

Recipes for Running Spark Streaming Apps in Production

Tathagata “TD” Das

 @tathadas

Spark Summit 2015

Spark Streaming

Scalable, fault-tolerant stream processing system

High-level API

joins, windows, ...
often 5x less code

Fault-tolerant

Exactly-once semantics,
even for stateful ops

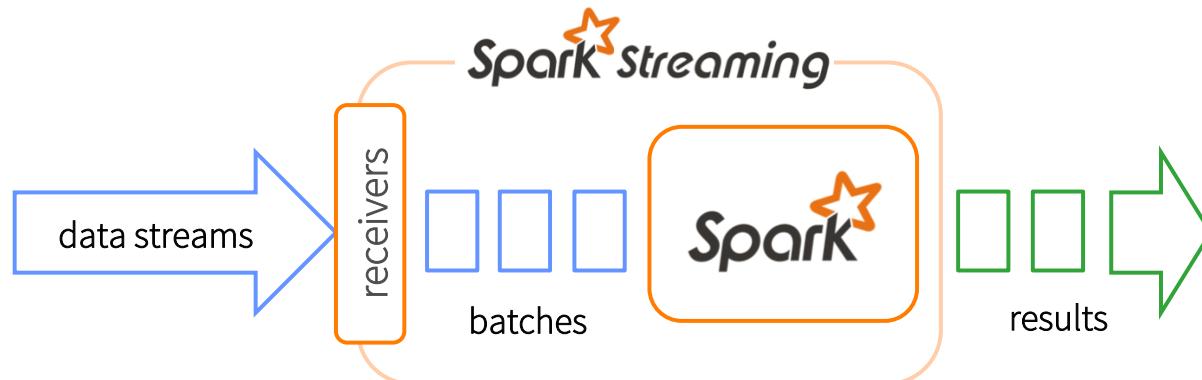
Integration

Integrates with MLlib, SQL,
DataFrames, GraphX

Spark Streaming

Receivers receive data streams and chop them up into batches

Spark processes the batches and pushes out the results



Word Count with Kafka

```
val context = new StreamingContext(conf, Seconds(1))
```

entry point of streaming functionality

```
val lines = KafkaUtils.createStream(context, ...)
```

create DStream from Kafka data

Word Count with Kafka

```
val context = new StreamingContext(conf, Seconds(1))
```

```
val lines = KafkaUtils.createStream(context, ...)
```

```
val words = lines.flatMap(_.split(" "))
```

split lines into words

Word Count with Kafka

```
val context = new StreamingContext(conf, Seconds(1))
```

```
val lines = KafkaUtils.createStream(context, ...)
```

```
val words = lines.flatMap(_.split(" "))
```

```
val wordCounts = words.map(x => (x, 1))  
    .reduceByKey(_ + _)
```

```
wordCounts.print()
```

```
context.start()
```

count the words

print some counts on screen

start receiving and
transforming the data

Word Count with Kafka

```
object WordCount {  
  def main(args: Array[String]) {  
    val context = new StreamingContext(new SparkConf(), Seconds(1))  
    val lines = KafkaUtils.createStream(context, ...)  
    val words = lines.flatMap(_.split(" "))  
    val wordCounts = words.map(x => (x,1)).reduceByKey(_ + _)  
    wordCounts.print()  
    context.start()  
    context.awaitTermination()  
  }  
}
```

Got it working on a small
Spark cluster on little data

What's next??

How to get it production-ready?

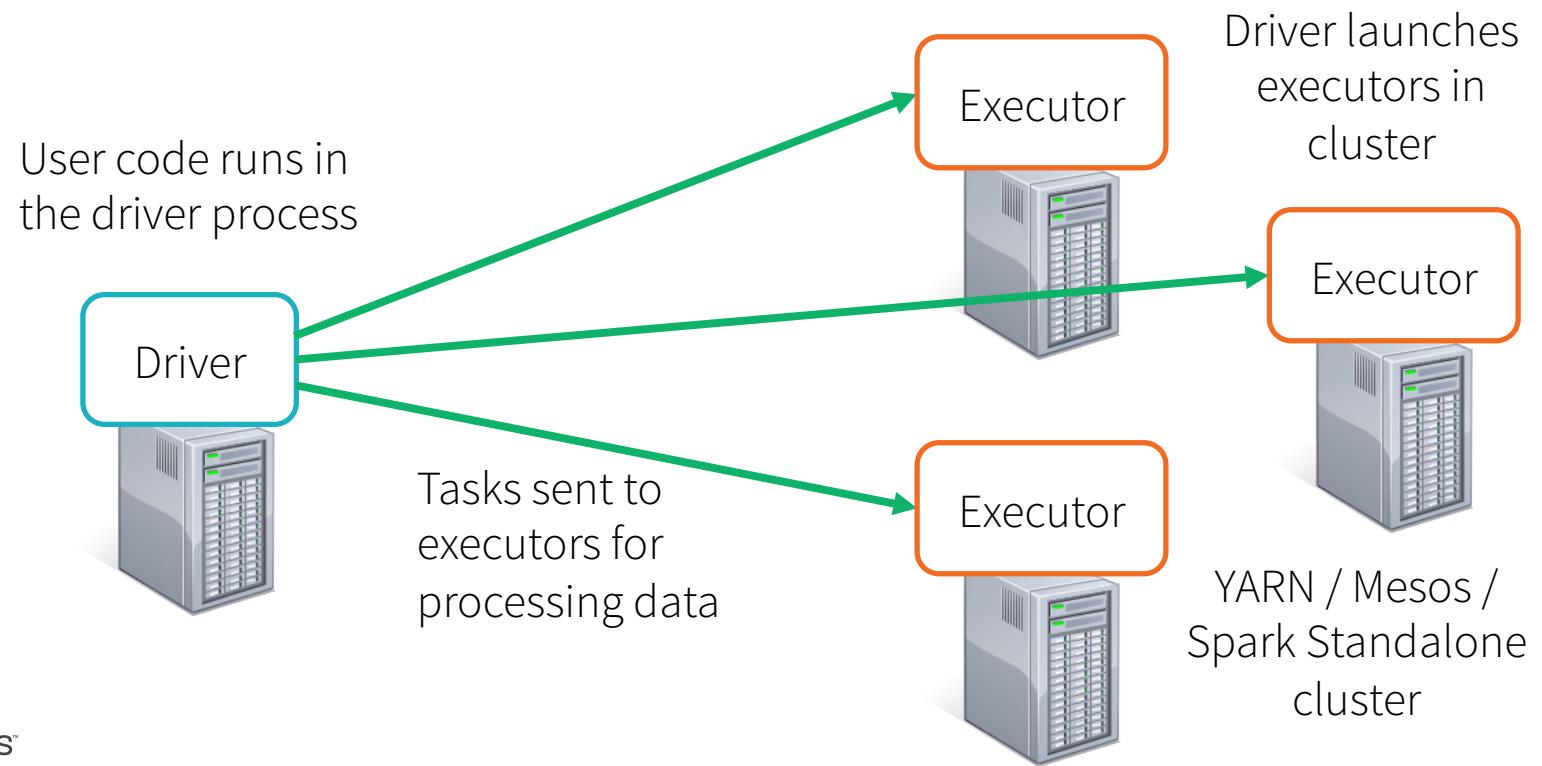
Fault-tolerance and Semantics

Performance and Stability

Monitoring and Upgrading

Deeper View of Spark Streaming

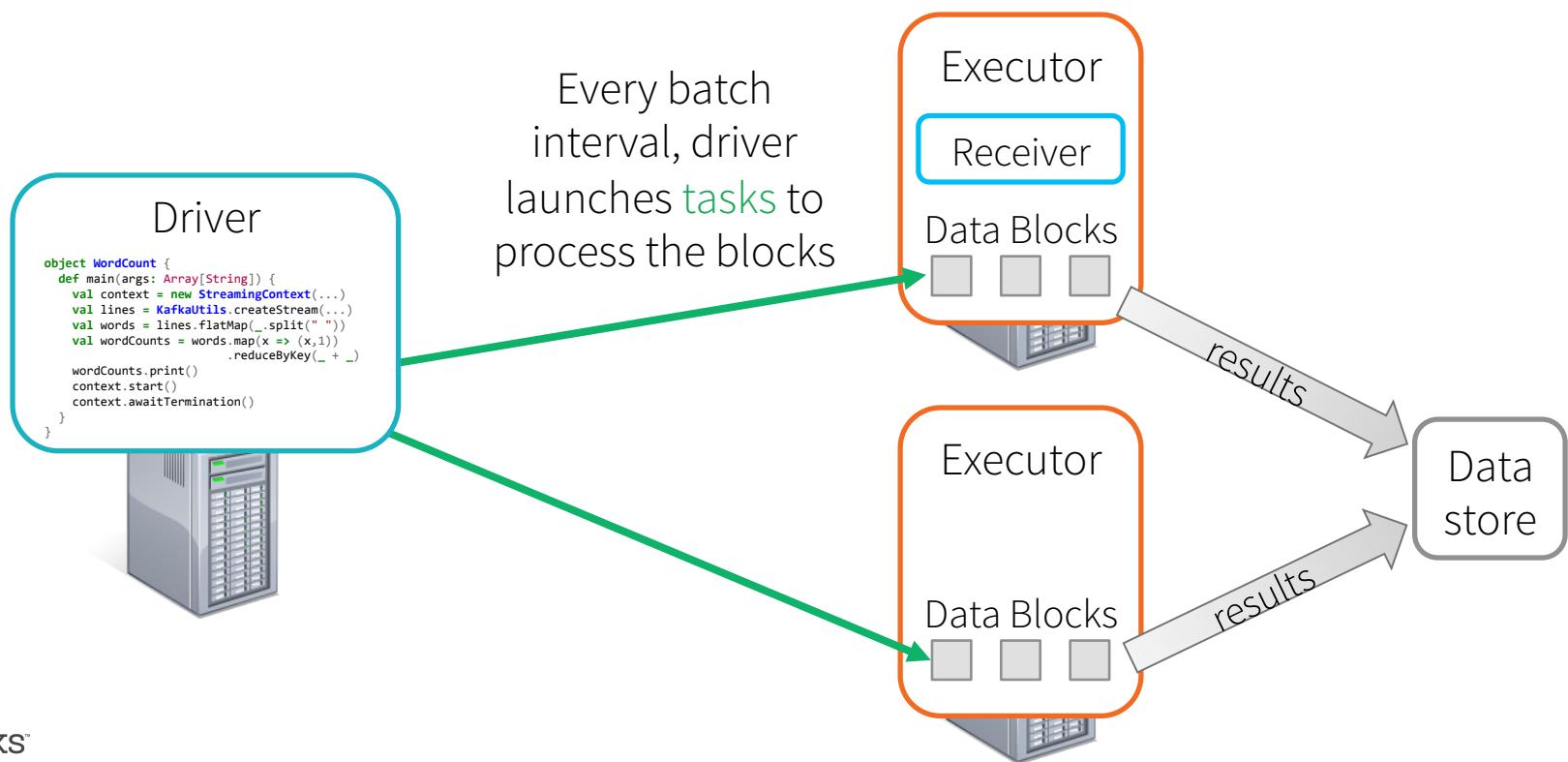
Any Spark Application



Spark Streaming Application: Receive data



Spark Streaming Application: Process data



Fault-tolerance and Semantics

Performance and Stability

Monitoring and upgrading

Failures? Why care?

Many streaming applications need zero data loss guarantees despite any kind of failures in the system

At least once guarantee – every record processed at least once

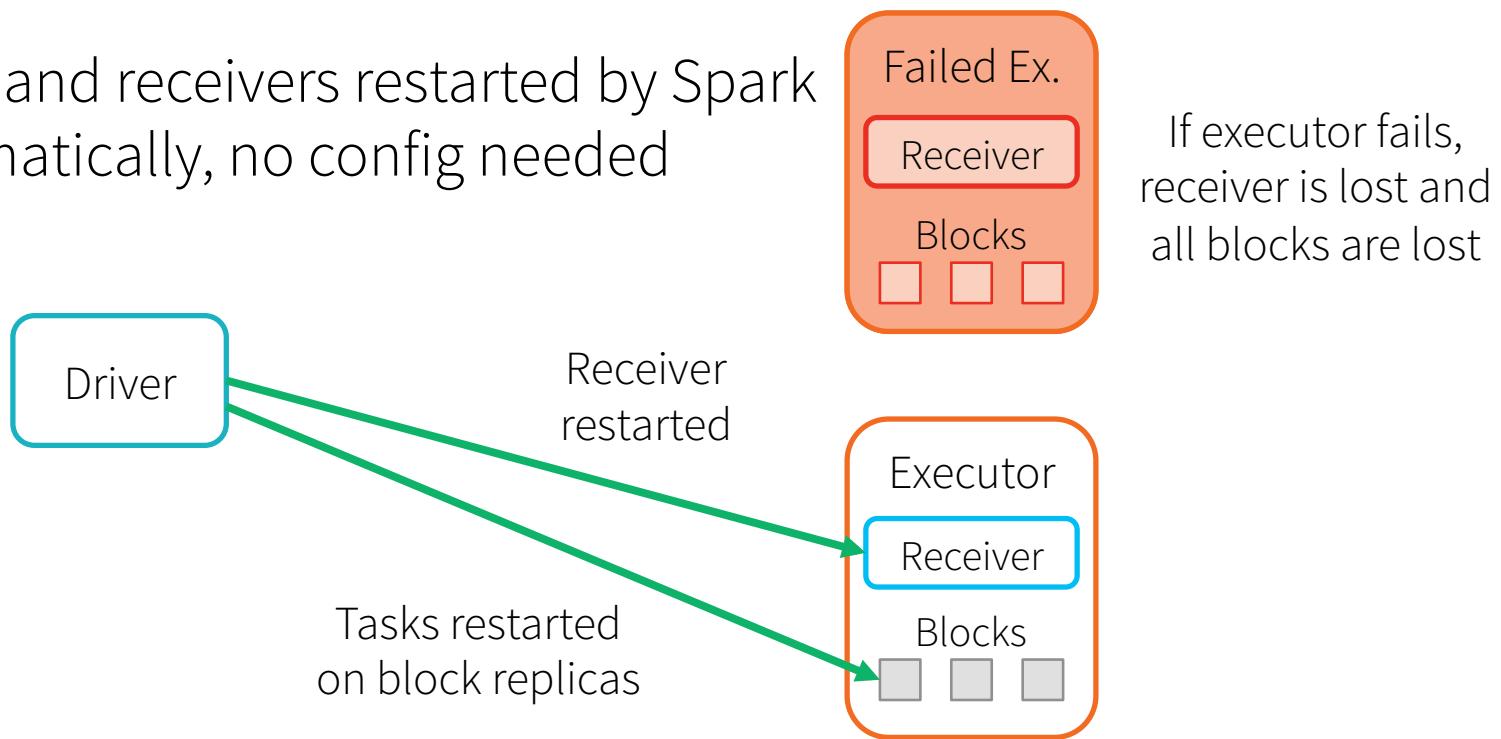
Exactly once guarantee – every record processed exactly once

Different kinds of failures – **executor** and **driver**

Some failures and guarantee requirements need additional configurations and setups

What if an executor fails?

Tasks and receivers restarted by Spark automatically, no config needed



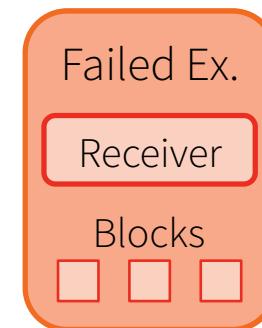
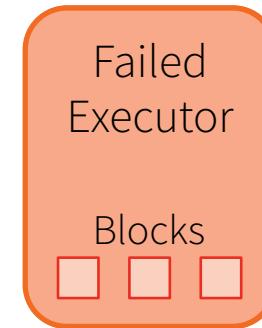
What if the driver fails?

Failed
Driver

When the driver fails, all the executors fail

All computation, all received blocks are lost

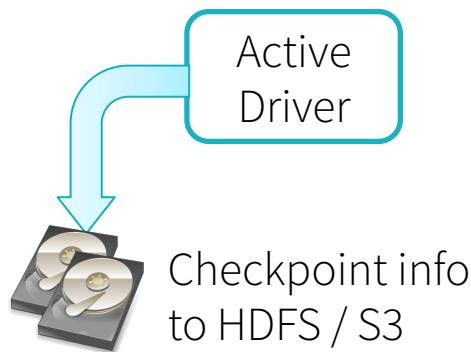
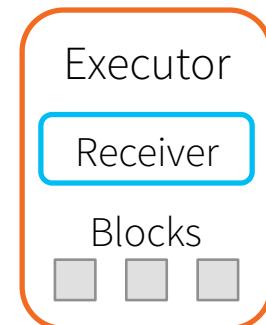
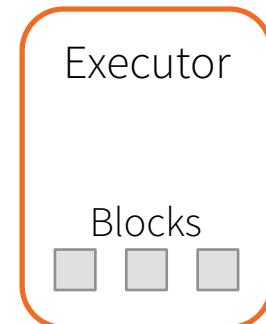
How do we recover?



Recovering Driver with Checkpointing

DStream Checkpointing:

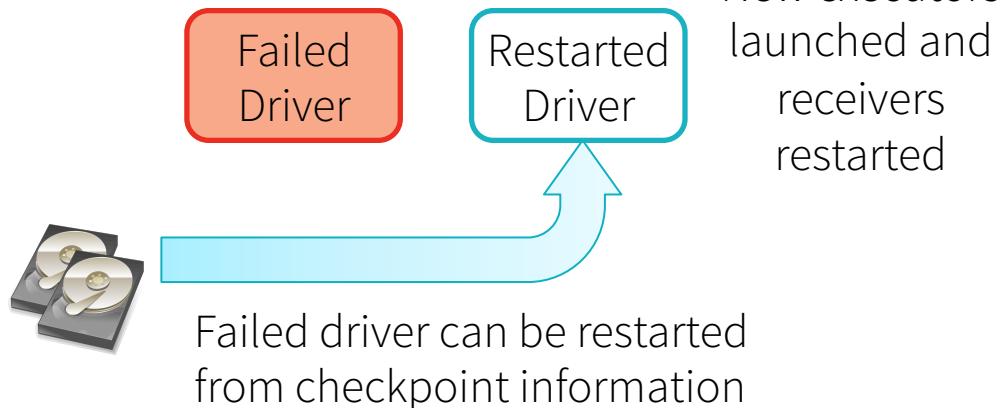
Periodically save the DAG of DStreams to fault-tolerant storage



Recovering Driver w/ DStream Checkpointing

DStream Checkpointing:

Periodically save the DAG of DStreams to fault-tolerant storage



Recovering Driver w/ DStream Checkpointing

1. Configure automatic driver restart
All cluster managers support this
2. Set a checkpoint directory in a HDFS-compatible file system
`streamingContext.checkpoint(hdfsDirectory)`
3. Slightly restructure of the code to use checkpoints for recovery

Configuring Automatic Driver Restart

Spark Standalone – Use spark-submit with “cluster” mode and “--supervise”

See <http://spark.apache.org/docs/latest/spark-standalone.html>

YARN – Use spark-submit in “cluster” mode

See YARN config “yarn.resourcemanager.am.max-attempts”

Mesos – Marathon can restart Mesos applications

Restructuring code for Checkpointing

Create
+
Setup

```
val context = new StreamingContext(...)  
val lines = KafkaUtils.createStream(...)  
val words = lines.flatMap(...)  
...
```



```
def creatingFunc(): StreamingContext = {  
    val context = new StreamingContext(...)  
    val lines = KafkaUtils.createStream(...)  
    val words = lines.flatMap(...)  
    ...  
    context.checkpoint(hdfsDir)  
}
```

Put all setup code into a function that returns a new StreamingContext

Start

```
context.start()
```



```
val context =  
    StreamingContext.getOrCreate(  
        hdfsDir, creatingFunc)  
    context.start()
```

Get context setup from HDFS dir OR *create* a new one with the function

Restructuring code for Checkpointing

StreamingContext.getOrCreate():

If HDFS directory has checkpoint info

 recover context from info

else

 call `creatingFunc()` to create

 and setup a new context

Restarted process can figure out whether
to recover using checkpoint info or not

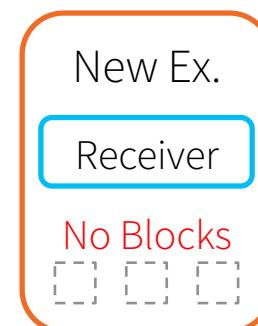
```
def creatingFunc(): StreamingContext = {  
    val context = new StreamingContext(...)  
    val lines = KafkaUtils.createStream(...)  
    val words = lines.flatMap(...)  
    ...  
    context.checkpoint(hdfsDir)  
}
```

```
val context =  
StreamingContext.getOrCreate(  
    hdfsDir, creatingFunc)  
context.start()
```

Received blocks lost on Restart!

Failed
Driver

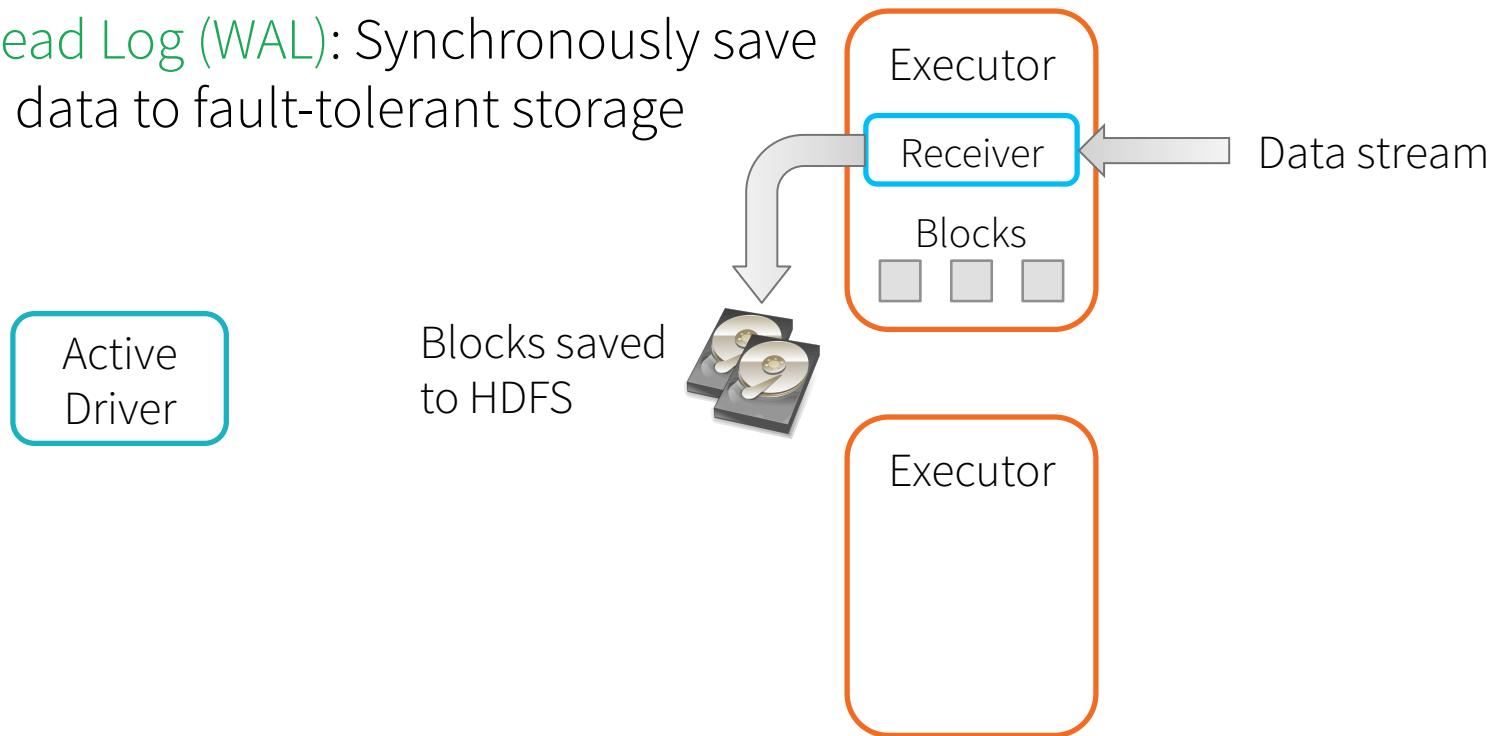
Restarted
Driver



In-memory blocks of
buffered data are
lost on driver restart

Recovering data with Write Ahead Logs

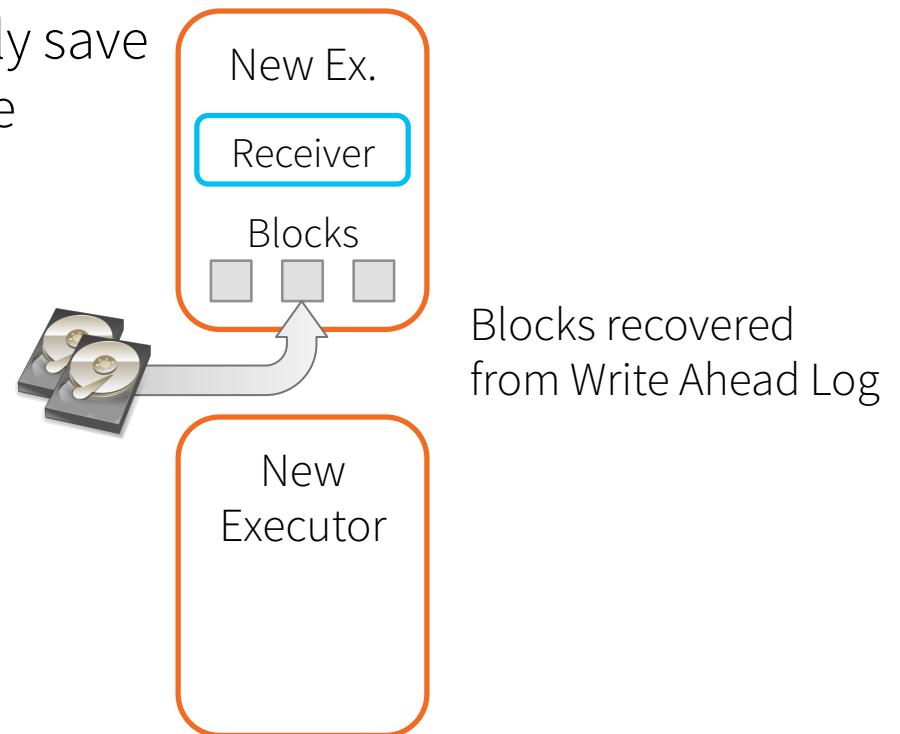
Write Ahead Log (WAL): Synchronously save received data to fault-tolerant storage



Recovering data with Write Ahead Logs

Write Ahead Log (WAL): Synchronously save received data to fault-tolerant storage

Failed Driver
Restarted Driver



Recovering data with Write Ahead Logs

1. Enable checkpointing, logs written in checkpoint directory
2. Enabled WAL in SparkConf configuration
`sparkConf.set("spark.streaming.receiver.writeAheadLog.enable", "true")`
3. Receiver should also be *reliable*
 - Acknowledge source only after data saved to WAL
 - Unacked data will be replayed from source by restarted receiver
4. Disable in-memory replication (already replicated by HDFS)
Use `StorageLevel.MEMORY_AND_DISK_SER` for input DStreams

RDD Checkpointing

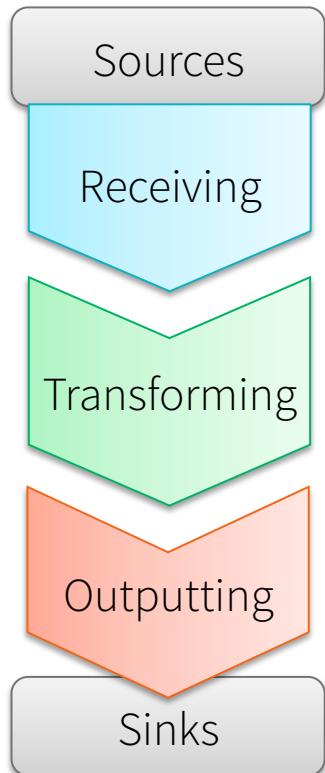
Stateful stream processing can lead to long RDD lineages

Long lineage = bad for fault-tolerance, too much recomputation

RDD checkpointing saves RDD data to the fault-tolerant storage to limit lineage and recomputation

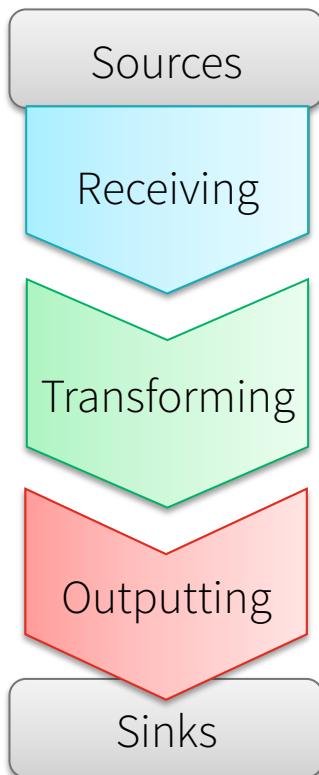
More: <http://spark.apache.org/docs/latest/streaming-programming-guide.html#checkpointing>

Fault-tolerance Semantics



Zero data loss = every stage processes each event **at least once** despite any failure

Fault-tolerance Semantics



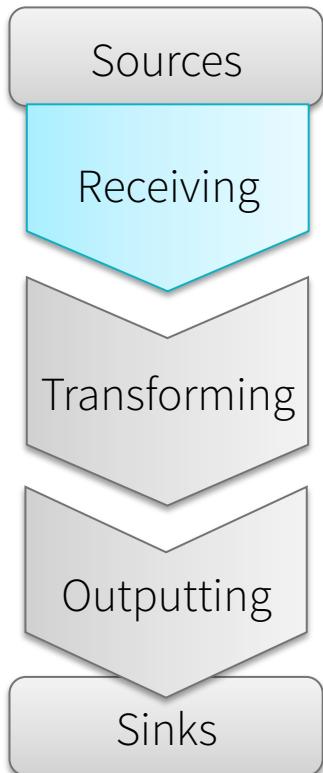
At least once, w/ Checkpointing + WAL + Reliable receivers

Exactly once, as long as received data is not lost

Exactly once, if outputs are idempotent or transactional

End-to-end semantics:
At-least once

Fault-tolerance Semantics



Exactly once receiving with new **Kafka Direct** approach

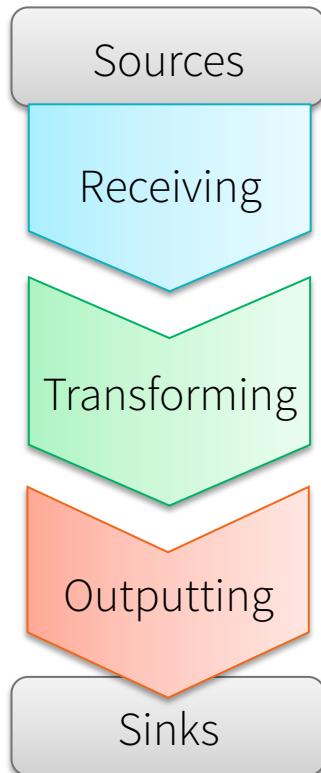
- Treats Kafka like a replicated log, reads it like a file
- Does not use receivers
- No need to create multiple DStreams and union them
- No need to enable Write Ahead Logs

```
val directKafkaStream = KafkaUtils.createDirectStream(...)
```

<https://databricks.com/blog/2015/03/30/improvements-to-kafka-integration-of-spark-streaming.html>

<http://spark.apache.org/docs/latest/streaming-kafka-integration.html>

Fault-tolerance Semantics



Exactly once receiving with new [Kafka Direct](#) approach

Exactly once, as long as received data is not lost

Exactly once, if outputs are idempotent or transactional

End-to-end semantics:
Exactly once!

The Netflix Tech Blog

Wednesday, March 11, 2015

Can Spark Streaming survive Chaos Monkey?

by [Bharat Venkat](#), [Prasanna Padmanabhan](#), [Antony Arokiasamy](#), [Ranjan Ramanan](#)

Netflix is a data-driven organization that places emphasis on the quality of data processed. In our [previous blog post](#), we highlighted our use of CloudFront for stream processing in the context of online recommendations and data processing. As we evaluated Spark Streaming as our choice of stream processor, we set out to evaluate its resilience story for Spark Streaming in the AWS cloud environment. A [Chaos Monkey](#), a tool which randomly terminates instances or processes, was employed to test the system.

Spark on [Amazon Web Services \(AWS\)](#) is relevant to us as Netflix runs its data processing primarily out of the AWS cloud. Stream processing systems need to be fault-tolerant and tolerant to failures. Instances on AWS are ephemeral, which makes it challenging for Spark's resiliency.

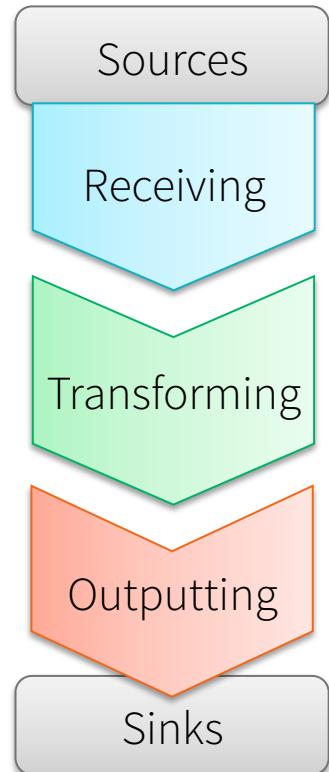
<http://techblog.netflix.com/2015/03/can-spark-streaming-survive-chaos-monkey.html>

Fault-tolerance and Semantics

Performance and Stability

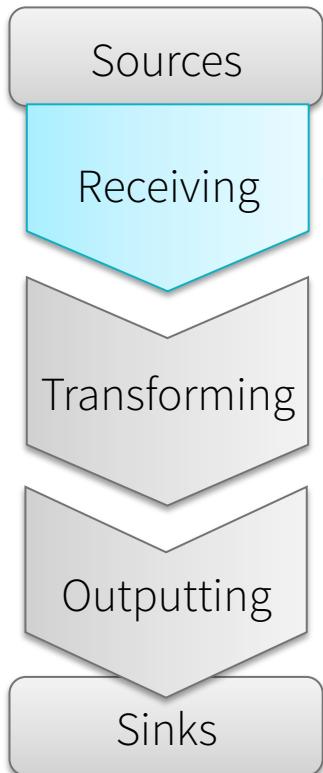
Monitoring and Upgrading

Achieving High Throughput



High throughput achieved by sufficient parallelism at all stages of the pipeline

Scaling the Receivers



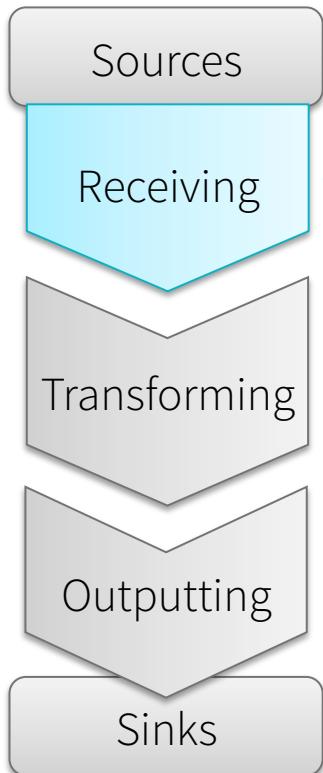
Sources must be configured with parallel data streams
#partitions in Kafka topics, #shards in Kinesis streams, ...

Streaming app should have multiple receivers that receive the data streams in parallel

Multiple input DStreams, each running a receiver
Can be unioned together to create one DStream

```
val kafkaStream1 = KafkaUtils.createStream(...)  
val kafkaStream2 = KafkaUtils.createStream(...)  
val unionedStream = kafkaStream1.union(kafkaStream2)
```

Scaling the Receivers



Sufficient number of executors to run all the receivers

Absolute necessity: $\# \text{cores} > \# \text{receivers}$

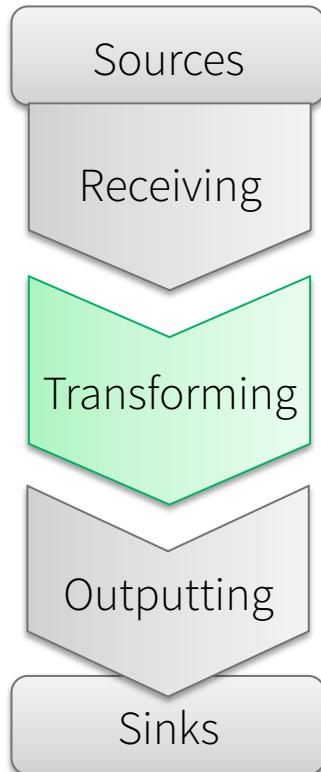
Good rule of thumb: $\# \text{executors} > \# \text{receivers}$, so that no more than 1 receiver per executor, and network is not shared between receivers

Kafka Direct approach does not use receivers

Automatically parallelizes data reading across executors

Parallelism = # Kafka partitions

Stability in Processing



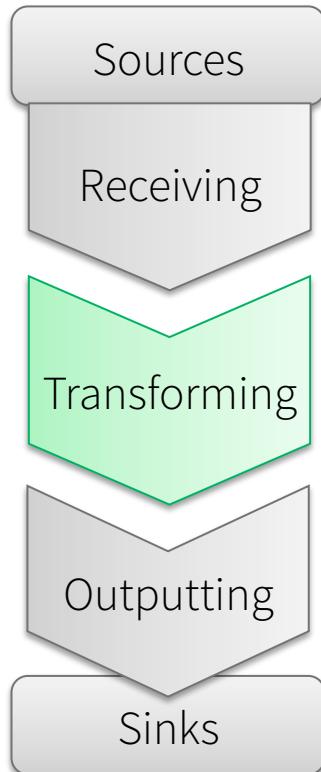
For stability, must process data as fast as it is received

Must ensure **avg batch processing times < batch interval**

Previous batch is done by the time next batch is received

Otherwise, new batches keeps queueing up waiting for previous batches to finish, scheduling delay goes up

Reducing Batch Processing Times



More receivers!

Executor running receivers do lot of the processing

Repartition the received data to explicitly distribute load

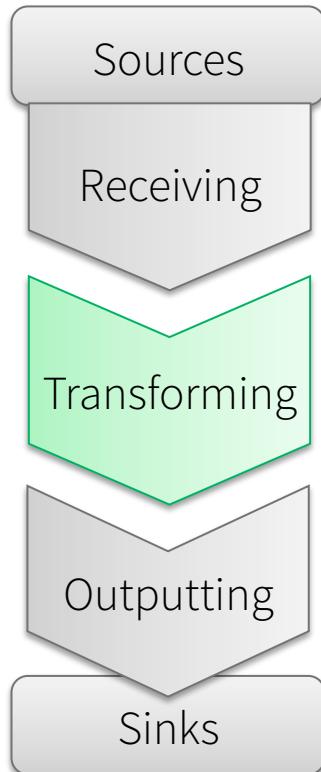
`unionedStream.repartition(40)`

Set #partitions in shuffles, make sure its large enough

`transformedStream.reduceByKey(reduceFunc, 40)`

Get more executors and cores!

Reducing Batch Processing Times



Use Kryo serialization to reduce serialization costs

Register classes for best performance

See configurations `spark.kryo.*`

<http://spark.apache.org/docs/latest/configuration.html#compression-and-serialization>

Larger batch durations improve stability

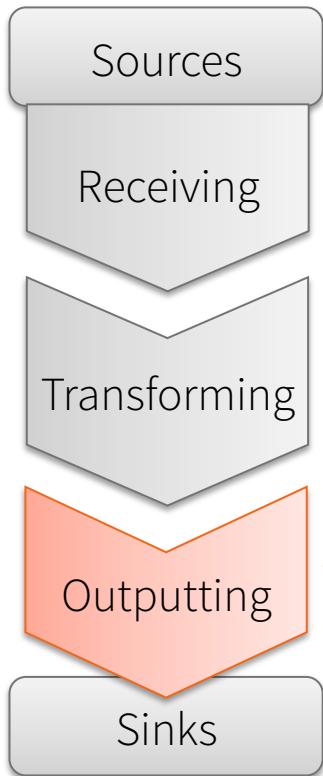
More data aggregated together, amortized cost of shuffle

Limit ingestion rate to handle data surges

See configurations `spark.streaming.*maxRate*`

<http://spark.apache.org/docs/latest/configuration.html#spark-streaming>

Speeding up Output Operations



Write to data stores efficiently

foreach: inefficient

```
dataRDD.foreach { event =>
  // open connection
  // insert single event
  // close connection
}
```

foreachPartition: efficient

```
dataRDD.foreachPartition { partition =>
  // open connection
  // insert all events in partition
  // close connection
}
```

foreachPartition + connection pool: more efficient

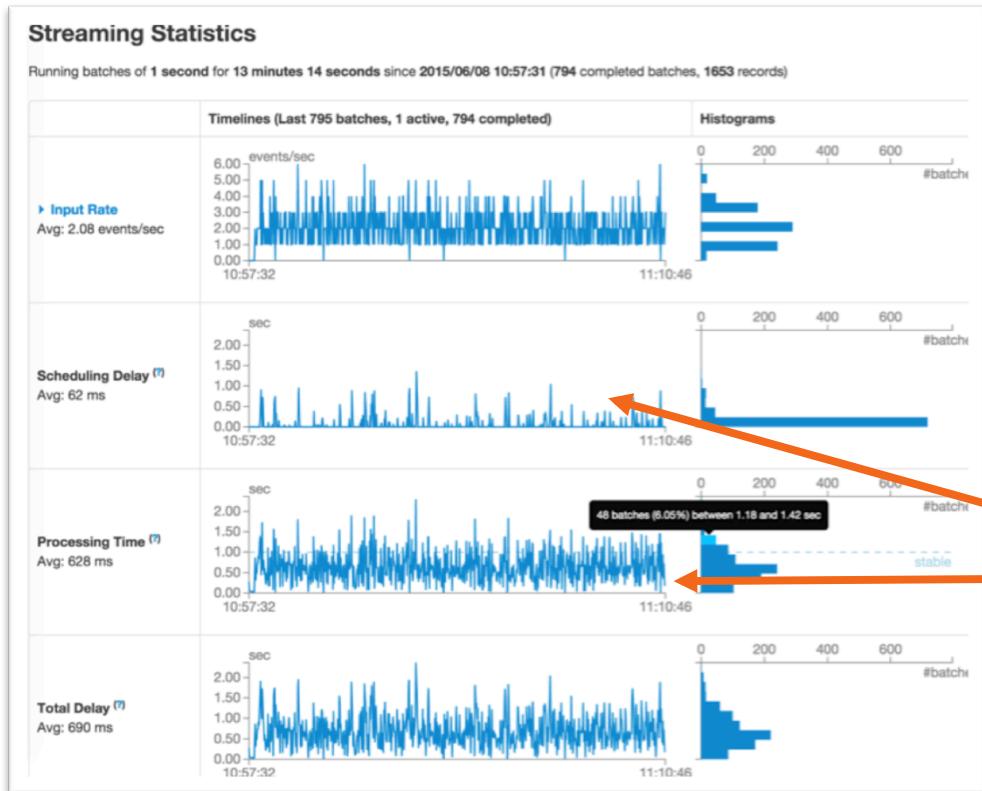
```
dataRDD.foreachPartition { partition =>
  // initialize pool or get open connection from pool in executor
  // insert all events in partition
  // return connection to pool
}
```

Fault-tolerance and Semantics

Performance and Stability

Monitoring and Upgrading

Streaming in Spark Web UI



Stats over last 1000 batches

New in Spark 1.4

For stability

Scheduling delay should be approx 0

Processing Time approx < batch interval

Streaming in Spark Web UI

Details of individual batches

Active Batches (1)				
Batch Time	Input Size	Scheduling Delay <small>?</small>	Processing Time <small>?</small>	Status
2015/06/08 11:10:46	3 events	0 ms	-	processing

Completed Batches (last 704 batches)				
Batch Time				
2015/06/08 11:10:45				
2015/06/08 11:10:44				
2015/06/08 11:10:43				
2015/06/08 11:10:42				
2015/06/08 11:10:41				
2015/06/08 11:10:40				

Details of batch at 2015/06/08 11:10:35

Batch Duration: 1 s
Input data size: 4 records
Scheduling delay: 0 ms
Processing time: 1 s
Total delay: 1 s

Details of Spark jobs run in a batch

Output Op Id	Description	Duration	Job Id	Duration	Stages: Succeeded/Total	Tasks (for a
0	foreachRDD at StreamingApp.scala:22	1 s	2350	1 s	2/2	
1	foreachRDD at StreamingApp.scala:27	3 ms	2351	2 ms	1/1 (1 skipped)	
			2352	1 ms	1/1 (1 skipped)	

 databricks

Operational Monitoring

Streaming app stats published through [Codahale](#) metrics

Ganglia sink, Graphite sink, custom Codahale metrics sinks

Can see long term trends, across hours and days

Configure the metrics using `$SPARK_HOME/conf/metrics.properties`

Need to compile Spark with Ganglia LGPL profile for Ganglia support
(see <http://spark.apache.org/docs/latest/monitoring.html#metrics>)

Programmatic Monitoring

`StreamingListener` – Developer interface to get internal events
onBatchSubmitted, onBatchStarted, onBatchCompleted,
onReceiverStarted, onReceiverStopped, onReceiverError

Take a look at `StreamingJobProgressListener` (private class) for inspiration

Upgrading Apps

1. Shutdown your current streaming app `gracefully`
Will process all data before shutting down cleanly
`streamingContext.stop(stopGracefully = true)`
2. Update app code and start it again

Cannot upgrade from previous checkpoints if code changes or Spark version changes

Much to say I have ... but time I have not

Memory and GC tuning
Using SQLContext
DStream.transform operation

...

Refer to online guide

<http://spark.apache.org/docs/latest/streaming-programming-guide.html>

Spark Streaming Programming Guide

- [Overview](#)
- [A Quick Example](#)
- [Basic Concepts](#)
 - [Linking](#)
 - [Initializing StreamingContext](#)
 - [Discretized Streams \(DStreams\)](#)
 - [Input DStreams and Receivers](#)
 - [Transformations on DStreams](#)
 - [Output Operations on DStreams](#)
 - [DataFrame and SQL Operations](#)
 - [MLlib Operations](#)
 - [Caching / Persistence](#)
 - [Checkpointing](#)
 - [Deploying Applications](#)
 - [Monitoring Applications](#)
- [Performance Tuning](#)
 - [Reducing the Batch Processing Times](#)
 - [Setting the Right Batch Interval](#)
 - [Memory Tuning](#)
- [Fault-tolerance Semantics](#)
- [Migration Guide from 0.9.1 or below to 1.x](#)
- [Where to Go from Here](#)

Overview

Spark Streaming is an extension of the core Spark API that enables scalable, high-throughput streams. Data can be ingested from many sources like Kafka, Flume, Twitter, ZeroMQ, Kinesis, and algorithms expressed with high-level functions like `map`, `reduce`, `join` and `window`. Finally, processing results can be sent to Kafka, Redis, or HDFS.

Thank you

May the stream be with you

