
AppiaXML

A Brief Tutorial

José Mocito

Universidade de Lisboa
jmocito@lasige.di.fc.ul.pt

Liliana Rosa

Universidade de Lisboa
lrosa@lasige.di.fc.ul.pt

Nuno Almeida

Universidade de Lisboa
nalmeida@lasige.di.fc.ul.pt

Lúıs Rodrigues

Universidade de Lisboa
ler@di.fc.ul.pt

September 24, 2004

Contents

1 Introduction 2

2 A Brief Overview of Appia 3

3 A Brief Overview of the XML Language 4

4 The Ecco Application 5

5 AppiaXML Features 7

5.1 Describing Channels . 7
5.2 Creating Channels . 7

6 XML Configuration File Structure 9

6.1 Defining Templates . 9
6.2 Creating Channels at Configuration Time 10

7 Java API for XML Configuration 12

7.1 Loading Configuration Files 12
7.2 Loading and Automatically Running Configurations 13
7.3 Creating Execution Time Channels 13
7.4 Exception Handling . 14
7.5 Passing Parameters to Channels 15
7.6 Developing Parameterizable Sessions 16

8 Example 17

8.1 Running the Test Application 17
8.2 Experimenting with Messenger 17

9 Conclusions 19

A AppiaXML DTD 20

1

1 Introduction

Appia is a Java framework to support the composition and execution of com-
munication protocols. An important feature of Appia is that the user may
create different protocol compositions by stacking protocols. An instance of
a protocol composition is called a channel. An unique property of Appia is
that different channels may share the same session of a common protocol.
Using this mechanisms is possible to coordinate different, but related, data
flows.

This report describes an extension that we have implemented in the Appia
system that allow the user to configure one or more communication channels
using a description in XML. We have named this set of components Appi-
aXML. AppiaXML is able to interpret XML strings and files and automati-
cally create and initialize, Appia communication channels. Using AppiaXML,
the users may easily create and modify channel configurations, defining which
layers should be used and setting initialization parameters without any Java

programming effort.
This document attempts to be as much self contained as possible but a

basic knowledge of the Appia framework [1, 2] and of XML syntax is assumed.

Document Structure

The rest of the document is structured as follows. Sections 2 and 3 present a
brief overview of Appia and XML, respectively. Section 4 introduces an ex-
ample application used throughout this document. In section 5 the main fea-
tures introduced by AppiaXML are presented. Section 6 presents a detailed
explanation on how to create XML configuration files. Section 7 describes
the API provided by AppiaXML. In section 8 a demonstration example im-
plementing a Messenger -like application is presented to illustrate the use
of AppiaXML. Finally, this document concludes with an appendix A that
simply shows a listing of the DTD used in the XML configuration files.

2

2 A Brief Overview of Appia

Appia is a protocol composition and execution framework that has been
implemented in the Java programming language. Appia’s composition model
is based on three fundamental abstractions: layers, sessions, and events:

• Layers are singleton entities, responsible for declaring the protocol be-
havior. A stack of layers defines what is called in Appia a QoS (Quality
of Service). The QoS specifies which protocols must act on the mes-
sages and the order they must be traversed.

• Sessions are protocol instances that maintain the state required to
execute the protocol. Channels are stacks of sessions. Each channel is
defined on behalf of a QoS. The set of sessions composing a channel
must respect the set of layers used in the corresponding QoS. Typically,
the top of the stack is an application layer and the bottom of the stack
is a layer that interfaces the network.

• Events are data structures used by sessions to exchange information.
The framework supports an open event model, that is, the set of events
supported is not defined a priori, and can be extended by the program-
mer. The framework ensures that events exchanged between two ses-
sions in the same channel are delivered respecting FIFO order. Events
may flow in the stack in both directions: upwards (from the network
to the application) or downwards.

To exchange information among two or more processes, Appia uses a
specific event: the SendableEvent. This event has two additional fields, the
source and dest that are used to indicate the source and destination endpoints.
A SendableEvent also has a Message field, which contains the information that
will be sent to the communication link.

To build an Appia protocol, two classes must be created: a Layer and
a Session. The Layer contains static information about the events that the
protocol will accept, require and provide. The Session has the state of the
protocol. An event is delivered to a protocol (or Session) in the handle(Event

e) method. When a protocol wants to send an event to the next protocol, it
must call the go() method of the event.

Appia provides also a set of common utility services to simplify the task of
protocol development, such as the management of data buffers for messages
(with methods to add, extract and inspect headers), management of timers,
automatic generation of events to initialize the channels, etc.

More information about Appia can be found in the Appia home page
(http://appia.di.fc.ul.pt) and in the following reports [1, 2].

3

3 A Brief Overview of the XML Language

XML stands for Extensible Markup Language, providing the capacity to
store, structure and exchange information in a cross-platform, software and
hardware independent manner. XML allows users to define information
structure through a DTD (Document Type Definition) or a XML schema.
A DTD describes the structure of a XML file by defining a list of elements
and their parameters. A XML schema is an alternative to DTD but has no
interest in the scope of this tutorial.

The simplicity of XML is related with data description: the user is allowed
to define her own tags, being able to create any kind of data structure. The
basic block of data in a XML file is called an element. An element can have
an attribute list or more elements encapsulated (nested elements). XML tags
are used to markup elements, whose representation is quite similar to HTML
with the format presented in Listing 1. Tags like <person> mark up the
beginning of an element and tags like </person> mark the end. Analogous
to elements tags can also be simple, as <age>, or can be nested as <name>

with elements <first-name> and <last-name>.

<person>

<name>
< f i r s t −name>John</ f i r s t −name>
< l a s t−name>Doe</l a s t−name>

</name>
<age old=”40”/>

</person>

Listing 1: XML file.

The use of XML is becoming increasingly widespread, adopted by many
vendors of manufacturing software, and familiar to many programmers. Be-
cause of all the relevant features offered and wide acceptance XML was chosen
for usage in AppiaXML.

4

4 The Ecco Application

A tiny application was developed with didactic purposes, in order to help the
reader better understand all the issues related to the usage of AppiaXML.
This application, called Ecco, provides a simple tool for exchanging messages
among two peers. The behavior is very simple: a user types a message, then
hits the return key and the message gets sent to the other user; by other
words, the message is echoed in the receiver’s console.

This application is provided with the Appia distribution and is named
demo.xml.Ecco. To execute it the reader should have Appia installed and
correctly configured1.

Throughout this tutorial the reader will be exposed to different aspects
of AppiaXML, that will be illustrated with the help of short pieces of code
from this application. For this reason, it is of utmost importance that the
reader obtains a clear understanding of how the internals of the application
works.

Ecco has two distinct initialization modes. The first one does not use
XML for channel configuration and uses Java programming to create the
communication channel. The second instance, not surprisingly, uses a XML
file that handles all channel configuration and creation. The command line
for the execution of the application in one of the two modes is, respectively:

java demo.xml.Ecco <local port> <remote host> <remote port>

java demo.xml.Ecco <xml file>

In the first mode the values needed by some sessions are passed in the
command line, and the way they are retrieved must be coded by the pro-
grammer of the application. The second mode gets these values from the
configuration file, and the programmer only needs to know the name of the
specific paremeters and respective sessions.

The comparison of the source code for these two initialization modes is
valuable to the reader, as she may get a better insight on the differences
between using AppiaXML and invoking Appia’s Java APIs.

The Ecco application uses a channel with two protocols as illustrated in
the following communication stack:

Ecco
TCP

1The README file in the Appia distribution provides step-by-step instructions on how

to install and configure Appia.

5

This stack corresponds to the default configuration coded in the appli-
cation and provided in the accompanying configuration file ecco.xml. The
layer containing the Ecco protocol should always be the topmost. Below this
layer the reader can experiment with any protocol composition she finds ad-
equate (i.e., UDP+FIFO or simply UDP). The reader should also note that in
order to use this file she should correct the values of the ports and hostname
parameters to suit his network configuration.

6

5 AppiaXML Features

AppiaXML has many features that try to address all the different configu-
ration possibilities available to Appia users when composing communication
channels. The most important feature provided is the possibility to define the
structure of a channel and then instantiate as many channels as needed with
the same properties defined in the configuration. All the available features
will be described in detail in the next few sections.

5.1 Describing Channels

Channels are described in a configuration file. Describing a channel is the
same as defining the channel properties using XML. This is accomplished
by defining a structure, called a template, that specifies these different
protocols, in the form of references to the layers that implement them. As
the reader will see later on this tutorial, describing a channel is not the same
as creating a channel. A template is an entity that has all the information
needed to create channels with the same QoS.

Shared Sessions

One of the most interesting features Appia provides is the ability to share
a session over any number of channels. AppiaXML is also able to create
channels with different combinations of shared sessions. To allow these com-
binations AppiaXML introduces the concept of sharing scope. A sharing
scope determines the way a session is shared between channels. Three sharing
scopes are considered: private, label and global.

private sessions are never shared;

label sessions are shared by all channels that have the same session and the
same label;

global sessions of a given protocol are shared by all channels that use them.

To better illustrate the usage of the different scopes Figure 1 shows a com-
munication stack with three channels that combine different session scopes.

5.2 Creating Channels

Channels can be created either at configuration time or execution time. In
both cases a channel is created based on a given template defined in the XML
configuration file.

7

Channel 2Channel 1 Channel 3

label

global

private private private

private

Figure 1: Tree channels using private, label and global sessions.

Session Parameters

When configuring Appia sessions using Java programming, parameters are
passed to sessions using some method provided by the session for that pur-
pose. It is up to the protocol programmer to provide that specific method
and to let everyone know about it. This kind of flexibility is good in most
situations and is very appreciated by developers as they are not bound to
the use of a pre-defined method to pass the parameters.

As we have noted in the previous section, AppiaXML channels can be
created at configuration time. If any session in the channel needs to be
parameterized, the supporting framework for XML configuration needs to
know which method to call in order to pass the specified parameters. As the
reader will realize later in this tutorial, this will be achieved by requiring the
session programmer to implement a pre-defined interface and thus, a specific
method, to handle the initialization parameters specified in XML files.

Channel Initialization

Even if the channel has parameterizable sessions and is created at configu-
ration time, it is up to the user to decide if it wants the channel to be ini-
tialized automatically by AppiaXML. It is possible to create an uninitialized
channel. This might be useful when one knows a priori the configuration
of channels (thus creating them at configuration time) but is only able to
obtain some initialization parameters in run-time (for instance, from user in-
put) or wants to obtain channel cursors in order to navigate through all the
sessions that compose the channel and do all the operations Appia allows.
The programmer may afterward perform the channel initialization with the
common procedures that Appia provides.

8

6 XML Configuration File Structure

The XML file used to configure channels in AppiaXML has the structure de-
scribed by a DTD file provided by the Appia developers team at the following
URL: http://appia.di.fc.ul.pt/appiaxml.dtd. It is a short DTD with
simple elements and is shown in Appendix A.

From the AppiaXML DTD it is clear that a configuration file is divided
in two parts. The first one is where channels are described; the second one is
used to declare which channels will be created. Every configuration file must
start with the <appia> tag which aggregates all the other elements.

The default XML configuration file used in Ecco is shown in Listing 2.

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 <!DOCTYPE appia PUBLIC ”−//DTDName//DTD//EN”
3 ” h t tp : // appia . d i . f c . u l . pt /appiaxml . dtd ”>
4 <appia>

5 <template name=” ec co t ”>
6 <s e s s i o n name=” t cp s ” shar ing=” g l oba l ”>
7 <protoco l>
8 appia . p r o t o c o l s . tcpcomplete . TcpCompleteLayer
9 </protoco l>

10 </s e s s i on >

11 <s e s s i o n name=” ec co s ” shar ing=” pr i va t e ”>
12 <protoco l>
13 appia . t e s t . xml . ecco . EccoLayer
14 </protoco l>
15 </s e s s i on >

16 </template>

17 <channel name=” ec co c ” template=” e c co t ” i n i t i a l i z e d=” yes ”>
18 <ch s e s s i on name=” ec co s ”>
19 <parameter name=” l o c a l p o r t ”>2000</parameter>

20 <parameter name=” remotehost ”>f oobar . d i . f c . u l . pt</parameter>

21 <parameter name=” remoteport ”>2000</parameter>

22 </chse s s i on >

23 </channel>
24 </appia>

Listing 2: Ecco XML configuration file.

In the next couple of sections we will illustrate how to make use of these
tags.

6.1 Defining Templates

Creating a template consists of describing the channel properties. Templates
are created using the <template> tag. Each template must have an unique
identifier associated with the attribute name and is composed by any number
of sessions. Each session starts with the tag <session> and must have two
attributes: name and sharing. The first one is the internal identifier of the
session and the second is the corresponding sharing scope (see section 5.1).

9

Inside a <session> must exist a <protocol> tag containing the iden-
tifier of the protocol used in the session. The protocol is identified by the
complete name of the Java class containing the layer implementation (e.g.
appia.protocols.tcpcomplete.TcpCompleteLayer).

Suppose one would like to change the channel for the Ecco application
so it would use UDP instead of TCP. One would only have to change line 8
substituting it by the following line: appia.protocols.udpsimple.UdpSimpleLayer

as shown in Listing 3.

5 . . .
6 <s e s s i o n name=”udp s” shar ing=” g l oba l ”>
7 <protoco l>
8 appia.protocols.udpsimple.UdpSimpleLayer

9 </protoco l>
10 </s e s s i on >

11 . . .

Listing 3: Ecco using UDP.

6.2 Creating Channels at Configuration Time

Channels are instantiations of a given template. A channel has the exactly
same properties as the template it was created from. Channels can be created
either at configuration time or at execution time. This Section deals with
the former case. The later will be presented in Section 7.3.

Putting it in simple terms, creating a channel consists in assigning a
unique name and reference to the respective template. More specifically, the
tag <channel> starts the creation of a channel. This tag defines three at-
tributes: name, template and initialized. The first two are the identifier of
the channel and the identifier of the template that rules the channel instanti-
ation. The third one is a boolean that tells if the channel is to be initialized
(see Section 5.2).

The channel creation at configuration time is illustrated in Listing 2 at
lines 17 to 23. In this example, the channel is named ecco c and uses the
configuration template named ecco t. It is also an initialized channel as stated
in the last attribute (initialized="yes").

Moreover it is also possible to pass any parameters to specific sessions
that belong to the channel. This is done inside the scope of the <channel>

tag using the <chsession> tag to identify to which session the specified
parameters should be passed. Inside the scope of <chsession> lies every
parameter and each one is described using the tag <parameter> with an
attribute name that holds the parameter name, as defined by the protocol
programmer. Inside the scope of this tag should then lie the value of the
parameter.

10

To better illustrate this feature suppose one would like Ecco to connect
to a different remote port, say port 2222. One would simply have to change
line 21 of the configuration file. One would then get something like Listing 4.

16 . . .
17 <channel name=” ec co c ” template=” e c co t ” i n i t i a l i z e d=” yes ”>
18 <ch s e s s i on name=” ec co s ”>
19 <parameter name=” l o c a l p o r t ”>2000</parameter>

20 <parameter name=” remotehost ”>f oobar . d i . f c . u l . pt</parameter>

21 <parameter name=”remoteport”>2222</parameter>

22 </chse s s i on >

23 </channel>
24 . . .

Listing 4: Ecco using remote port 2222.

11

7 Java API for XML Configuration

AppiaXML defines an API to allow the user to load configuration files and to
create channels based on the loaded templates. All these programming inter-
faces are provided in a single class called appia.xml.AppiaXML whose interface
is presented in Listing 5.

class appia .xml .AppiaXML {
stat ic void load (java . i o . F i l e xm l f i l e)

throws org .xml . sax . SAXException , java . i o . IOException ;
stat ic void loadAndRun (java . i o . F i l e xm l f i l e)

throws org .xml . sax . SAXException , java . i o . IOException ;
stat ic apppia . Channel createChannel (

St r ing name ,
St r ing templateName ,
appia .xml . u t i l s . ChannelPropert ies params ,
boolean i n i t i a l i z e d)

throws appia . AppiaException ;
}

Listing 5: AppiaXML API.

7.1 Loading Configuration Files

Configuration files are loaded calling the static method load() from the Ap-

piaXML class with a string argument containing the configuration filename.
A little excerpt from Ecco’s source code in Listing 6 illustrates this. The
exception handling performed in the excerpt is left empty because it as no
value in this section’s purpose. Details on how these exceptions should be
handled can be found in Section 7.4.

java . i o . F i l e xm l f i l e = new java . i o . F i l e (a rgs [0]) ;
try {

AppiaXML. load (xm l f i l e) ;
} catch (org .xml . sax . SAXException e) {

. . .
} catch (java . i o . IOException e) {

. . .
}
. . .
appia . Appia . run () ;

Listing 6: Loading a XML configuration file.

When a file is loaded the parser loads into memory all the templates and
creates all the channels contained in the configuration. From that moment
forward the templates and channels are available for use.

12

7.2 Loading and Automatically Running Configura-

tions

It is possible that for some applications there is no need for initializations
at execution time; all the initialization steps are performed after loading the
configuration. In this case AppiaXML provides a facility that allows the
reader to perform the execution of a given configuration with only one Java
statement.

For instance, the Ecco application doesn’t need any initialization at execu-
tion time. All the parameters needed by the sessions are in the configuration
file. This is a perfect example where this feature might come in handy. List-
ing 7 provides the full source code for an application that runs Ecco. As
the reader can observe, there is no need for the extra statement that makes
Appia start it’s execution loop.

public class RunEcco {
public stat ic void main (St r ing [] a rg s) {

java . i o . F i l e x m l f i l e = new java . i o . F i l e (a rgs [0]) ;
try {

AppiaXML . loadAndRun (x m l f i l e) ;
} catch (org .xml . sax . SAXException e) {

. . .
} catch (java . i o . IOException e) {

. . .
}

}
}

Listing 7: Loading and Running a XML configuration file.

Appia distribution contains a little demo application, demo.xml.LoadConfig,
that loads and runs the configuration file whose name is passed as a com-
mand line argument. This little program serves pedagogical purposes only,
as it does not do adequate exception handling, it just prints the stack traces
of the exceptions. Nevertheless the reader might find it useful for testing
configurations that fit the requirement stated above.

7.3 Creating Execution Time Channels

Channels are created with a call to the static method createChannel() from
the AppiaXML class. This method takes five parameters, the name of the
channel, the name of the template, the sharing scope label (if used by any
session that belongs to the channel or null if not needed), the parameters to
be passed to selected sessions (see Section 7.5), and a boolean telling if the
channel is to be initialized, or more specifically, if a call to the start() method
from the channel should be made.

13

Suppose Ecco did not have any channel creation section defined in the
configuration file. After loading the configuration as shown above it would
be easy to create the channel in run-time time. The code to do this is shown
in Listing 8. To simplify the explanation, we will assume that this channel
does not need any parameters to be passed during initialization.

try {
appia . Channel ch = AppiaXML. createChannel (” e c c o c ” , ” e c c o t ” ,

null , null , true) ;
} catch (appia . AppiaException e) {

e . pr intStackTrace () ;
}

Listing 8: Creating a channel at runtime.

7.4 Exception Handling

In AppiaXML exceptions are handled a little different than in normal Java
programming. This is due to the fact that the XML parser forces any ex-
ception that may occur during the parsing to be thrown as a SAXException.
To circumvent this limitation the SAXException provides a way to wrap other
exceptions inside it.

Instead of catching all sorts of exceptions the user only catches a SAX-

Exception. It is then able to test if there is any wrapped exception with the
method getException() that returns the exception wrapped or null if none
exists. With the return exception the user can do the treatment she wishes2.

There are only four different exceptions that can be thrown by parsing
a configuration file: ClassNotFoundException, InstantiationException, IllegalAcces-

sException and AppiaException, the first three representing their usual meanings
described in the API Specification included in the Java documentation, and
the last one in [2].

To illustrate exception handling in AppiaXML we pick the previous exam-
ple from Listing 6 and complete it with an adequate differentiated treatment
of each possible exception. Listing 9 shows exactly this. The exceptions are
treated by specific methods created to handle them. The implementation of
these methods is not important in the current context and so is deliberately
omitted in the example.

java . i o . F i l e xm l f i l e = new java . i o . F i l e (a rgs [0]) ;
try {

AppiaXML. load (xm l f i l e) ;
} catch (org .xml . sax . SAXException e) {

2Detailed information on how to deal with exceptions wrapped in a SAXException can

be found on the Java API documentation, more specifically on the SAXException class

description.

14

Exception we = e . getExcept ion () ;
i f (we != null) {

i f (we instanceof java . lang . ClassNotFoundException)
System . e r r . p r i n t l n (‘ ‘ Some l ay e r class provided in the ’ ’ +
‘ ‘ c on f i gu r a t i on was not found ! ’ ’) ;

else i f (we instanceof java . lang . I n s t an t i a t i onExc ep t i on)
System . e r r . p r i n t l n (‘ ‘ Some class provided in the ’ ’ +
‘ ‘ c on f i gu r a t i on could not be i n s t a n t i a t e d ! ’ ’) ;

else i f (we instanceof java . lang . I l l e g a lAc c e s sExc ep t i on)
System . e r r . p r i n t l n (‘ ‘ In s tance o f some class (probably ’ ’ +
‘ ‘ a l ay e r) could not be c rea ted ’ ’) ;

else i f (we instanceof appia . AppiaException)
System . e r r . p r i n t l n (‘ ‘ Some channel could not be c rea ted ’ ’) ;

}
else e . pr intStackTrace () ;

} catch (java . i o . IOException e) {
System . e r r . p r i n t l n (‘ ‘ IO e r r o r ! Probably the f i l e was ’ ’ +
‘ ‘ not found or could not be red ’ ’) ;

}

Listing 9: Exception handling.

There are also two more exceptions that might be thrown: SAXParseEx-

ception and IOException. The first one results from errors reading the XML
file, like the structure not being in conformity with the DTD, or the DTD
not being accessible. The second one results from errors accessing the file.

7.5 Passing Parameters to Channels

Passing parameters at execution time raises some issues on the way to provide
access from sessions to their respective parameters. The solution devised is to
encapsulate all the parameters of all the sessions of the same channel in one
object. This object is an instantiation of the class appia.xml.utils.ChannelPro-

perties. This class provides two methods that allow the user to add and get
parameters for some selected session.

class appia .xml . u t i l s . ChannelPropert ie s {
void putParams (St r ing sessionName , S e s s i onPrope r t i e s params) ;
S e s s i onPrope r t i e s getParams (St r ing sessionName) ;

}

It was also necessary to introduce another object that encapsulates pa-
rameters for one session. This object is an instantiation of the class ap-

pia.xml.utils.SessionProperties and also provides several methods for adding and
getting each parameter.

class appia .xml . u t i l s . S e s s i onPrope r t i e s {
void s e tProper ty (St r ing paramName , St r ing param } ;
boolean getBoolean (St r ing paramName) ;
byte getByte (St r ing paramName) ;
short getShort (St r ing paramName) ;
int g e t I n t (St r ing paramName) ;
long getLong (St r ing paramName) ;

15

f loat ge tF loat (St r ing paramName) ;
double getDouble (St r ing paramName) ;
S t r ing g e tS t r i ng (St r ing paramName) ;
char [] getCharArray (St r ing paramName) ;

}

These two classes are very well documented in Appia’s javadoc. If the
reader wishes to take full advantage of these features please refer to these
documents. To illustrate the usage of these two classes we take the example
shown in Listing 8 and complete it with the parameters needed by the Ecco
layer.

appia .xml . u t i l s . S e s s i onPrope r t i e s sp =
new appia .xml . u t i l s . S e s s i onPrope r t i e s () ;

sp . s e tProper ty (” l o c a l p o r t ” , ” 2000”) ;
sp . s e tProper ty (” remotehost ” , ” foobar . d i . f c . u l . pt ”) ;
sp . s e tProper ty (” remoteport ” , ” 2000”) ;
appia .xml . u t i l s . ChannelPropert ies cp =

new appia .xml . u t i l s . ChannelPropert ie s () ;
cp . putParams (” e c c o s ” , sp) ;
try {

appia . Channel ch = AppiaXML. createChannel (” e c c o c ” , ” e c c o t ” ,
null , cp , true) ;

} catch (appia . AppiaException e) {
System . e r r . p r i n t l n (‘ ‘ Error c r e a t i ng channel ’ ’) ;

}

Listing 10: Passing parameters to a channel at runtime.

The reader should now look carefully to the similarities between this
code and the channel creation part of the XML configuration file shown in
Listing 1.

7.6 Developing Parameterizable Sessions

In order to use the facilities provided by AppiaXML that allow the pas-
sage of parameters to sessions either at configuration time (Section 6.2) or
at execution (Appendix 7.5), the session should implement the interface ap-

pia.xml.interfaces.InitializableSession.
This interface declares only one method. This method takes as argument

a SessionProperties object that holds that parameters to be passed to the
session. It is up to the programmer to retrieve this values as explained in
Appendix 7.5 and do whatever is necessary with them.

interface appia .xml . i n t e r f a c e s . I n i t i a l i z a b l e S e s s i o n {
void i n i t (appia .xml . u t i l s . S e s s i on sPrope r t i e s params) ;

}

16

8 Example

To demonstrate the features offered by AppiaXML an example application
was developed. This application is a Messenger -like application used as
a group communication tool. It allows an user to send messages to the
other members of the group and also features a whiteboard drawing area
shared by the group. The application can be found in demo.xml.Messenger. A
more detailed description of its internals and behavior can be found in the
respective section in Appia’s javadoc.

This application is provided as a pedagogical tool as it enables users
to explore different channel configurations. For that purpose two useless
protocols were developed: appia.test.xml.PeriodicSendSession and appia.test.xml.

IntegritySession, which can be used for different configurations. Once more,
details on these protocols can be found in their respective javadocs from
Appia’s main javadoc.

8.1 Running the Test Application

A GossipServer is required by the application to support group communication
[3]. In order to run this server the user has to issue the following command:

java gossip.GossipServer -port <port>

Finally, the application can be executed with the following command:

java demo.xml.Messenger <username> <gossip host> <gossip port>

<xml file> <secret>

All the parameters have their usual meaning. The last one should only be
used when the Integrity protocol is being used and represents the secret3 that
should be shared by all users of the group.

8.2 Experimenting with Messenger

AppiaXML is very easy to learn by example. As we said above in this section,
we developed the Messenger application along with the two useless protocols
as pedagogical value to combine well with this tutorial. We, thus, encourage

3This secret is a string that is shared by all the members of a group to ensure the

integrity of the exchanged messages. For more details on this refer to the source code of

the Integrity protocol provided.

17

the reader to experiment with these protocols or with any others available
or developed for that purpose.

The user may find useful to compare the excerpt of a possible configura-
tion shown in Listing 11 with the one provided by default with the Messenger

demo named messenger.xml in the demo/xml directory. The complete con-
figuration used in Listing 11 is also provided with the demo and is available
in the file named messenger int.xml.

1 . . .
2 <s e s s i o n name=” i n t e g r i t y ” shar ing=” g l oba l ”>
3 <protoco l>
4 appia . t e s t . xml . I n t e g r i t yLaye r
5 </protoco l>
6 </s e s s i on >

7 <s e s s i o n name=”msg” shar ing=” l a b e l ”>
8 <protoco l>
9 appia . t e s t . xml . MessengerLayer

10 </protoco l>
11 </s e s s i on >

12 . . .

Listing 11: Experimenting with the configuration.

The session introduces a new layer bellow the application layer that does
integrity checking of messages. This layer is also shared by all channels that
wish to use it. As the reader can see, by simply adding three lines in the
configuration file, it is possible to add new layers that add extra properties
to the channel.

18

9 Conclusions

This tutorial presents an extension to Appia called AppiaXML that allows
the configuration and creation of channels using a description in XML. The
usage of this extension simplifies the proccess of deploying and reconfiguring
communication stacks.

Along the document the reader is invited to experiment with AppiaXML
using a simple application called Ecco developed for this purpose.

19

A AppiaXML DTD

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<!ELEMENT appia (template ∗ , channel∗)>
<!ELEMENT template (s e s s i o n+)>
<!ATTLIST template

name CDATA#REQUIRED>

<!ELEMENT s e s s i o n (p r o t o c o l)>
<!ATTLIST s e s s i o n

name CDATA#REQUIRED

shar ing (private | label | g l oba l) #REQUIRED>

<!ELEMENT pro t o co l (#PCDATA)>
<!ELEMENT channel (ch s e s s i on ∗)>
<!ATTLIST channel

name CDATA#REQUIRED

template CDATA#REQUIRED

i n i t i a l i z e d (yes | no) #REQUIRED

label CDATA#IMPLIED>

<!ELEMENT ch s e s s i on (parameter∗)>
<!ATTLIST ch s e s s i on

name CDATA#REQUIRED>

<!ELEMENT parameter (#PCDATA)>
<!ATTLIST parameter

name CDATA#REQUIRED>

20

References

[1] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible protocol kernel
supporting multiple coordinated channels. In Proceedings of the 21st
International Conference on Distributed Computing Systems, pages 707–
710, Phoenix, Arizona, April 2001. IEEE.

[2] H. Miranda, A. Pinto, and L. Rodrigues. Application Program Inter-
face Specification of Appia (version 1.2). Departamento de Informática,
Faculdade de Ciências, Universidade de Lisboa, July 2001.

[3] A. Pinto. Appia Group Communication Manual. Departamento de In-
formática, Faculdade de Ciências, Universidade de Lisboa, February 2001.

21

