Summit 2015

 @tathadas

Spark Streaming
Scalable, fault-tolerant stream processing system

File systems

Databases

Dashboards

Flume
Kinesis

HDFS/S3

Kafka

Twitter

High-level API

joins, windows, …
o!en 5x less code

Fault-tolerant

Exactly-once semantics,
even for stateful ops

Integration

Integrates with MLlib, SQL,
DataFrames, GraphX

Spark Streaming

Receivers receive data streams and chop them up into batches

Spark processes the batches and pushes out the results

3

data streams

re
ce

iv
er

s

batches results

Word Count with Kafka

val	
 context	
 =	
 new	
 StreamingContext(conf,	
 Seconds(1))	

val	
 lines	
 =	
 KafkaUtils.createStream(context,	
 ...)	

4

entry point of streaming
functionality

create DStream
from Kafka data

Word Count with Kafka

val	
 context	
 =	
 new	
 StreamingContext(conf,	
 Seconds(1))	

val	
 lines	
 =	
 KafkaUtils.createStream(context,	
 ...)	

val	
 words	
 =	
 lines.flatMap(_.split("	
 "))	

5

split lines into words

Word Count with Kafka

val	
 context	
 =	
 new	
 StreamingContext(conf,	
 Seconds(1))	

val	
 lines	
 =	
 KafkaUtils.createStream(context,	
 ...)	

val	
 words	
 =	
 lines.flatMap(_.split("	
 "))	

val	
 wordCounts	
 =	
 words.map(x	
 =>	
 (x,	
 1))	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .reduceByKey(_	
 +	
 _)	

wordCounts.print()	

context.start()	

6

print some counts on screen

count the words

start receiving and
transforming the data

Word Count with Kafka
object	
 WordCount	
 {	

	
 	
 def	
 main(args:	
 Array[String])	
 {	

	
 	
 	
 	
 val	
 context	
 =	
 new	
 StreamingContext(new	
 SparkConf(),	
 Seconds(1))	

	
 	
 	
 	
 val	
 lines	
 =	
 KafkaUtils.createStream(context,	
 ...)	

	
 	
 	
 	
 val	
 words	
 =	
 lines.flatMap(_.split("	
 "))	

	
 	
 	
 	
 val	
 wordCounts	
 =	
 words.map(x	
 =>	
 (x,1)).reduceByKey(_	
 +	
 _)	

	
 	
 	
 	
 wordCounts.print()	

	
 	
 	
 	
 context.start()	

	
 	
 	
 	
 context.awaitTermination()	

	
 	
 }	

}	

7

Got it working on a small
Spark cluster on little data

What’s next??

How to get it production-ready?

Fault-tolerance and Semantics

Performance and Stability

Monitoring and Upgrading

8

9

Deeper View of

Spark Streaming

Any Spark Application

10

Driver

User code runs in
the driver process

YARN / Mesos /
Spark Standalone

cluster

Tasks sent to
executors for
processing data

Executor

Executor

Executor

Driver launches
executors in

cluster

Spark Streaming Application: Receive data

11

Executor

Executor

Driver runs
receivers as long

running tasks Receiver Data stream
Driver

	

object	
 WordCount	
 {	

	
 	
 def	
 main(args:	
 Array[String])	
 {	

	
 	
 	
 	
 val	
 context	
 =	
 new	
 StreamingContext(...)	

	
 	
 	
 	
 val	
 lines	
 =	
 KafkaUtils.createStream(...)	

	
 	
 	
 	
 val	
 words	
 =	
 lines.flatMap(_.split("	
 "))	

	
 	
 	
 	
 val	
 wordCounts	
 =	
 words.map(x	
 =>	
 (x,1))	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .reduceByKey(_	
 +	
 _)	

	
 	
 	
 	
 wordCounts.print()	

	
 	
 	
 	
 context.start()	

	
 	
 	
 	
 context.awaitTermination()	

	
 	
 }	

}	

Receiver divides
stream into blocks and

keeps in memory

Data Blocks	

Blocks also
replicated to

another executor Data Blocks	

Spark Streaming Application: Process data

12

Executor

Executor

Receiver

Data Blocks	

Data Blocks	

Data
store

Every batch
interval, driver

launches tasks to
process the blocks

Driver
	

object	
 WordCount	
 {	

	
 	
 def	
 main(args:	
 Array[String])	
 {	

	
 	
 	
 	
 val	
 context	
 =	
 new	
 StreamingContext(...)	

	
 	
 	
 	
 val	
 lines	
 =	
 KafkaUtils.createStream(...)	

	
 	
 	
 	
 val	
 words	
 =	
 lines.flatMap(_.split("	
 "))	

	
 	
 	
 	
 val	
 wordCounts	
 =	
 words.map(x	
 =>	
 (x,1))	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .reduceByKey(_	
 +	
 _)	

	
 	
 	
 	
 wordCounts.print()	

	
 	
 	
 	
 context.start()	

	
 	
 	
 	
 context.awaitTermination()	

	
 	
 }	

}	

Fault-tolerance and Semantics

Performance and Stability

Monitoring and upgrading

13

Failures? Why care?

Many streaming applications need zero data loss
guarantees despite any kind of failures in the system

At least once guarantee – every record processed at least once
Exactly once guarantee – every record processed exactly once

Different kinds of failures – executor and driver

Some failures and guarantee requirements need
additional configurations and setups

14

Executor

Receiver

Data Blocks	

What if an executor fails?

Tasks and receivers restarted by Spark
automatically, no config needed

15

Executor

Failed Ex.

Receiver

Blocks	

Blocks	

Driver

If executor fails,
receiver is lost and
all blocks are lost

Receiver

Receiver
restarted

Tasks restarted
on block replicas

What if the driver fails?

16

Executor

Blocks	
 How do we
recover?

When the driver
fails, all the

executors fail

All computation,
all received

blocks are lost

Executor

Receiver

Blocks	

Failed Ex.

Receiver

Blocks	

Failed
Executor

Blocks	

Driver Failed
Driver

Recovering Driver with Checkpointing

DStream Checkpointing:
Periodically save the DAG of DStreams to
fault-tolerant storage

17

Executor

Blocks	

Executor

Receiver

Blocks	

Active
Driver

Checkpoint info
to HDFS / S3

Recovering Driver w/ DStream Checkpointing

18

Failed driver can be restarted
from checkpoint information

Failed
Driver

Restarted
Driver

New
Executor

New
Executor

Receiver

New executors
launched and

receivers
restarted

DStream Checkpointing:
Periodically save the DAG of DStreams to
fault-tolerant storage

Recovering Driver w/ DStream Checkpointing

1.  Configure automatic driver restart
All cluster managers support this

2.  Set a checkpoint directory in a HDFS-compatible file
system

	
 streamingContext.checkpoint(hdfsDirectory)	

3.  Slightly restructure of the code to use checkpoints for
recovery

!

19

Configurating Automatic Driver Restart

Spark Standalone – Use spark-submit with “cluster” mode and “--supervise”
 See http://spark.apache.org/docs/latest/spark-standalone.html

YARN – Use spark-submit in “cluster” mode

 See YARN config “yarn.resourcemanager.am.max-attempts”

Mesos – Marathon can restart Mesos applications

20

Restructuring code for Checkpointing

21

val	
 context	
 =	
 new	
 StreamingContext(...)	

val	
 lines	
 =	
 KafkaUtils.createStream(...)	

val	
 words	
 =	
 lines.flatMap(...)	

...	

context.start()	

Create
+

Setup

Start

def	
 creatingFunc():	
 StreamingContext	
 =	
 {	
 	

	
 	
 	
 val	
 context	
 =	
 new	
 StreamingContext(...)	
 	
 	

	
 	
 	
 val	
 lines	
 =	
 KafkaUtils.createStream(...)	

	
 	
 	
 val	
 words	
 =	
 lines.flatMap(...)	

	
 	
 	
 ...	

	
 	
 	
 context.checkpoint(hdfsDir)	

}	

Put all setup code into a function that returns a new StreamingContext

Get context setup from HDFS dir OR create a new one with the function

val	
 context	
 =	

StreamingContext.getOrCreate(

	
 	
 hdfsDir,	
 creatingFunc)	

context.start()	

Restructuring code for Checkpointing

StreamingContext.getOrCreate():

If HDFS directory has checkpoint info
 recover context from info

else
 call creatingFunc() to create
 and setup a new context

Restarted process can figure out whether
to recover using checkpoint info or not

22

def	
 creatingFunc():	
 StreamingContext	
 =	
 {	
 	

	
 	
 	
 val	
 context	
 =	
 new	
 StreamingContext(...)	
 	
 	

	
 	
 	
 val	
 lines	
 =	
 KafkaUtils.createStream(...)	

	
 	
 	
 val	
 words	
 =	
 lines.flatMap(...)	

	
 	
 	
 ...	

	
 	
 	
 context.checkpoint(hdfsDir)	

}	

val	
 context	
 =	

StreamingContext.getOrCreate(

	
 	
 hdfsDir,	
 creatingFunc)	

context.start()	

Received blocks lost on Restart!

23

Failed
Driver

Restarted
Driver

New
Executor

New Ex.

Receiver

No Blocks	

In-memory blocks of
buffered data are
lost on driver restart

Recovering data with Write Ahead Logs

Write Ahead Log (WAL): Synchronously save
received data to fault-tolerant storage

24

Executor

Blocks saved
to HDFS

Executor

Receiver

Blocks	

Active
Driver

Data stream

Recovering data with Write Ahead Logs

25

Failed
Driver

Restarted
Driver

New
Executor

New Ex.

Receiver

Blocks	

Blocks recovered
from Write Ahead Log

Write Ahead Log (WAL): Synchronously save
received data to fault-tolerant storage

Recovering data with Write Ahead Logs

1.  Enable checkpointing, logs written in checkpoint directory

2.  Enabled WAL in SparkConf configuration
	
 	
 	
 	
 	
 sparkConf.set("spark.streaming.receiver.writeAheadLog.enable",	
 "true")	

3.  Receiver should also be reliable
Acknowledge source only a!er data saved to WAL
Unacked data will be replayed from source by restarted receiver

4.  Disable in-memory replication (already replicated by HDFS)
	
 Use StorageLevel.MEMORY_AND_DISK_SER for input DStreams

26

RDD Checkpointing

Stateful stream processing can lead to long RDD lineages

Long lineage = bad for fault-tolerance, too much recomputation

RDD checkpointing saves RDD data to the fault-tolerant
storage to limit lineage and recomputation

More: http://spark.apache.org/docs/latest/streaming-programming-guide.html#checkpointing

27

Fault-tolerance Semantics

28

Zero data loss = every stage processes each
event at least once despite any failure

Sources

Transforming

Sinks

Outputting

Receiving

Fault-tolerance Semantics

29

Sources

Transforming

Sinks

Outputting

Receiving

Exactly once, as long as received data is not lost

At least once, w/ Checkpointing + WAL + Reliable receivers Receiving

Outputting
Exactly once, if outputs are idempotent or transactional

End-to-end semantics:
At-least once

Fault-tolerance Semantics

30

Exactly once receiving with new Kafka Direct approach
Treats Kafka like a replicated log, reads it like a file
Does not use receivers
No need to create multiple DStreams and union them
No need to enable Write Ahead Logs
	

	
 val	
 directKafkaStream	
 =	
 KafkaUtils.createDirectStream(...)	

	

https://databricks.com/blog/2015/03/30/improvements-to-kafka-integration-of-spark-streaming.html
http://spark.apache.org/docs/latest/streaming-kafka-integration.html

Sources

Transforming

Sinks

Outputting

Receiving

Fault-tolerance Semantics

31

Exactly once receiving with new Kafka Direct approach

Sources

Transforming

Sinks

Outputting

Receiving

Exactly once, as long as received data is not lost

Exactly once, if outputs are idempotent or transactional

End-to-end semantics:
Exactly once!

32

http://techblog.netflix.com/2015/03/can-spark-streaming-survive-chaos-monkey.html

Fault-tolerance and Semantics

Performance and Stability

Monitoring and Upgrading

33

Achieving High Throughput

34

High throughput achieved by sufficient
parallelism at all stages of the pipeline

Sources

Transforming

Sinks

Outputting

Receiving

Scaling the Receivers

35

Sources

Transforming

Sinks

Outputting

Receiving

Sources must be configured with parallel data streams
#partitions in Kafka topics, #shards in Kinesis streams, …

Streaming app should have multiple receivers that
receive the data streams in parallel

Multiple input DStreams, each running a receiver
Can be unioned together to create one DStream

	
 val	
 kafkaStream1	
 =	
 KafkaUtils.createStream(...)	

	
 val	
 kafkaStream2	
 =	
 KafkaUtils.createStream(...)	

	
 val	
 unionedStream	
 =	
 kafkaStream1.union(kafkaStream2)	

	

Scaling the Receivers

36

Sources

Transforming

Sinks

Outputting

Receiving

Sufficient number of executors to run all the receivers
Absolute necessity: #cores > #receivers
Good rule of thumb: #executors > #receivers, so that no more
than 1 receiver per executor, and network is not shared
between receivers

Kafka Direct approach does not use receivers
Automatically parallelizes data reading across executors
Parallelism = # Kafka partitions

Stability in Processing

37

Sources

Transforming

Sinks

Outputting

Receiving For stability, must process data as fast as it is received

Must ensure avg batch processing times < batch interval
Previous batch is done by the time next batch is received

Otherwise, new batches keeps queueing up waiting for
previous batches to finish, scheduling delay goes up

Reducing Batch Processing Times

38

Sources

Transforming

Sinks

Outputting

Receiving
More receivers!

Executor running receivers do lot of the processing

Repartition the received data to explicitly distribute load
unionedStream.repartition(40)	

Set #partitions in shuffles, make sure its large enough
transformedStream.reduceByKey(reduceFunc,	
 40)	

Get more executors and cores!

Reducing Batch Processing Times

39

Sources

Transforming

Sinks

Outputting

Receiving
Use Kryo serialization to serialization costs

Register classes for best performance
See configurations spark.kryo.*
http://spark.apache.org/docs/latest/configuration.html#compression-and-serialization

Larger batch durations improve stability

More data aggregated together, amortized cost of shuffle

Limit ingestion rate to handle data surges

See configurations spark.streaming.*maxRate*
http://spark.apache.org/docs/latest/configuration.html#spark-streaming

Speeding up Output Operations

40

Sources

Transforming

Sinks

Outputting

Receiving
Write to data stores efficiently

dataRDD.foreach	
 {	
 event	
 =>	

	
 	
 //	
 open	
 connection	

	
 	
 //	
 insert	
 single	
 event	

	
 	
 //	
 close	
 connection	

}	

foreach: inefficient
dataRDD.foreachPartition	
 {	
 partition	
 =>	

	
 	
 //	
 open	
 connection	

	
 	
 //	
 insert	
 all	
 events	
 in	
 partition	

	
 	
 //	
 close	
 connection	

}	

foreachPartition: efficient

dataRDD.foreachPartition	
 {	
 partition	
 =>	

	
 	
 //	
 initialize	
 pool	
 or	
 get	
 open	
 connection	
 from	
 pool	
 in	
 executor	

	
 	
 //	
 insert	
 all	
 events	
 in	
 partition	

	
 	
 //	
 return	
 connection	
 to	
 pool	

}	

foreachPartition + connection pool: more efficient

Fault-tolerance and Semantics

Performance and Stability

Monitoring and Upgrading

41

Streaming in Spark Web UI
Stats over last 1000 batches

New in Spark 1.4

42

For stability
Scheduling delay should be approx 0
Processing Time approx < batch interval

Streaming in Spark Web UI
Details of individual batches

43

Details of Spark jobs run in a batch

Operational Monitoring

Streaming app stats published through Codahale metrics
Ganglia sink, Graphite sink, custom Codahale metrics sinks
Can see long term trends, across hours and days

Configure the metrics using $SPARK_HOME/conf/metrics.properties	

Need to compile Spark with Ganglia LGPL profile for Ganglia support
(see http://spark.apache.org/docs/latest/monitoring.html#metrics)

44

Programmatic Monitoring

StreamingListener – Developer interface to get internal events
onBatchSubmitted, onBatchStarted, onBatchCompleted,
onReceiverStarted, onReceiverStopped, onReceiverError

Take a look at StreamingJobProgressListener (private class) for
inspiration

45

Upgrading Apps

1.  Shutdown your current streaming app gracefully
Will process all data before shutting down cleanly
streamingContext.stop(stopGracefully	
 =	
 true)	

2.  Update app code and start it again

Cannot upgrade from previous checkpoints if code
changes or Spark version changes

	

46

Much to say I have ... but time I have not

Memory and GC tuning
Using SQLContext
DStream.transform operation

…
Refer to online guide
http://spark.apache.org/docs/latest/streaming-programming-guide.html

47

Thank you
May the stream be with you

