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Spark Streaming 
Scalable, fault-tolerant stream processing system 

 

File systems 

Databases 

Dashboards 

Flume 
Kinesis 

HDFS/S3 

Kafka 

Twitter 

High-level API 
  

joins, windows, … 
o!en 5x less code 

Fault-tolerant 
 

Exactly-once semantics, 
even for stateful ops 

Integration 
 

Integrates with MLlib, SQL, 
DataFrames, GraphX 



Spark Streaming 

Receivers receive data streams and chop them up into batches 
 

Spark processes the batches and pushes out the results 
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data streams 

re
ce

iv
er

s 

batches results 



Word Count with Kafka 

val	
  context	
  =	
  new	
  StreamingContext(conf,	
  Seconds(1))	
  

val	
  lines	
  =	
  KafkaUtils.createStream(context,	
  ...)	
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entry point of streaming 
functionality 

create DStream  
from Kafka data 



Word Count with Kafka 

val	
  context	
  =	
  new	
  StreamingContext(conf,	
  Seconds(1))	
  

val	
  lines	
  =	
  KafkaUtils.createStream(context,	
  ...)	
  

val	
  words	
  =	
  lines.flatMap(_.split("	
  "))	
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split lines into words 



Word Count with Kafka 

val	
  context	
  =	
  new	
  StreamingContext(conf,	
  Seconds(1))	
  

val	
  lines	
  =	
  KafkaUtils.createStream(context,	
  ...)	
  

val	
  words	
  =	
  lines.flatMap(_.split("	
  "))	
  

val	
  wordCounts	
  =	
  words.map(x	
  =>	
  (x,	
  1))	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .reduceByKey(_	
  +	
  _)	
  

wordCounts.print()	
  

context.start()	
  
6 

print some counts on screen 

count the words 

start receiving and 
transforming the data 



Word Count with Kafka 
object	
  WordCount	
  {	
  
	
  	
  def	
  main(args:	
  Array[String])	
  {	
  
	
  	
  	
  	
  val	
  context	
  =	
  new	
  StreamingContext(new	
  SparkConf(),	
  Seconds(1))	
  
	
  	
  	
  	
  val	
  lines	
  =	
  KafkaUtils.createStream(context,	
  ...)	
  
	
  	
  	
  	
  val	
  words	
  =	
  lines.flatMap(_.split("	
  "))	
  
	
  	
  	
  	
  val	
  wordCounts	
  =	
  words.map(x	
  =>	
  (x,1)).reduceByKey(_	
  +	
  _)	
  
	
  	
  	
  	
  wordCounts.print()	
  
	
  	
  	
  	
  context.start()	
  
	
  	
  	
  	
  context.awaitTermination()	
  
	
  	
  }	
  
}	
  

7 

Got it working on a small  
Spark cluster on little data 

What’s next?? 



How to get it production-ready? 
 

Fault-tolerance and Semantics 
 

Performance and Stability 
 

Monitoring and Upgrading 
 

8 
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Deeper View of  

Spark Streaming 



Any Spark Application 
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Driver 

User code runs in 
the driver process 

YARN / Mesos / 
Spark Standalone 

cluster 

Tasks sent to 
executors for 
processing data 

Executor 

Executor 

Executor 

Driver launches 
executors in 

cluster 



Spark Streaming Application: Receive data 
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Executor 

Executor 

Driver runs 
receivers as long 

running tasks Receiver Data stream 
Driver 

	
  
object	
  WordCount	
  {	
  
	
  	
  def	
  main(args:	
  Array[String])	
  {	
  
	
  	
  	
  	
  val	
  context	
  =	
  new	
  StreamingContext(...)	
  
	
  	
  	
  	
  val	
  lines	
  =	
  KafkaUtils.createStream(...)	
  
	
  	
  	
  	
  val	
  words	
  =	
  lines.flatMap(_.split("	
  "))	
  
	
  	
  	
  	
  val	
  wordCounts	
  =	
  words.map(x	
  =>	
  (x,1))	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .reduceByKey(_	
  +	
  _)	
  
	
  	
  	
  	
  wordCounts.print()	
  
	
  	
  	
  	
  context.start()	
  
	
  	
  	
  	
  context.awaitTermination()	
  
	
  	
  }	
  
}	
  

Receiver divides 
stream into blocks and 

keeps in memory 

Data Blocks	
  

Blocks also 
replicated to 

another executor Data Blocks	
  



Spark Streaming Application: Process data 
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Executor 

Executor 

Receiver 

Data Blocks	
  

Data Blocks	
  

Data 
store 

Every batch 
interval, driver 

launches tasks to 
process the blocks 

Driver 
	
  
object	
  WordCount	
  {	
  
	
  	
  def	
  main(args:	
  Array[String])	
  {	
  
	
  	
  	
  	
  val	
  context	
  =	
  new	
  StreamingContext(...)	
  
	
  	
  	
  	
  val	
  lines	
  =	
  KafkaUtils.createStream(...)	
  
	
  	
  	
  	
  val	
  words	
  =	
  lines.flatMap(_.split("	
  "))	
  
	
  	
  	
  	
  val	
  wordCounts	
  =	
  words.map(x	
  =>	
  (x,1))	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .reduceByKey(_	
  +	
  _)	
  
	
  	
  	
  	
  wordCounts.print()	
  
	
  	
  	
  	
  context.start()	
  
	
  	
  	
  	
  context.awaitTermination()	
  
	
  	
  }	
  
}	
  



Fault-tolerance and Semantics 
 

Performance and Stability 
 

Monitoring and upgrading 
 

13 



Failures? Why care? 

Many streaming applications need zero data loss 
guarantees despite any kind of failures in the system 

At least once guarantee – every record processed at least once 
Exactly once guarantee – every record processed exactly once 
 

Different kinds of failures – executor and driver 
 
Some failures and guarantee requirements need 
additional configurations and setups 

14 



Executor 

Receiver 

Data Blocks	
  

What if an executor fails? 

Tasks and receivers restarted by Spark 
automatically, no config needed 
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Executor 

Failed Ex. 

Receiver 

Blocks	
  

Blocks	
  

Driver 

If executor fails, 
receiver is lost and 
all blocks are lost 

Receiver 

Receiver  
restarted 

Tasks restarted 
on block replicas 



What if the driver fails? 
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Executor 

Blocks	
  How do we 
recover? 

When the driver 
fails, all the 

executors fail 
 

All computation, 
all received 

blocks are lost 

Executor 

Receiver 

Blocks	
  

Failed Ex. 

Receiver 

Blocks	
  

Failed 
Executor 

Blocks	
  

Driver Failed 
Driver 



Recovering Driver with Checkpointing 

DStream Checkpointing:  
Periodically save the DAG of DStreams to 
fault-tolerant storage  

17 

Executor 

Blocks	
  

Executor 

Receiver 

Blocks	
  

Active 
Driver 

Checkpoint info 
to HDFS / S3 



Recovering Driver w/ DStream Checkpointing 
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Failed driver can be restarted 
from checkpoint information 

Failed 
Driver 

Restarted 
Driver 

New 
Executor 

New 
Executor 

Receiver 

New executors 
launched and 

receivers 
restarted 

DStream Checkpointing:  
Periodically save the DAG of DStreams to 
fault-tolerant storage  



Recovering Driver w/ DStream Checkpointing 

1.  Configure automatic driver restart 
All cluster managers support this 

2.  Set a checkpoint directory in a HDFS-compatible file 
system 

	
  streamingContext.checkpoint(hdfsDirectory)	
  

3.  Slightly restructure of the code to use checkpoints for 
recovery 
 

!
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Configurating Automatic Driver Restart 

Spark Standalone – Use spark-submit with “cluster” mode and “--supervise” 
  See http://spark.apache.org/docs/latest/spark-standalone.html 

 
YARN – Use spark-submit in “cluster” mode  

 See YARN config “yarn.resourcemanager.am.max-attempts” 

 
Mesos – Marathon can restart Mesos applications 

20 



Restructuring code for Checkpointing 

21 

val	
  context	
  =	
  new	
  StreamingContext(...)	
  
val	
  lines	
  =	
  KafkaUtils.createStream(...)	
  
val	
  words	
  =	
  lines.flatMap(...)	
  
...	
  

context.start()	
  

Create 
+ 

Setup 

Start 

def	
  creatingFunc():	
  StreamingContext	
  =	
  {	
  	
  
	
  	
  	
  val	
  context	
  =	
  new	
  StreamingContext(...)	
  	
  	
  
	
  	
  	
  val	
  lines	
  =	
  KafkaUtils.createStream(...)	
  
	
  	
  	
  val	
  words	
  =	
  lines.flatMap(...)	
  
	
  	
  	
  ...	
  
	
  	
  	
  context.checkpoint(hdfsDir)	
  
}	
  

Put all setup code into a function that returns a new StreamingContext 

Get context setup from HDFS dir OR create a new one with the function 

val	
  context	
  =	
  
StreamingContext.getOrCreate(	
  
	
  	
  hdfsDir,	
  creatingFunc)	
  
context.start()	
  



Restructuring code for Checkpointing 

StreamingContext.getOrCreate(): 
 

If HDFS directory has checkpoint info  
 recover context from info 

else 
 call creatingFunc() to create  
 and setup a new context 

 
Restarted process can figure out whether 
to recover using checkpoint info or not 
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def	
  creatingFunc():	
  StreamingContext	
  =	
  {	
  	
  
	
  	
  	
  val	
  context	
  =	
  new	
  StreamingContext(...)	
  	
  	
  
	
  	
  	
  val	
  lines	
  =	
  KafkaUtils.createStream(...)	
  
	
  	
  	
  val	
  words	
  =	
  lines.flatMap(...)	
  
	
  	
  	
  ...	
  
	
  	
  	
  context.checkpoint(hdfsDir)	
  
}	
  

val	
  context	
  =	
  
StreamingContext.getOrCreate(	
  
	
  	
  hdfsDir,	
  creatingFunc)	
  
context.start()	
  



Received blocks lost on Restart! 
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Failed 
Driver 

Restarted 
Driver 

New 
Executor 

New Ex. 

Receiver 

No Blocks	
  
In-memory blocks of 
buffered data are 
lost on driver restart 



Recovering data with Write Ahead Logs 

Write Ahead Log (WAL): Synchronously save 
received data to fault-tolerant storage 
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Executor 

Blocks saved 
to HDFS 

Executor 

Receiver 

Blocks	
  

Active 
Driver 

Data stream 



Recovering data with Write Ahead Logs 
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Failed 
Driver 

Restarted 
Driver 

New 
Executor 

New Ex. 

Receiver 

Blocks	
  

Blocks recovered 
from Write Ahead Log 

Write Ahead Log (WAL): Synchronously save 
received data to fault-tolerant storage 



Recovering data with Write Ahead Logs 

1.  Enable checkpointing, logs written in checkpoint directory 
 

2.  Enabled WAL in SparkConf configuration 
	
  	
  	
  	
  	
  sparkConf.set("spark.streaming.receiver.writeAheadLog.enable",	
  "true")	
  

 

3.  Receiver should also be reliable 
Acknowledge source only a!er data saved to WAL 
Unacked data will be replayed from source by restarted receiver 
 

4.  Disable in-memory replication (already replicated by HDFS) 
	
  Use StorageLevel.MEMORY_AND_DISK_SER for input DStreams 
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RDD Checkpointing 

Stateful stream processing can lead to long RDD lineages 
 
Long lineage = bad for fault-tolerance, too much recomputation 
 
RDD checkpointing saves RDD data to the fault-tolerant  
storage to limit lineage and recomputation 
 
More: http://spark.apache.org/docs/latest/streaming-programming-guide.html#checkpointing 

 
27 



Fault-tolerance Semantics 

28 

Zero data loss = every stage processes each 
event at least once despite any failure 
 
 

Sources 

Transforming 

Sinks 

Outputting 

Receiving 



Fault-tolerance Semantics 
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Sources 

Transforming 

Sinks 

Outputting 

Receiving 

Exactly once, as long as received data is not lost 

At least once, w/ Checkpointing + WAL + Reliable receivers Receiving 

Outputting 
Exactly once, if outputs are idempotent or transactional 

End-to-end semantics: 
At-least once 



Fault-tolerance Semantics 

30 

Exactly once receiving with new Kafka Direct approach 
Treats Kafka like a replicated log, reads it like a file 
Does not use receivers 
No need to create multiple DStreams and union them 
No need to enable Write Ahead Logs 
	
  

	
  val	
  directKafkaStream	
  =	
  KafkaUtils.createDirectStream(...)	
  
	
  
https://databricks.com/blog/2015/03/30/improvements-to-kafka-integration-of-spark-streaming.html 
http://spark.apache.org/docs/latest/streaming-kafka-integration.html 

Sources 

Transforming 

Sinks 

Outputting 

Receiving 



Fault-tolerance Semantics 

31 

Exactly once receiving with new Kafka Direct approach 

Sources 

Transforming 

Sinks 

Outputting 

Receiving 

Exactly once, as long as received data is not lost 

Exactly once, if outputs are idempotent or transactional 

End-to-end semantics: 
Exactly once! 
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http://techblog.netflix.com/2015/03/can-spark-streaming-survive-chaos-monkey.html 



Fault-tolerance and Semantics 
 

Performance and Stability 
 

Monitoring and Upgrading 
 

33 



Achieving High Throughput 

34 

High throughput achieved by sufficient 
parallelism at all stages of the pipeline 

Sources 

Transforming 

Sinks 

Outputting 

Receiving 



Scaling the Receivers 
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Sources 

Transforming 

Sinks 

Outputting 

Receiving 

Sources must be configured with parallel data streams 
#partitions in Kafka topics, #shards in Kinesis streams, … 
 

Streaming app should have multiple receivers that 
receive the data streams in parallel 

Multiple input DStreams, each running a receiver 
Can be unioned together to create one DStream 
 

	
  val	
  kafkaStream1	
  =	
  KafkaUtils.createStream(...)	
  
	
  val	
  kafkaStream2	
  =	
  KafkaUtils.createStream(...)	
  
	
  val	
  unionedStream	
  =	
  kafkaStream1.union(kafkaStream2)	
  

	
  



Scaling the Receivers 

36 

Sources 

Transforming 

Sinks 

Outputting 

Receiving 

Sufficient number of executors to run all the receivers 
Absolute necessity: #cores > #receivers 
Good rule of thumb: #executors > #receivers, so that no more 
than 1 receiver per executor, and network is not shared 
between receivers 
 

Kafka Direct approach does not use receivers 
Automatically parallelizes data reading across executors 
Parallelism = # Kafka partitions 
 

 
 
 



Stability in Processing 

37 

Sources 

Transforming 

Sinks 

Outputting 

Receiving For stability, must process data as fast as it is received 
 

Must ensure avg batch processing times < batch interval 
Previous batch is done by the time next batch is received 
 

Otherwise, new batches keeps queueing up waiting for 
previous batches to finish, scheduling delay goes up 

 
 



Reducing Batch Processing Times 
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Sources 

Transforming 

Sinks 

Outputting 

Receiving 
More receivers! 

Executor running receivers do lot of the processing 
 

Repartition the received data to explicitly distribute load 
unionedStream.repartition(40)	
  
 

Set #partitions in shuffles, make sure its large enough 
transformedStream.reduceByKey(reduceFunc,	
  40)	
  

 
Get more executors and cores! 



Reducing Batch Processing Times 
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Sources 

Transforming 

Sinks 

Outputting 

Receiving 
Use Kryo serialization to serialization costs 

Register classes for best performance 
See configurations spark.kryo.* 
http://spark.apache.org/docs/latest/configuration.html#compression-and-serialization 

 
Larger batch durations improve stability 

More data aggregated together, amortized cost of shuffle 
 
Limit ingestion rate to handle data surges 

See configurations spark.streaming.*maxRate* 
http://spark.apache.org/docs/latest/configuration.html#spark-streaming 
 



Speeding up Output Operations 

40 

Sources 

Transforming 

Sinks 

Outputting 

Receiving 
Write to data stores efficiently 
 
 
 
 
 
 

dataRDD.foreach	
  {	
  event	
  =>	
  
	
  	
  //	
  open	
  connection	
  
	
  	
  //	
  insert	
  single	
  event	
  
	
  	
  //	
  close	
  connection	
  
}	
  

foreach: inefficient 
dataRDD.foreachPartition	
  {	
  partition	
  =>	
  
	
  	
  //	
  open	
  connection	
  
	
  	
  //	
  insert	
  all	
  events	
  in	
  partition	
  
	
  	
  //	
  close	
  connection	
  
}	
  

foreachPartition: efficient 

dataRDD.foreachPartition	
  {	
  partition	
  =>	
  
	
  	
  //	
  initialize	
  pool	
  or	
  get	
  open	
  connection	
  from	
  pool	
  in	
  executor	
  
	
  	
  //	
  insert	
  all	
  events	
  in	
  partition	
  
	
  	
  //	
  return	
  connection	
  to	
  pool	
  
}	
  

foreachPartition + connection pool: more efficient 



Fault-tolerance and Semantics 
 

Performance and Stability 
 

Monitoring and Upgrading 
 

41 



Streaming in Spark Web UI 
Stats over last 1000 batches 
 
New in Spark 1.4 

42 

For stability 
Scheduling delay should be approx 0 
Processing Time approx < batch interval 
 
 
 



Streaming in Spark Web UI 
Details of individual batches 

43 

Details of Spark jobs run in a batch 



Operational Monitoring 

Streaming app stats published through Codahale metrics  
Ganglia sink, Graphite sink, custom Codahale metrics sinks 
Can see long term trends, across hours and days 
 

Configure the metrics using $SPARK_HOME/conf/metrics.properties	
  
Need to compile Spark with Ganglia LGPL profile for Ganglia support 
(see http://spark.apache.org/docs/latest/monitoring.html#metrics) 
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Programmatic Monitoring 

StreamingListener – Developer interface to get internal events 
onBatchSubmitted, onBatchStarted, onBatchCompleted, 
onReceiverStarted, onReceiverStopped, onReceiverError 
 
 

Take a look at StreamingJobProgressListener (private class) for 
inspiration 
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Upgrading Apps 

1.  Shutdown your current streaming app gracefully 
Will process all data before shutting down cleanly 
streamingContext.stop(stopGracefully	
  =	
  true)	
  

2.  Update app code and start it again 
 
Cannot upgrade from previous checkpoints if code 
changes or Spark version changes 
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Much to say I have ... but time I have not 

Memory and GC tuning 
Using SQLContext 
DStream.transform operation 
 
… 
Refer to online guide 
http://spark.apache.org/docs/latest/streaming-programming-guide.html 
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Thank you 
May the stream be with you 


