What’'s New in Core Data on iOS

Session 303

Adam Swift
Senior Software Engineer

These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Roadmap

« Concurrency

* Data protection

* Ordered relationships
* UIManagedDocument
*iCloud

* Incremental stores

* Developer tools

Concurrency

NSManagedObjectContext

* New concurrency types
* Block-based methods
* Nested contexts

Where We Were

Thread confinement

Serial Queue 1 Serial Queue 2 Concurrent Queue

Block 1 Block 2 Block 4
MOC 1 MOC 2 MOC 3

Block 3 Block 6
MOC 1 MOC 4

Block 5
MOC 1

Thread Confinement

* Separate contexts for each thread
* Managed objects owned by their context
* ObjectIDs are safe, immutable value objects

Thread Confinement

* Easy to understand
» Safe and efficient for transactions
*But...

- Coordination left as exercise to reader

- Tracking which context goes with which thread
- Passing changes between threads

What's a Framework to Do?

Formal Concurrency Policies

* New NSManagedObjectContext initializer

* -initWithConcurrencyType:
NSConfinementConcurrencyType
NSPrivateQueueConcurrencyType
NSMainQueueConcurrencyType

NSConfinementConcurrencyType

* Same behavior and restrictions as iOS 3.0-i0OS 4.3

* Thread confinement
* MOCGCs only messaged by thread or queue that created them

* Default behavior

NSPrivateQueueConcurrencyType

*New to 10.7 and iOS 5
* Can only be called on its own private queue

» Use —-performBlock:
* Within block use MOC APIs normally

NSMainQueueConcurrencyType

* Similar to private queue

* Queue is always the main queue

Ul and controllers on main thread can message directly
* Other threads must use -performlock:

* Convenient for receiving results

Queue-Based Concurrency

* New context initializer

—initWithConcurrencyType:

NSMainQueueConcurrencyType
NSPrivateQueueConcurrencyType

Block-based API

—-performBlock:

—performBlockAndWait:

-performBlock:

* Asynchronous

* A“user event”

* Convenient autorelease pool

* No support for re-entrancy

*lllegal to throw an exception out of your block

-performBlockAndWait:

* Synchronous

* Not an event

* No autorelease pool

* Supports re-entrancy

*lllegal to throw an exception out of your block

What's a User Event?

* Automatic as application main event loop
* Provides:

- Change coalescing

- Delete propagation

-Undo

- NSNotifications

* Time in between calls to -processpPendingChanges

Queue Is Private

* Do not use dispatch_get_current_queue
* To use libdispatch or NSOperation APIs

- Trampoline through your own queue
- Capture references in your blocks

Interfacing with libdispatch

* Create a dispatch group

* Call dispatch_group_enter

* Worker block call dispatch_group_leave

» Use dispatch_group_wait and dispatch_group_notify normally

Nested NSManagedObjectContext

Nested Contexts

* Parent Context

setParentContext: .
MOC 2 Child

|

MOC 1 Parent

|

u Store

Why Use Nested Contexts?

* Asynchronous saves

* Sharing unsaved changes between MOCs
- Inheriting changes in a detail inspector

* Background fetching

Asynchronous Save

* Save child
* Asynchronously ask parent to save
* UIManagedDocument

Asynchronous Save

NSManagedObjectContext *xchild, *parent;

parent = [[NSManagedObjectContext alloc]
initWithConcurrencyType:NSPrivateQueueConcurrencyTypel;

[child setParentContext:parent];

/] v

[child save:&error];

[parent performBlock:”™{

[parent save:&parentError];

+;

Sharing Unsaved Changes

* Shared parent context
* Push to parent
* Pull in peer child

Inheriting Changes in Detail Inspector

* Create a child context

* Save pushes changes into parent

* Fetch incorporates unsaved changes in parent
* Toss child context to cancel detail changes

Things to Remember

* Saving only pushes changes up one level

* Fetching pulls data through all levels

- —objectwithin: pulls fewest levels necessary
* Parent contexts must adopt a queue type

Data Protection

Data Protection Intro

* Encrypt user data
* File-level protection
* Tied to user passcode

Data Protection Classes

* Declared in NSFileManager
* First introduced in iOS 4

NSFileProtectionNone

NSFileProtectionComplete

*New in iOS 5

NSFileProtectionCompleteUnlessOpen
NSFileProtectionCompleteUntilFirstUserAuthentication

First Boot

NSFileProtection Class Read/Write

Complete Unless Open

Complete Until First User Authentication

NSFileProtection Class Read/Write

Complete Unless Open : - I

Complete Until First User Authentication = I - I

Persistent Store Protection

* Persistent store option

NSPersistentStoreFileProtectionKey
* Use NSFileManager values
* Default in iOS 5

NSFileProtectionCompleteUntilFirstUserAuthentication

™ siide to unlock .

Usage Patterns

NSFileProtectionComplete

- Background tasks can’t access store while locked
NSFileProtectionCompleteUnlessOpen

- Background tasks can’t open store while locked

NSFileProtectionCompleteUntilFirstUserAuthentication

- Core Location region monitoring may trigger access before first unlock

Ordered Relationships

Sorting vs. Ordering

Price ¥v

* Sorting by value

$260

- Derived 5600
- Change your view $260

* Arbitrary ordering

Shopping List

" |_|St Bread

= Flexible control Ebgese
Ebgese

- Not tied to any intrinsic value
Apples

Ordered Relationships

* Assign positions in to-many relationships
* NSOrderedSet
* More like an array than a set
- Subclass of neither
* Performance impact from ordering and uniquing

Ordered Relationships

" Ubiquitousjournal - Ubiquitousjournal.xcdatamodel

) B Ubiqui nal.xc EN:

ENTITIES Relationship

@ WEntry Name entries
E] Destination | UJEntry
FETCH REQUESTS Inverse | photos

CONFIGURATIONS Properties (| Transient (/ Optional
@ Default Arranged (¥ Ordered
Plural ;/ To-Many Relationship

Count Optional |+ Minimum

SIEnESy Jnlimited |[5 Maximum
¥ Attributes
text Delete Rule | Nullify 3
timestamp
title
V’Rglatioﬁshrias i
photos) User Info

Advanced Index in Spotlight
Store in External Record File

Versioning
‘ Relationship Sync
UJPhotoMetadata |
¥ Attributes ‘
filename |
photolDStr |
¥ Relationships |

O. L+

Outline Style Add Fetch Request Add Attribute Editor Style

Ordered Relationships

7 Ubiquitousjournal - Ubiquitousjournal.xcdatamodel %

.xcdatamodeld) [Ubiquitousjournal.xcdatamodel) [[3] UJPhotoMetadata) [7] entries 4/ > D Bl&|

7 Relationship
Name entries
Destination | UJEntry -
Inverse | photos

Pronerties Transient V Ontional
Arranged v/ Ordered
Plural ¥ To-Many Relationship

Count Optional ||+ Minimum
e UJEntry Unlimited (3 Maximum
‘texttm e Delete Rule | Nullify $
:::lneestamp Advanced Index in Spotlight
'¥ Relationships Store in External Record File
—>> photos ‘ » User Info

Versioning

Relationship Sync

[UJPhotoMetadata |
¥ Attributes ‘
filename ‘
|photolDStr |

[n ot L

38

Working with Ordered Relationships

* Generate accessors in Xcode 4

* Or use generic mutator
mutableOrderedSetValueForKey:

» Automatic KVC accessors are not available, yet

insertEvents:atIndexes:, removeObjectFromEvents:atIndex:

Observing Changes

* Key Value Observing with ordered collections

observeValueForKeyPath:ofObject:change:context:

* Change kinds
NSKeyValueChangeInsertion
NSKeyValueChangeRemoval
NSKeyValueChangeReplacement

Merging

Three-way merging can get hairy

Coordinator

) -]

Context

Merging

* We try to preserve relative ordering
* Performance is much slower than non-ordered

- Merging existence
- Merging position

Migration

* Non-ordered to ordered and back
* Lightweight migration gives arbitrary ordering
* Postprocess to impose ordering

Ordered Relationship Recap

* For arbitrary ordering
* Ordered collection KVC/KVO
* Performance

UlManagedDocument

Documents on iOS

* Integrated document architecture
* UIDocument gives you

- Autosaving
- iCloud integration
= Asynchronous I/0

Presidio

Storing Documents in iCloud Using iOS 5 Wednesday 3:15PM

UlManagedDocument

* UIDocument-based

* Adds Core Data features
- Scale
- Undo
- Graph management
= Searching and sorting
- Conflict resolution

Using Managed Documents

* Concrete UIDocument subclass
* Instantiate and configure
* Read data model from app bundle

Asynchronous I/O

* Don't freeze Ul
* Caller initiates open/read/save

- Save takes snapshot synchronously
- Provide completion handler block

* Load/write run on background queue

Asynchronous Load

* Simply add store at open
* Add store on background queue

- Usually no reading
- Migrate in background

Main Queue open. .. Completion Block

Background Queue —addPersistentStore... /

Asynchronous Write

* Nested contexts
* Document’s context on main queue

- Takes snapshot
= Saves to parent

* Parent context saves to disk on background queue

Main Queue save... Doc’s Context save: Completion Block

Background Queue /

write... Parent Context save:

Unmodeled Data

* Large files should live outside the database
* Handle additional content

» Stored in document file package

* Optional API for subclasses

Additional Content API

* Read additional content

readAdditionalContentFromURL:error:

* Snapshot for save

additionalContentForURL:error:

* Write additional content on background queue

writeAdditionalContent:toURL:originalContentURL:error:

Summary

* UIDocument architecture
 Powerful Core Data features
* Unmodeled content
*iCloud integration

iCloud

Nick Gillett
Software Engineer

Core Data, iCloud, and You

* Sync data between devices and computers
* Easy integration
* Automatic conflict resolution

iCloud
What do you get?

» Works with existing stores

* Per record conflict resolution
* Only deltas are sync'd

* Asynchronous import

* Three-way merge

Three-Way Merge

Preserve Changes Between Systems

Johnny Johnny

Doe > Appleseed

/ '|ohn@.'.com john@@.com

John Johnny
Doe Appleseed

john@@.com '|ohnny@§.com

\ -
> Doe

'ohnny@!’ .com

Less Code
Your part

* Options when adding persistent store
* Respond to import notification

Less Code
Our part

* Handle integration

= NSFileCoordinator
= NSFilePresenter
- NSMetadataQuery

* Export changes
* Import changes

How does this work?

New API

* Persistent Store Options

* NSPersistentStoreUbiquitousContentNameKey
* NSPersistentStoreUbiquitousContentURLKey

* Notification

* NSPersistentStoreDidImportUbiquitousContentChangesNotification

NSPersistentStoreUbiquitousContentNameKey

detamgllite

(Oseisithesiddtea.sqlite

fdonttgbardc.

08306048, store

NSPersistentStoreUbiquitousContentURLKey

* Optional
* Provide your own if

- Ubiquity Container ID != Bundle ID
- Document syncing

* Opaque Package

NSPersistentStoreUbiquitousContentURLKey

e Defaults to main bundle identifier

NSString xbundleID = [[NSBundle mainBundle] bundleldentifier];
NSURL xcontentURL = [[NSFileManager defaultManager]
URLForUbiquityContainerID:bundlelID];

NSPersistentStoreDidimportUbiquitousContentChangesNotification

* Object
= NSPersistentStoreCoordinator

e User Info

 NSInsertedObjects
- NSUpdatedObjects
- NSDeletedObjects

- Collections of NSManagedQObjectIDs

NSPersistentStoreDidimportUbiquitousContentChangesNotification

Responding to an import

 Similar to NSManagedObjectContextDidSaveNotification
* Refresh unchanged objects
* Merge changed objects

Document Syncing Alternatives

* Atomic stores can sync as whole files
- SQLite should not be
* Whole store syncing

- Don't need ubiquitous store options
= Last writer wins
« Use UIDocument conflict resolution APlIs

Tips and Tricks

Good ideas

NSPersistentStoreDidImportUbiquitousContentChangesNotification

* Use appropriate merge policy
NSMergeByPropertyStoreTrumpMergePolicy
NSMergeByPropertyObjectTrumpMergePolicy

* Anticipate bandwidth constraints

* Use .nosync

Incremental Stores

Why Do | Care?

XML-RPC

CouchDB In Memory

PostgreSQL

ThriftDB

Incremental Store

* Talk to your data source in its own language

{ variety : “Brooks” ,
reviews : [{ rating :
{ rating :
{ rating :

“Favorite!”} ,

“Best early choice” },
“Season is too short” } 1 }

Incremental Store

* Talk to your data source in its own language
* Load only the data you need

Mark Perlson

Tom McNeil

Sumeera Razul

Lea Longo

Trisha Zarin

Greg Apodaka

Elisa Rossi

Jack Simon

Hari Seshaiah

Derrick Thornton

Incremental Store

* Talk to your data source in its own language
* Load only the data you need
* Supports faulting

| promise to have data when you want it

| promise to have data when you want it

| promise to have data when you want it

| promise to have data when you want it

| promise to have data when you want it

| promise to have data when you want it

Incremental Store

* Talk to your data source in its own language
* Load only the data you need

* Supports faulting

* Flush unused data

Mark Perlson

Sumeera Razul

Lea Longo

Trisha Zarin

Jack Simon

Derrick Thornton

Control Flow
How does it work?

valueForKey: Fetch Request

addPergistentStoreOfType:

NSIncrementalStoreNode
Data in a format Core Data can use

initwathelrpeetrdppedyb#s turapiiension:

Talking to the Store

NSPersistentStoreRequest and Friends

* New base class
* NSSaveChangesRequest
* Reparented NSFetchRequest

Requesting Data from the Store
NSFetchRequest

* Flags that affect results
* Flags that affect performance
» Graceful degradation

Implementation Details

* Object ID mapping APIs supplied

* Get managed objects from context
objectWithID:

Integration Points

* SQL generator not included
- Canned queries
* JSON provider in Foundation

General Design Tips

* Design to a specific schema
* Balance I/0O and memory

- Cache (API not provided)
* Better to talk to web services

Developer Tools

Xcode 4

* New Ul

* Optimized models
 Readable, diffable models
* Scalar accessors

® 00

NVA
Table View

Y Ubiquitousjournal -

Ubiquitousjournal.xcdatamodel

e >

XC » [UEntry) [) photos

ENTITIES
IE]

(@ ujPhotoMetadata
FETCH REQUESTS

CONFIGURATIONS
@ Default

O.

Outline Style Add Fetch Request

Attributes
Attribute

B text
() timestamp
B title

+

Relationships
Relationship
M photos

T

Fetched Properties
Fetched Property

Type
String +
Date v
String +

Destination Inverse
UJPhotoMetadata entries

Predicate

Relationship
Name photos
Destination | UJPhotoMetadata
Inverse | entries
Properties | | Transient (¥ Optional
Arranged Ordered
Plural {/To—Many Relationship
Count| Optional (3 Minimum
Maximum
Delete Rule | Nullify &
Advanced Index in Spotlight
Store in External Record File
User Info
Versioning

Relationship Sync

O

Add Attribute Editor Style

New Ul

Table View

® O O

% UbiquitousJournal - Ubiquitousjournal.xcdatamd

m | 4 > " Ubiquitousjournal) Ubiquitousjournal » Ubiquitousjournal.xcdatamodeld » iUbiquitousjournal.xcdatamodel » [[3 UJEnt
ENTITIES Attributes
(E] Attribute Type
3 uJPhotoMetadata B text String 4
[0) timestam Date &
FETCH REQUESTS titl . String A
CONFIGURATIONS + -
(@ Default
Relationships
Relationship Destination Inverse
M photos UJPhotoMetadata entries
+ f—

Fetched Properties
Fetched Property Predicate

86

NVA
Table View

= ©.

Outline Style Add Fetch Request

NVA
Table View

Relationship Sync

O.

Add Attribute Editor Style 1§} | & @B

burnal - Ubiquitousjournal.xcdatamodel

New Ul

Table View

) Ubiquitousjournal.xcdatamodel » {3 UJEntry » [] photos

<« > D B|S|

7 Relationship

Name photos

O

Destination | UJPhotoMetadata

“

Inverse = entries

Properties Transient v Optional
Arranged Ordered
Plural (¥ To-Many Relationship

Count Optional |5 Minimum
nited ||, Maximum
Delete Rule | Nullify =
Advanced Index in Spotlight
Store in External Record File
User Info

Versioning

Relationship Sync

89

New Ul

Diagram View

" Ubiquitousjournal - Ubiquitousjournal.xcdatamodel

) B Ubiqui nal.xc EN:

ENTITIES Entity

3@ wEntry Name UJPhotoMetadata
@ Class UJPhotoMetadata

FETCH REQUESTS Abstract Entity

Parent Entity No Parent Entity
CONFIGURATIONS

@ Default

Indexes

UJEntry
¥ Attributes
text
timestamp
title Versioning
V’Rglatioﬁshrias — Entity Sync
photos

User Info

Synchronization = Disabled

¥ Attributes
filename
photolDStr

¥ Relationships
\eﬂ[l’\ES

O. L+

Outline Style Add Fetch Request Add Attribute Editor Style

Optimized Model Format

* Speed up model loading
* Automatic with Xcode 4
* Lives in parallel with regular models

User Readable Xcode 4 Models

» Automatic in Xcode 4

- Transparent upgrade from old format
* XML-based
* Work with your favorite diff tools

Readable Models

" Ubiquitousjournal - Ubiquitousjournal.xcdatamodel

» 1 Ubiqui nal.xc) No Selection DB &
Identity and Type

ENTITIES
@ wEntry File Name Ubiquitousjournal.xcdatam

@ ujPhotoMetadata odel
File Type = Default - Core Data M...
FETCH REQUESTS
Location | Relative to Group

CONFIGURATIONS
I Ubiquitousjournal.xcda
@ Default tamodel

Full Path /Volumes/Source/
CoreData/
UJEntry Ubiquitousjournal/
¥ Attributes Ubiquitousjournal/
Ubiquitousjournal.xcdat
amodeld/
Ubiquitousjournal.xcdat
amodel

text

timestamp

Lk

¥ Relationships

photos) CoreData Model
Document Versioning

Mac OS X De... | Target Default
UJPhotoMetadata
¥ Attributes
filename Minimum Su... | Automatic (Xcode 4.1) v
photolDStr
¥ Relationships
entries ~ A Ubiquitousjournal

i0S Deploym... Not applic

Target Membership

¥ Source Control
Version 206729
Status No changes

Location svn+ssh://
ngillett@src.apple.com/
svn/devtech/Users/
ngillett/
Ubiquitousjournal/
Ubiquitousjournal/
Ubiquitousjournal.xcdat

6 amodeld/
2 Uhiaui nal.xcdat
Outline Style Add Fetch Request Add Attrik Editor Style DI}l =

Readable Models

9 UbiquitousJournal - Ubiquitousjournal.xcdatamodel %

<. » DB ®
7 Identity and Type

urnal » Ubiquitousjournal.xcdatamodeld » %Ubiquitousjournal.xcdatamodel » No Selection

File Name Ubiquitousjournal.xcdatam
odel

File Type | Default - Core Data M... =

Location | Relative to Group v

Ubiquitousjournal.xcda
tamodel

Full Path /Volumes/Source/
CoreData/
Ubiquitousjournal/

[¥ Attributes Ubiquitousjournal/

[text Ubiquitousjournal.xcdat
[timestamp am-odgld/

[title Ubiquitousjournal.xcdat
¥ Relationships amodel

—>> photos

UJEntry

’ CoreData Model

Document Versioning
Mac OS X De... Target Default v
UJPhotoMetadata :

iOS Deploym... Not applicable

¥ Attributes -
filename Minimum Su... | Automatic (Xcode 4.1) v II
photolDStr

V¥ Target Membership

¥ Relationships
entries e v ,:_ Ubiquitousjournal

Source Control
Version 206729
Status No changes

94

Scalar Accessors

* Avoid overhead of value object construction
* Checkbox during method creation

Automatic Reference Counting

* Makes memory management easier
* No need to implement or call retain and release
* Opt-in per project
- New project templates enable by default
* Opt-out per file
* GO see the session or watch it on iTunes

External Binary Data

" Ubiquitousjournal - Ubiquitousjournal.xcdatamodel

) 1 Ubiqui nal.xc EN; » [photoData

ENTITIES

3@ wEntry Name photoData
[E]

Attribute

Properties | | Transient Optional
I
FETCH REQUESTS ndexed

z Attribute Type | Binary Data
CONFIGURATIONS
Options V Allows External Storage
@ Default

Advanced Index in Spotlight
o/ Store in External Record File
UJEntry
¥ Attributes Userinfo
text Versioning
timestamp
title
¥ Relationships Synchronization | Disabled
photos

Attribute Sync

[UjPhotoMetadata |

¥ Attributes
filename

photolDStr

¥ Relationships
lentries

O. L+

Outline Style Add Fetch Request Add Attribute Editor Style

External Binary Data

itousjournal - Ubiquitousjournal.xcdatamodel

eld) $UbiquitousJournaI.xcdatamodeI » [[3l UuJPhotoMetadata) [J]) photoData > AN 2 D Bl &
7 Attribute

Name photoData
Properties Transient v Optional
Indexed

Attribute Type = Binary Data -
Options ¥ Allows External Storage I

Advanced Index in Spotlight
v Store in External Record File

UJEnt
: Enery User Info
¥ Attributes
text Versioning
timestamp Attribute Sync
title
¥ Relationships Synchronization | Disabled :
—>> photos

Metadata |

98

Compound Indexes

* Index across multiple properties
* Supported by SQLite store

Compound Indexes

" Ubiquitousjournal - Ubiquitousjournal.xcdatamodel

) 1 Ubiqui nal.xc) (@ UJEntry

ENTITIES Entity

@ Name UJEntry
@ uJPhotoMetadata Class UJEntry
Abstract Entity

Parent Entity No Parent Entity

FETCH REQUESTS

CONFIGURATIONS
@ Default

Indexes | texttitle

¥ Attributes
text
timestamp User Info
title Versioning
¥ Relationships -
|photos Entity Sync

Synchronization = Disabled

UJPhotoMetadata
¥ Attributes
filename
photoData
photolDStr
¥ Relationships
entries

O. L+

Outline Style Add Fetch Request Add Attribute Editor Style

100

Compound Indexes

iIsJjournal - Ubiquitousjournal.xcdatamodel A

j‘,sUbiquitousJournal.xcdatamodeI » [[3) UJEntry | [D

Vv Entity
Name UJEntry

Class UJEntry
Abstract Entity
Parent Entity No Parent Entity

a4

Indexes | text,title I
¥ Attributes Y
text
timestamp User Info
title : : p Versioning
¥ Relationships -
=t \photos Entity Sync

Synchronization | Disabled

4a»

data

101

Summary

* Amazing new iOS 5 features
-iCloud
- Documents
- Data Protection
- Incremental Stores
- Ordered Relationships
* Feedback: forums, bug reports, enhancement requests

http://bugreport.apple.com

More Information

Michael Jurewitz
Developer Tools Evangelist
jurewitz@apple.com

Core Data Documentation
Programming Guides, Examples, and Tutorials
http://developer.apple.com

Apple Developer Forums
http://devforums.apple.com

Related Sessions

What's New in Core Data on Mac OS X

Nob Hill
Thursday 11:30AM

Storing Documents in iCloud Using iOS 5

Presidio
Wednesday 3:15PM

Taking Advantage of File Coordination

Pacific Heights
Tuesday 4:30PM

Introducing Automatic Reference Counting

Earlier Sessions

Presidio
Tuesday 4:30PM

iCloud Storage Overview

Presidio
Tuesday 11:30AM

Labs

Core Data Lab

Developer Tools Lab B
Tuesday 4:30PM

Core Data Lab

Developer Tools Lab B
Wednesday 4:30PM

Core Data Lab

Developer Tools Lab A
Thursday 2:00PM

& WWDC201

