Recipes for Running Spark
Streaming Apps in Production

Tathagata “TD” Das

- @tathadas

Spark Summit 2015 ;
databricks

Spark Streaming

Scalable, fault-tolerant stream processing system

High-level API Fault-tolerant Integration
joins, windows, ... Exactly-once semantics, Integrates with MLIib, SQL,
often 5x less code even for stateful ops DataFrames, GraphX

falke [File systems]

[)

[Flume]

[Kinesis][> Spr"’(\Z. [>[Databases]
| HDFS/S3 | Streamlng

[J

: [Dashboards]
Twitter

€databricks

Spark Streaming

Receivers receive data streams and chop them up into batches

Spark processes the batches and pushes out the results

data strea ms>

Spoﬁ(\ZStreaming

ok 00
results

]

receivers

batches

[

€databricks

Word Count with Kafka

e
val context = new StreamingContext(conf, Seconds(l))<

ntry point of streaming
functionality

val lines = KafkaUtils.createStream(context, ...) <

create DStream
from Kafka data

€databricks

Word Count with Kafka

val context = new StreamingContext(conf, Seconds(1))

val lines

KafkaUtils.createStream(context, ...)

val words

lines.flatMap(_.split(" ")) <isphthneskﬁowmwds

€databricks

Word Count with Kafka

val context = new StreamingContext(conf, Seconds(1))

val lines = KafkaUtils.createStream(context, ...)

val words = lines.flatMap(_.split(" "))

val wordCounts = words.map(x => (x, 1
p(() < count the words

.reduceByKey(_ +)

wordCounts.print() <ipﬁnt&mnecowﬂsonsoeen
context.start() <i: start receiving and
@ databricks transforming the data

Word Count with Kafka

object WordCount {
def main(args: Array[String]) {

¥

€databricks

}

val context = new StreamingContext(new SparkConf(), Seconds(1))
val lines = KafkaUtils.createStream(context, ...)

val words = lines.flatMap(_.split(" "))

val wordCounts = words.map(x => (x,1)).reduceByKey(_ +)
wordCounts.print()
context.start()
context.awaitTermination()

Gotitworking on a small
Spark cluster on little data

What’s next??

How to get it production-ready?

Fault-tolerance and Semantics
Performance and Stability

Monitoring and Upgrading

€databricks

Deeper View of
Spark Streaming

€databricks

Any Spark Application

Driver launches
executors in

Executor
User code runs in « cluster
the driver process

Executor

Driver

Tasks sent to
executors for

processing data

YARN / Mesos /
Spark Standalone

cluster
€databricks

Spark Streaming Application: Receive data

Driver runs (Executor
receivers as long
- ~ running tasks Receiver ::I Data stream
Driver Data Blocks
e O O O Receiver divides

stream into blocks and
keeps in memory

Executor
Blocks also
replicated to
another executor Data Blocks

O 008

€databricks

Spark Streaming Application: Process data

obje di t {
de (args: Array[String]) {
= new StreamingContext(...)
1 1 Kafkautil: reateStream(. ..
d lines.flatMap(_.split(" "))
unts = words.map(x => (x,1))
reduceByKey (_ +
wordCounts .print()
tttttttttttt Q)
context.awaitTermination O
}
}

€databricks

Every batch
interval, driver
launches tasks to
process the blocks

Executor

Receiver

Data Blocks

O 008

0 O O

Executor

Data Blocks

Data
store

€databricks

Fault-tolerance and Semantics

Failures? Why care?

Many streaming applications need zero data loss
guarantees despite any kind of failures in the system

At least once guarantee — every record processed at least once
Exactly once guarantee - every record processed exactly once

Different kinds of failures — executor and driver

Some failures and guarantee requirements need
additional configurations and setups

€databricks

What if an executor fails?

(.
Tasks and receivers restarted by Spark | Failed Ex.
automatically, no config needed Receiver

If executor fails,
receiveris lost and

|:|Bl|O:C|kS|:| all blocks are lost
_ 4
[Driver Receiver
restarted
Executor
Receiver
Tasks restarted Blocks
on block replicas =HEEEE
g % 9

€databricks

What if the driver fails?

4)
Failed Ex.
When the driver Receiver
fails, all the Blocks
executors fail
oo
Failed .
Driver All compu.tat|on,
all received ,
Failed
blocks are lost
Executor
How do we Blocks
recover? \D (][] y

€databricks

Recovering Driver with Checkpointing

DStream Checkpointing;

Executor
Periodically save the DAG of DStreams to oot
fault-tolerant storage
Blocks
) sy
- Active
_ Driver]
Executor
Checkpointinfo
to HDFS / S3 Blocks
\D 1 O)

€databricks

Recovering Driver w/ DStream Checkpointing

DStream Checkpointing: (" N

New
Periodically save the DAG of DStreams to | Executor

fault-tolerant storage

Receiver

New executors)
[Failed] [Restarted] launched and
Driver Driver receivers

{) restarted [New B

Executor

ok
— Failed driver can be restarted

from checkpoint information L)

€databricks

Recovering Driver w/ DStream Checkpointing

1. Configure automatic driver restart
All cluster managers support this

2. Setacheckpoint directory in a HDFS-compatible file
system

streamingContext.checkpoint(hdfsDirectory)

3. Slightly restructure of the code to use checkpoints for
recovery

€databricks 19

Configurating Automatic Driver Restart

Spark Standalone — Use spark-submit with “cluster” mode and “--supervise”
See http://spark.apache.org/docs/latest/spark-standalone.html

YARN = Use spark-submit in “cluster” mode

See YARN config “yarn.resourcemanager.am.max-attempts”

Mesos — Marathon can restart Mesos applications

€databricks

Restructuring code for Checkpointing

Create def creatingFunc(): StreamingContext = {
val context = new StreamingContext(...) val context = new StreamingContext(...)
+ val lines = KafkaUtils.createStream(...) val lines = KafkaUtils.createStream(...)
val words = lines.flatMap(...) val words = lines.flatMap(...)

Setup

context.checkpoint(hdfsDir)
}

Put all setup code into a function that returns a new StreamingContext

val context =

Start context.start() StreamingContext.getOrCreate(
hdfsDir, creatingFunc)
context.start()

Get context setup from HDFS dir OR create a new one with the function
gdatabricks

Restructuring code for Checkpointing

StreamlngCOntextgetOrCreate() def creatingFunc(): StreamingContext = {

val context = new StreamingContext(...)
val lines KafkaUtils.createStream(...)
val words lines.flatMap(...)

If HDFS directory has checkpoint info
. context.checkpoint(hdfsDir)
recover context from info }

else

call creatingFunc() to create
and setup a new context

val context =

Restarted process can figure out whether streamingcontext. getorcreate(

hdfsDir, creatingFunc)

to recover using checkpoint info or not context. start()

€databricks

Recelved blocks lost on Restart!

Failed
Driver

€databricks

Driver

] [Resta rte

)

New Ex.

Receiver

\C

NoBlocks

I
I
_____ I__y

-

New A
Executor

In-memory blocks of
buffered data are
lost on driver restart

Recovering data with Write Ahead Logs

Write Ahead Log (WAL): Synchronously save [

received data to fault-tolerant storage

Executor

Receiver

{

[Active] Blocks saved c"é

Driver to HDFS —

€databricks

Blocks

tZZZZ] Data stream

=)

Executor

Recovering data with Write Ahead Logs

Write Ahead Log (WAL): Synchronously save [

received data to fault-tolerant storage

] [Resta rted] .«‘:é

Failed
Driver Driver

€databricks

New Ex.

Receiver

Blocks

\D Q Dj

(")

New
Executor

Blocks recovered
from Write Ahead Log

Recovering data with Write Ahead Logs

4.

€databricks

Enable checkpointing, logs written in checkpoint directory

Enabled WAL in SparkConf configuration

sparkConf.set("spark.streaming.receiver.writeAheadlLog.enable", "true")

Receiver should also be reliable
Acknowledge source only after data saved to WAL
Unacked data will be replayed from source by restarted receiver

Disable in-memory replication (already replicated by HDFS)

Use StoragelLevel .MEMORY_AND_DISK_SER forinput DStreams

RDD Checkpointing

Stateful stream processing can lead to long RDD lineages
Long lineage = bad for fault-tolerance, too much recomputation

RDD checkpointing saves RDD data to the fault-tolerant
storage to limit lineage and recomputation

More: http://spark.apache.org /docs/latest/streaming-programming-guide.html#checkpointing

€databricks 27

Fault-tolerance Semantics

[Sources }

Receiving

\/
e Zero data loss = every stage processes each

Transforming event at least once despite any failure

1

Outputting

s

€databricks

Fault-tolerance Semantics

[Sources }

N

Transforming

1

Receiving At least once, w/ Checkpointing + WAL + Reliable receivers

Fxactly once, as long as received data is not lost

Exactly once, if outputs are idempotent or transactional

Outputting
o« End-to-end semantics:
[Sinks } At-least once

|

€databricks

Fault-tolerance Semantics

[Sources }

Receiving Fxactly once receiving with new Kafka Direct approach
\/ Treats Kafka like a replicated log, reads it like a file

. Does not use receivers

Transforming No need to create multiple DStreams and union them

\/ No need to enable Write Ahead Logs

Outputting

val directKafkaStream = KafkaUtils.createDirectStream(...)

https://databricks.com/blog/2015/03/30/improvements-to-kafka-integration-of-spark-streaming.html
[http://spark.apache.org/docs/latest/streaming-kafka-integration.html
Sinks

€databricks

Fault-tolerance Semantics

[Sources }

N

Transforming

1

Receiving Fxactly once receiving with new Kafka Direct approach

Fxactly once, as long as received data is not lost

Exactly once, if outputs are idempotent or transactional

Outputting
P Fnd-to-end semantics:
[Sinks } Exactly oncel!

|

€databricks

NETFLIX

Wednesday, March 11, 2015

Can Spark Streaming survive Chaos Monkey?

by Bharat Venkat, Prasanna Padmanabhan, Antony Arokiasamy, Rs

Netflix is a data-driven organization that places emphasis on the qu
processed. In our previous blog post, we highlighted our use ci
processing in the context of online recommendations and date
Streaming as our choice of stream processor, we set out to evalual
story for Spark Streaming in the AWS cloud environment. A Chaos
which randomly terminated instances or processes, was employed t

Spark on Amazon Web Services (AWS) is relevant to us as N
primarily out of the AWS cloud. Stream processing systems need t
be tolerant to failures. Instances on AWS are ephemeral, which mal
Spark’s resiliency.

3.4k

3.2k

3.0k

18k

16k

14k

1.2k

10k

Receiver fa

Data los

default unreliable

receiver /\(\.\r/\"’\
W/V®/\/

The Netflix Tech Blog

Links

Netflix US & Canada Blog

jue t

20:00

http://techblog.netflix.com/2015/03/can-spark-streaming-survive-chaos-monkey.html

€databricks

€databricks

Performance and Stability

Achieving High Throughput

|

Sources

|

Receiving

N

Transforming

1

High throughput achieved by sufficient
parallelism at all stages of the pipeline

Outputting

|

-~
Sinks

|

€databricks

Scaling the Receivers

Sources } : :
Sources must be configured with parallel data streams
#partitions in Kafka topics, #shards in Kinesis streams, ...

Receiving

\/

| Streamingapp should have multiple receivers that
Transforming receive the data streams in parallel

\/ Multiple input DStreams, each running a receiver

Can be unioned together to create one DStream

Outputting
val kafkaStreaml = KafkaUtils.createStream(...)
val kafkaStream2 = KafkaUtils.createStream(...)
[Sinks } val unionedStream = kafkaStreaml.union(kafkaStream2)

€databricks

Scaling the Receivers

Sources } . :
Sufficient number of executors to run all the receivers
Receiving Absolute necessity: #cores > #receivers
\/ Good rule of thumb: #executors > #receivers, so that no more
\/ than 1 receiver per executor, and network is not shared

between receivers
Transforming

v Kafka Direct approach does not use receivers

. Automatically parallelizes data reading across executors
Outputting , .
Parallelism = # Kafka partitions
[Sinks }

€databricks

Stability in Processing

Sources }

Receiving For stability, must process data as fast as it is received

\/

Tty Must ensure avg batch processing times < batch interval

Transforming Previous batch is done by the time next batch is received

\/

\/ Otherwise, new batches keeps queueing up waiting for
e previous batches to finish, scheduling delay goes up

(e]

€databricks

Reducing Batch Processing Times

Sources }

Receiving

N

Transforming

v

Outputting

(e]

€databricks

More receivers!
Executor running receivers do lot of the processing

Repartition the received data to explicitly distribute load
unionedStream.repartition(40)

Set #partitions in shuffles, make sure its large enough
transformedStream.reduceByKey(reduceFunc, 40)

Get more executors and cores!

Reducing Batch Processing Times

Sources }

Receiving

N

Transforming

v

Outputting

(e]

€databricks

Use Kryo serialization to serialization costs
Register classes for best performance

See configurations spark.kryo.”
http://spark.apache.org/docs/latest/configuration.html#compression-and-serialization

Larger batch durations improve stability
More data aggregated together, amortized cost of shuffle

Limit ingestion rate to handle data surges

See configurations spark.streaming.*maxRate”
http://spark.apache.org/docs/latest/configuration.html#spark-streaming

Speeding up Output Operations

Sources }

Receiving

N

Transforming

\v/

Outputting

(o]

€databricks

Write to data stores efficiently

foreachPartition + connection pool: more efficient

dataRDD.foreachPartition { partition =>
// initialize pool or get open connection from pool in executor
// insert all events in partition
// return connection to pool

}

€databricks

Monitoring and Upgrading

Streaming in Spark Web Ul

Streaming Statistics

Running batches of 1 second for 13 14 since 20 10:57:31 (794 completed batches, 1653 records)

Stats over last 1000 batches

» Input Rate
Avg: 2.08 events/sec

New in Spark 1.4

For stability
| =~ Scheduling delay should be approx 0
oz Processing Time approx < batch interval

Avg: 690 ms

€databricks

Streaming in Spark Web Ul

Details of individual batches

Active Batches (1)

Batch Time Input Size Scheduling Delay ™ Processing Time Status
2015/06/08 11:10:46 3 events Oms - processin

Completed Batches (last ™~ -~ —< =~
R Details of batch at 2015/06/08 11:10:35

2015/06/08 11:10:45
Batch Duration: 1 s

2015/06/08 11:10:44
2 4
input data sloa: 4 records Details of Spark jobs runin a batch
2015/06/08 11:10:43 Scheduling delay: 0 ms
. Processing time: 1 s
2015/06/08 11:10:42 Total delay: 15
2015/06/08 11:10:41
Output Op Id Description Duration Job Id Stages: Succeeded/Total Tasks (for g
2015/06/08 11:10:40
0 foreachRDD at StreamingApp.scala:22 1s 2350 22 [E—
1 foreachRDD at StreamingApp.scala:27 3ms 2351 2ms 1/1 (1 skipped) ——
2352 1ms 1/1 (1 skipped) —

€databricks

Operational Monitoring

Streaming app stats published through Codahale metrics
Ganglia sink, Graphite sink, custom Codahale metrics sinks
Can see long term trends, across hours and days

COﬂﬂgU re the metrics USil’]g $SPARK_HOME/conf/metrics.properties
Need to compile Spark with Ganglia LGPL profile for Ganglia support

(see http://spark.apache.org/docs/latest/monitoring.html#metrics)

€databricks

44

Programmatic Monitoring

Streaminglistener — Developer interface to get internal events
onBatchSubmitted, onBatchStarted, onBatchCompleted,
onReceiverStarted, onReceiverStopped, onReceiverkrror

Take a look at StreamingJobProgressListener (private class) for
Inspiration

€databricks

Upgrading Apps

1. Shutdown your current streaming app gracefully

Will process all data before shutting down cleanly
streamingContext.stop(stopGracefully = true)

2. Update app code and start it again

Cannot upgrade from previous checkpoints it code
changes or Spark version changes

€databricks

Much to say | have ... but time | have not

Sporiz1 21 Overview Programming Guides ~ API Docs~ Deploying

Memory and GC tuning Spark Streaming Programming Guide

. o Overview
Using SQLContext
« Basic Concepts
o Linking
. o |Initializing StreamingContext

DStream.transform operation o Disrazad Srams OSteams)

o Input DStreams and Receivers

o Transformations on DStreams
Output Operations on DStreams
o DataFrame and SQL Operations
o MLIib Operations
o Caching / Persistence
o Checkpointing
o Deploying Applications
o Monitoring Applications

o

o Performance Tuning

Refer to online guide S rovmsng i

o Setting the Right Batch Interval
http://spark.apache.org/docs/latest/streaming-programming-guide.html © Memory Tuning
« Fault-tolerance Semantics
* Migration Guide from 0.9.1 or below to 1.x
¢ Where to Go from Here

Overview

Spark Streaming is an extension of the core Spark API that enables scalable, high-throughp
‘ databricks streams. Data can be ingested from many sources like Kafka, Flume, Twitter, ZeroMQ, Kine
algorithms expressed with high-level functions like map, reduce, join and window. Finally, pr

Thank you

May the stream be with you

databricks

