
Appia Group Communication

Alexandre Pinto
apinto@di.fc.ul.pt

Oct 2005

Contents

1 Introduction 2

2 Protocols 2
2.1 View Change - Intra . 2
2.2 Virtual Synchrony Enforcer - VSync 3
2.3 Reliable Group Message Delivery - Stable 3
2.4 View Merging - Inter and Heal 4
2.5 Other . 5

3 Events, Message and ExtendedMessage 5

4 Session development How-To 5

5 Example 6

6 Protocol Summaries 6
6.1 bottom . 6
6.2 suspect . 7
6.3 sync . 8
6.4 stable . 9
6.5 intra . 10
6.6 inter . 11
6.7 heal . 12
6.8 leave . 12

1

1 Introduction

In this document we assume you are familiarized with Appia [5] Application
Program Interface [1].

Despite Appia being designed to support several communication paradigms,
it is offered with support for Group Communication. To achieve this, Appia of-
fers several protocols. The protocols were developed to provide all the necessary
mechanisms to enforce virtual synchrony [2].

Virtual synchrony is a Group Communication paradigm that basically states
that all participants in a group, see the membership of the group in the form
of views, and that all see the same view changes in the same order. There is a
total ordering of the views. It also states that all messages sent within a view
are delivered in that view, and if a view change is necessary then all messages
of the current view are delivered before the new view is installed. Therefore, to
provide a correct view change three major steps are necessary:

1. The group must be blocked, to guarantee that step 2 will terminate.

2. All group messages received by any member are delivered to all members
before the new view.

3. The new view is delivered to all members.

The view changes occur because we expect the groups to be dynamic, that
is, members will fail and leave the group, while new members will join the group.

Appia Group Communication protocols where inspired heavily on those
present in the Ensemble [4] system. Many names are common, although some
of the functionality was changed to adapt to the different needs and capabilities
of Appia.

This document presents an introduction to those protocols, it explains how
they should be put together and presents an example.

2 Protocols

All the Group Communication protocols are necessary only to guarantee the
correctness of the view changes. In fact they all work only to that end. The
rest of this manual assumes that when the term “messages” is used we mean
any event descendent of GroupSendableEvent. That class is the superclass of all
events that will be sent to other members.

The Group Communication layers assume that reliable point-to-point com-
munication with FIFO order is offered by the underlying layers.

2.1 View Change - Intra

The view change is performed by the intra protocol. However this protocol
doesn’t guarantee the correctness of the view change. This is done by the sync
protocol. The intra protocol is implemented by the IntraLayer and correspond-
ing IntraSession. It starts the view change in response to either a failure or a
ViewChange request. It then sends a NewView event that will go from top down-
wards. The protocols that guarantee the correctness of the view change capture
this event and only release it when their respective protocols have ended. After

2

reception of the NewView event, the IntraSession will send a PreView event that
will also go from top downwards. This event contains a proposal for the new
view to install, without any failed members. Layers that wish to change the
composition of the view to be installed, change the view in this event. Upon
reception of the PreView event, the IntraSession will install exactly the same
view it received in this event. This steps are performed only at the coordinator.
The propagation of the new view to the rest of the group is done using the
InstallView event. All the members retransmit the event when they receive it,
ensuring that all members receive the new view before any message sent in that
view, without casual order being offered by the underlying layers.

2.2 Virtual Synchrony Enforcer - VSync

The correctness of the view change, particularly regarding the virtual-synchrony
paradigm, is guaranteed by the sync protocol and implemented by the VSyn-
cLayer and corresponding VSyncSession. When the VSyncSession receives a
NewView event it starts the protocol by sending a Block event to all members.
After the protocol has started a BlockOk event will go through the channel from
top downwards. All layers should accept this event. The reception of the event
notifies the layer that the group must be blocked, prior to a view change, and
that the layer must stop sending messages until the new view is installed. The
layer may hold the event for the time necessary to send any important messages,
but when it releases the event it agrees that it will not send any more messages.
Failure to do so may cause unpredictable behavior. When a member is blocked,
it replies to the view coordinator with information regarding the number of
messages it has sent and received from each member. These counters are suffi-
cient due to the reliable FIFO properties offered by the underlying layers. After
all members are blocked, the coordinator will send to all members information
regarding the messages they must receive in the Sync event. The sync protocol,
relies on the stable protocol 2.3 to deliver the same messages to all members.
When all members have received all the messages they are supposed to, ie, when
the messages received counters reach the desired value, they reply with the Sync
event, and the coordinator will release the NewView event, allowing the view
change to continue.

2.3 Reliable Group Message Delivery - Stable

As said, the sync protocol relies on the stable protocol to deliver all the view
messages to all the members. As such the stable protocol, implemented by the
StableLayer and corresponding StableSession, in effect offers reliable broadcast [3].
The protocol uses a table containing the messages received from each member
(y axis), for all members (x axis). Each member has a replica of the table. The
table is constructed by each member periodically sending its line of the table,
ie, the messages received by that member from each member. The messages
sent by the member corresponds to the messages received from himself. The
information is piggybacked in regular group messages. During normal operation
the StableSession only maintains the mentioned table, and keeps a copy of each
message received from another member, in a StableStorage object. Due to the
reliable FIFO properties offered by the underlying layers, it doesn’t keep copies
of its sent messages. When a member fails the tables are consulted to see if

3

some of the messages sent by the failed member were received by a subset of
the remaining members. If so the members that didn’t receive these messages,
ask the lowest rank member that received the messages to resend them.

2.4 View Merging - Inter and Heal

As with Ensemble, in Appia Group Communication protocols there isn’t a join
operation, in other words, there isn’t a mechanism by which a member may join
a group. Instead there is only the merge mechanism, in which two different views
of the same group are merged together to form a new view. This mechanism is
necessary to withstand network partition and recovery. In practice this means
that when a member wishes to join a group, it creates a view with a single
member, himself, and then the merge protocol will take over and merge that
view with an existing view, if one exists.

There are concurrent views when two or more distinct views of the same
group coexist simultaneously. This can be due to network dynamic reconfigu-
rations causing network partitions. This is a problem that is solved by merging
the concurrent partitions. The implemented merge mechanism is divided in two
parts:

1. Concurrent view detection.

2. Concurrent view merge.

Lets start by the latest. The view merge is performed by the inter protocol,
implemented by the InterLayer and corresponding InterSession. Currently it
allows for several different views to merge in a single view change. It functions by
implementing a flooding consensus[3] algorithm that will decide on the ordered
set of views that will merge. The new view is inserted in the view change process,
by capturing the PreView event and replacing the contained view by the new
merged view. Communication between the coordinators of the views to merge
must be reliable FIFO, therefore the layers below the Group Communication
are used.

View detection is performed by the heal protocol, implemented by the Heal-
Layer and corresponding HealSession. Detection is done using any one of the
following mechanisms:

• An external server, the GossipServer;

• A dedicated (gossip) multicast address;

• The multicast messages sent by the views in regular operation, that are
received by the other views.

Communication with the GossipServer or through the dedicated multicast
address is done through a different Appia channel, that must offer only FIFO
order and message failure detection. Deliver guarantee isn’t necessary. The
bridge between the main Group Communication channel and the gossip channel
is done by the GossipOutLayer and corresponding GossipOutSession. The event
used in that communication is the GossipOutEvent. Only the view coordinator
sends gossip messages, that announce the view existence.

The GossipServer is an external service that receives messages from processes
and retransmits the messages to all known processes, that is processes from

4

which it has already received messages. It can be viewed as a mean to achieve
a pseudo-broadcast. To tolerate network partitions the service may function as
a group of distributed, replicated, servers.

2.5 Other

The remaining layers are devoted to several auxiliary functions. The failure
detection is performed by the suspect protocol, implemented by the SuspectLayer
and corresponding SuspectSession.

There is a simple protocol named bottom, implemented by GroupBottomLayer
and corresponding GroupBottomSession. As the name implies, the layer must be
the bottommost layer of the Group Communication layers. The layer performs
the interface between the Group Communication layers above, and the point-
to-point layers below. For instance it converts from group Endpt to network
addresses.

3 Events, Message and ExtendedMessage

Communication between layers in Appia is done with events. To pass values
between layers there are two possible ways. Within the same stack, the values
can be passed in the attributes of the event object. Between layers in different
stacks, different processes, the values must be passed within the Message. The
Message is a component of all SendableEvents and it constitutes the payload
of all messages that are sent through the network. If a layer wishes to add its
own header to the message that will be sent to other processes, then it adds the
header to the events Message.

In the design of the Message the main inspiration came from x-kernel mes-
sages. There were some changes to adapt it to Java, but the functions are exactly
the same, although with different arguments. In Java all data structures are ob-
jects, therefore the usual header would also be an object. Because Java offers
the possibility to serialize an object, Appia offers a new class that extends the
original Message with direct object manipulation, pushObject and popObject.
This new class is called ExtendedMessage and retains all functionality previ-
ously offered by Message. Due to Java serialization restrictions, all objects that
are put in a ExtendedMessage must implement the java.io.Serializable interface.
The ExtendedMessage also offers methods to insert and retrieve all basic types.

Due to the object serialization mechanisms of Java, pushing and popping an
object using ExtendedMessage has performance deficiencies.

4 Session development How-To

A new application session that uses Appia Group Communication protocols,
must satisfy the following rules:

1. The layer must specify that it provides a GroupInit event and accepts View
and BlockOk events.

2. The group communication protocols must be started by sending a GroupInit
event. It must contain the initial view. To set/get the information neces-
sary to create the initial view, it is normally required that:

5

(a) A RegisterSocketEvent is sent and the response received, specifying
the IP port to which the transport session (UDP or TCP) will bind.
The returning RegisterSocketEvent will contain the member address.

(b) If IP multicast is to be used, then a MulticastInitEvent must be sent
and the response received, specifying the multicast address to use.

3. The session must handle BlockOk events. When such event is received the
layer must eventually forward it (go() method). After that the session
must not send new group events until a new view is received. It may still
receive events sent by other members.

4. The session must handle View events, that notify the install of a new view.

5. All events sent to the group must descend from GroupSendableEvent. The
dest field is always ignored1. The source field is only valid in received
events, and contains the identification (Endpt) of the sender. The orig
field is also only valid in received events and contains the rank in the
current view of the sender.

5 Example

With the distribution comes an example application. The application can be
executed with the following command:

java -cp ¡Appia classes path¿ demo.Appl -port ¡IP port¿ -gossip { ¡IP
host:port of the gossip server¿ — ¡gossip multicast address¿ }

The Appl class does only channel initialization, while the application func-
tionality is performed by classes in the “appia.test.appl” package.

As said, a Gossip server may be required. The server may be started using
the following command:

java -cp ¡Appia classes path¿ gossip.GossipServer [-port ¡IP port¿]

The “port” is the IP port where the server will be receiving messages. Defaults
to 10000.

6 Protocol Summaries

6.1 bottom

Layer name : GroupBottom

Synopsis : Group Bottommost layer

Description : Interface between Group Communication layers and point-to-
point layers.

Provided events :
1See documentation regarding the appia.protocols.group.events.Send on how to send a mes-

sage to a subset of the view members

6

• OtherViews ():
Notifies the reception of an event from a different view of the group.

Used events :

• View (require):
The current group view.

• GroupSendableEvent (accept):
Up events are checked if they belong to the current view. The group
and view id is added to Down events.

• GroupEvent (accept):
Checks if they belong to the current view.

• GroupInit (accept):
Gets IP multicast address, if provided.

• OtherViews (accept):
Sets the behavior regarding events received from a different view of
the group.

• Debug (accept):
Starts showing debugging information.

Layer dependability : Must be the lowest of all Group Communication lay-
ers.

Author : Alexandre Pinto

6.2 suspect

Layer name : Suspect

Synopsis : Suspects possible failures.

Description : Failure detector. Propagates suspicions to other group mem-
bers.

Provided events :

• Alive ():
Periodically sent to all group members, if no application messages
are sent, notifying this member is still alive.

• Suspect ():
Used to propagate suspicions to other members.

• Fail ():
Local notification that a member has failed.

• SuspectTimer ():
Timer to send Alive messages.

• EchoEvent ():
The Fail event is sent upwards within an echo event to go through
the entire stack.

Used events :

7

• View (require):
The current group view.

• Alive (accept):
Periodically received, notifying the sender member is still alive.

• Suspect (accept):
Used to receive suspicions from other members.

• GroupSendableEvent (accept):
Avoids the sending of Alive messages.

• FIFOUndeliveredEvent (accept):
Sent by the FIFO layer, notifying it couldn’t deliver an event. The
destination member is suspected.

• TcpUndeliveredEvent (accept):
Sent by the TcpComplete layer, notifying it lost communication with
a member. The destination member is suspected.

• SuspectTimer (accept):
Timer to send Alive messages.

• Debug (accept):
Starts showing debugging information.

Layer dependability :

Author : Alexandre Pinto

6.3 sync

Layer name : VSync

Synopsis : Enforces virtual-synchronous view change.

Description : Blocks all group members, and checks if all members have re-
ceived the same messages, before the view change.

Provided events :

• Block ():
Used to notify the group members that they should block. Used also
to gather information regarding messages received.

• BlockOk ():
Used to notify the above layers that they must stop sending messages.

• Sync ():
Used to inform the group members of the messages they must receive.
Used also to notify that a member has received all messages.

• EchoEvent ():
The BlockOk is sent upwards within an echo event.

Used events :

• View (require):
The current group view.

8

• NewView (require):
Received when a view change is necessary.

• Block (accept):
Received when the blocking of the group is necessary.

• BlockOk (accept):
Received when all the above layers have agreed not to send more
messages.

• Sync (accept):
Received with information about the messages it must receive.

• Fail (accept):
Received when a member fails, that member is excluded from the
blocking protocol.

• Debug (accept):
Starts showing debugging information.

Layer dependability : Bellow there must be a Intra layer.

Author : Alexandre Pinto

6.4 stable

Layer name : Stable

Synopsis : Stabilizes current view messages, offering reliable broadcast.

Description : Guarantees that all group messages received by any alive mem-
ber, are received by all alive members.

Provided events :

• StableGossip ():
Used to disseminate stability information between the group mem-
bers.

• Retransmit ():
Sent to a specific member to request the retransmission of a set of
messages.

• Retransmission ():
The retransmission of a message that requires stabilization. In re-
sponse to a Retransmit event.

Used events :

• View (require):
The current group view.

• StableGossip (accept):
Stability information from another group member.

• Retransmit (accept):
Request to retransmit a set of messages stored.

• Retransmission (accept):
The retransmission requested by an earlier Retransmit event.

9

• GroupSendableEvent (accept):
Events to stabilize. To Down events is added a sequence number.
Up events are registered has being received and stored for possible
retransmissions.

• Fail (accept):
Received when a member(s) fails. Tries to stabilize messages from
the failed member(s).

• PeriodicTimer (require):
StableGossip events are sent periodically, but for optimization it is
used a periodic timer set by another layer, for example Suspect.

• Debug (accept):
Starts showing debugging information.

Layer dependability :

Author : Alexandre Pinto

6.5 intra

Layer name : Intra

Synopsis : Intra view change.

Description : Performs a view change. It interacts with other layers to guar-
antee a correct view change.

Provided events :

• View ():
Propagates locally a new group view.

• InstallView ():
Propagates to other members a new group view.

• NewView ():
Notifies the start of a view change.

• PreView ():
Contains a proposal of the composition of the new view.

• EchoEvent ():
The View event is sent downwards within a Echo event, so that all
layers receive the new view. The NewView and PreView events are
sent upwards within a Echo event, to notify all above layers.

Used events :

• GroupInit (require):
Contains the first view.

• NewView (accept):
Received when the group is ready to continue the view change.

• PreView (accept):
Received with the new view it must install.

10

• InstallView (accept):
Contains a new view to install, sent by the group coordinator.

• View (accept):
The new view.

• Fail (accept):
A member has failed, so a new view change is required.

• ViewChange (accept):
Request to perform a view change.

• Debug (accept):
Starts showing debugging information.

Layer dependability :

Author : Alexandre Pinto

6.6 inter

Layer name : Inter

Synopsis : Inter view change.

Description : Performs the merge of two concurrent views of the same group.

Provided events :

• ViewChange ():
To request a view change to the Intra layer.

• MergeEvent ():
Used to communicate with the coordinators of other views to merge.

• MergeTimer ():
Each execution of the merge algorithm has a minimum and maximum
duration, implemented using two timers.

Used events :

• View (require):
The new view.

• MergeTimer (accept):
A merge will only terminate after the reception of the timer corre-
sponding to the minimum duration, and will abort if the timer corre-
sponding to the maximum duration is received before the algorithm
ends.

• PreView (accept):
Received when the group is ready to change view. Resent when the
merge protocol has ended, with the merged view to install.

• MergeEvent (accept):
Received from the coordinators of the views to merge.

• ConcurrentViewEvent (accept):
Received from the Heal layer, notifying there is a concurrent view of
the group, and a merge may be required.

11

• Debug (accept):
Starts showing debugging information.

Layer dependability : Below there must be an Intra layer. Above there must
be a Heal layer.

Author : Alexandre Pinto

6.7 heal

Layer name : Heal

Synopsis : Concurrent views detection.

Description : Detects the existence of concurrent views of the group.

Provided events :

• ConcurrentViewEvent ():
To notify the Inter layer that a concurrent view exists and a merge
is necessary.

• GossipOutEvent ():
Used to communicate with the GossipServer.

• HelloEvent ():
Used to communicate with concurrent views through the group mul-
ticast address, if used.

Used events :

• View (require):
The current view.

• PeriodicTimer (require):
The group and view id are disseminated periodically. For optimiza-
tion it is used a periodic timer set by another layer, for example
Suspect.

• GossipOutEvent ():
Event received with a group and view id.

• Debug (accept):
Starts showing debugging information.

Layer dependability : Below there must be an Inter layer. If multicast is
not used then below there must be a GossipOut layer.

Author : Alexandre Pinto

6.8 leave

Layer name : Leave

Synopsis : Leave protocol.

Description : Gracefully removes a member from the group. Forces a view
change.

12

Provided events :

• ViewChange ():
To request a view change to the Intra layer.

• ExitEvent ():
Used to notify the leaving members they have left the group.

Used events :

• View (require):
The new view.

• PreView (require):
The new view that will be installed. Released without the members
that requested to leave.

• LeaveEvent (accept):
Request to leave the group.

• ExitEvent (accept):
Received when the member has left the group.

• Debug (accept):
Starts showing debugging information.

Layer dependability : Must be above the Stable layer. Below there must be
a Intra layer.

Author : Alexandre Pinto

References

[1] Appia protocol development manual. http://appia.di.fc.ul.pt/docs/appia-
pdm.pdf.

[2] K. Birman. Virtual synchrony model. Technical report, Cornell University,
July 1993.

[3] Rachid Guerraoui and Luis Rodrigues. Introduction to Reliable Distributed
Programming. Springer, 2005.

[4] M. Hayden. The Ensemble System. PhD thesis, Cornell University, Com-
puter Science Department, 1998.

[5] Hugo Miranda, Alexandre Pinto, and Lúıs Rodrigues. Appia, a flexible pro-
tocol kernel supporting multiple coordinated channels. In Proceedings of The
21st International Conference on Distributed Computing Systems (ICDCS-
21), page to appear, Phoenix, Arizona, USA, April16–19 2001. IEEE Com-
puter Society.

13

