
These are confidential sessions—please refrain from streaming, blogging, or taking pictures

Session 308

Using Receipts to Protect
Your Digital Sales

James Wilson
Mac App Store

In-App Purchases

In-App Purchases

96%
Of the Top-Grossing Apps

Agenda

Agenda

Introducing the Receipt

Understanding Receipts

Validation and Inspection

Implementing Validation

Testing with Receipts

The receipt
Introduction

• Trusted record of purchase
■ Issued by the App Store
■ Stored on device

• Signed and verifiable
• For your app, on that device

■ Copy protection
■ In-App purchase verification

Introduction

• Free or paid
■ In-App Purchases

• Know exactly what the user has paid for

Unified Receipt
on iOS 7 and OS X

What’s new
Introduction

• iOS 7
■ Grand Unified Receipt
■ Same receipt format as OS X

• Receipt now includes
■ Volume purchase information
■ Support paid to free with in-app purchase

Protect your purchases
Introduction

•Apple provides you with
■ The receipt format specification
■ The receipt itself
■ Instructions for On-Device Receipt Validation
■ Online service for Server-to-Server Validation

• You chose a security level appropriate for your products
■ You decide the complexity of the implementation

Understanding Receipts

Receipt workflow
Understanding Receipts

• Receipt is issued when
■ App is purchased or updated
■ In-App purchase completed or restored
■ Volume Purchase license revoked
■ On-Demand Refresh API

■ Receipt is not present
■ Receipt is not valid on that device

Inside the receipt
Understanding Receipts

• Certificates and signatures
• Information that ties your app to this device
• Purchase information

■ App and in-app purchases
■ Product, quantity, and version
■ Volume Purchase Program
■ Initial purchase date

Inside the receipt
Understanding Receipts

• Transition from paid to free with in-app purchases
■ Receipt contains the initial purchase date
■ Use this date to determine eligibility for paid content

Transition from iOS 6 to iOS 7

Transition from iOS 6 to iOS 7

• iOS 7 is binary compatible with iOS 6
■ Both receipt formats are issued
■ Both APIs will work
■ iOS 6 receipt API is deprecated

• iOS 7 and OS X manage the receipt for you
■ Receipt is stored on device, in the app bundle

• Supporting both iOS 6 and iOS 7
■ Weak link to iOS 7 API

Weak linking
Transition from iOS 6 to iOS 7

• Example of weak linking

NSURL *receiptURL = nil;
NSBundle *bundle = [NSBundle mainBundle];
if ([bundle respondsToSelector:@selector(appStoreReceiptURL)])
{
 receiptURL = [bundle performSelector:@selector(appStoreReceiptURL)]
}

•Do NOT check the system version
■ Use the run-time to determine which API to use

Validating and Inspecting Receipts

The receipt file
Validate On Device

• Stored in the App Bundle
■ API to get the path

• Single file
■ Purchase data
■ Signature to check authenticity

Receipt

Purchase Information

Signature

Certificates

Three Step Process

Validating Receipts

Authentic and trusted For this device What the user paid for

Check
Purchases

Confirm
Device

Verify
Signature

Validating Receipts

Authentic and trusted For this device What the user paid for

Check
Purchases

Confirm
Device

Verify
Signature

Verify authenticity
Validate On Device

•Use signature to confirm the receipt is
authentic and unaltered

1. Locate the file
2. Read the contents
3. Verify the signature

// Locate the Receipt
[[NSBundle mainBundle] appStoreReceiptURL];

• PKCS #7 Container
■ Can use OpenSSL to verify

Receipt

Purchase Information

Signature

Certificates

Verify authenticity
Validate On Device

•Use signature to confirm the receipt is
authentic and unaltered

1. Locate the file
2. Read the contents
3. Verify the signature

// Locate the Receipt
[[NSBundle mainBundle] appStoreReceiptURL];

• PKCS #7 Container
■ Can use OpenSSL to verify

Receipt

Purchase Information

Signature

Certificates

Verify Receipt Signature
BIO *b_receipt;
BIO *b_x509;

Load the Receipt and Apple Root CA Certificate
Binary data from receipt plus certificate

Verify Receipt Signature
BIO *b_receipt;
BIO *b_x509;

// Convert receipt data to PKCS #7 Representation
PKCS7 *p7 = d2i_PKCS7_bio(b_receipt, NULL);

Load the Receipt and Apple Root CA Certificate
Binary data from receipt plus certificate

Verify Receipt Signature
BIO *b_receipt;
BIO *b_x509;

// Convert receipt data to PKCS #7 Representation
PKCS7 *p7 = d2i_PKCS7_bio(b_receipt, NULL);

// Create the certificate store
X509_STORE *store = X509_STORE_new();
X509 *appleRootCA = d2i_X509_bio(b_x509, NULL);
X509_STORE_add_cert(store, appleRootCA);

Load the Receipt and Apple Root CA Certificate
Binary data from receipt plus certificate

Verify Receipt Signature
BIO *b_receipt;
BIO *b_x509;

// Convert receipt data to PKCS #7 Representation
PKCS7 *p7 = d2i_PKCS7_bio(b_receipt, NULL);

// Create the certificate store
X509_STORE *store = X509_STORE_new();
X509 *appleRootCA = d2i_X509_bio(b_x509, NULL);
X509_STORE_add_cert(store, appleRootCA);

// Verify the Signature
BIO *b_receiptPayload;
int result = PKCS7_verify(p7, NULL, store, NULL, b_receiptPayload, 0);
if (result == 1)
{
 // Receipt Signature is VALID
 // b_receiptPayload contains the payload
}

Load the Receipt and Apple Root CA Certificate
Binary data from receipt plus certificate

Check
Purchases

Validating Receipts

Verify
Signature

Confirm
Device

Authentic and trusted For this device What the user paid for

Check
Purchases

Validating Receipts

Verify
Signature

Confirm
Device

Authentic and trusted For this device What the user paid for

Confirm app and device
Validate On Device

• Reading the receipt
• Series of attributes

■ Type, version, value

•ASN.1
■ Abstract Syntax Notation

Receipt
Purchase Information

Signature

Certificates

Attribute

Type

Attribute

Type

Attribute

Type

Value

Value

Value

Reading ASN.1

• Receipt Payload Format Definition
ReceiptModule DEFINITIONS ::=
BEGIN

ReceiptAttribute ::= SEQUENCE {
 type INTEGER,
 version INTEGER,
 value OCTET STRING
}

Payload ::= SET OF ReceiptAttribute

END

•Use asn1c to generate boiler plate code

Reading ASN.1

•Using boiler plate from asn1c
Payload_t *payload = NULL;
asn_dec_rval_t rval = asn_DEF_Payload.ber_decoder(NULL,
 &asn_DEF_Payload,
 (void **)&payload,
 pld, pld_sz, 0);

// Walk the attributes
for (i = 0; i < payload->list.count; i++) {
 ReceiptAttribute_t *entry = payload->list.array[i];
 switch (entry->type) {
 case 2: // 2 = Bundle ID
 bundle_id = &entry->value;
 break;
 ...
 }
}

Confirm app and device
Validate on Device

• Check the Bundle Identifier
• Check the Bundle Version

• Check Device Identifier hash
■ iOS - Vendor Identifier
■ OS X - Machine GUID

■ See documentation for Example

Receipt
Purchase Information

Attribute

Type 2

Attribute

Type 3

Attribute

Type 4

Bundle Identifier

Bundle Version

Opaque Value

Attribute

Type 5 SHA-1 Hash

Attribute

Type 17 In-App Purchases

Confirm
Device

Validating Receipts

Verify
Signature

Confirm
Device

Check
Purchases

Authentic and trusted For this device What the user paid for

Confirm
Device

Validating Receipts

Verify
Signature

Confirm
Device

Check
Purchases

Authentic and trusted For this device What the user paid for

In-App Purchases
In-App Purchase Record

Type 1701 Quantity

Type 1702 Product identifier

Type 1703 Transaction identifier

Type 1704 Purchase date

Receipt
Purchase Information

Attribute

Type 17

Attribute

Type 2 Bundle Identifier

In-App Purchases

Attribute

Type 17 In-App Purchases

Attribute

Type 17 In-App Purchases

In-App Purchases
In-App Purchase Record

Type 1701 Quantity

Type 1702 Product identifier

Type 1703 Transaction identifier

Type 1704 Purchase date

ReceiptModule DEFINITIONS ::=
BEGIN

ReceiptAttribute ::= SEQUENCE {
 type INTEGER,
 version INTEGER,
 value OCTET STRING
}

Payload ::= SET OF ReceiptAttribute

END

Receipt
Purchase Information

Attribute

Type 17

Attribute

Type 2 Bundle Identifier

In-App Purchases

Attribute

Type 17 In-App Purchases

Attribute

Type 17 In-App Purchases

Key technologies
Validate On Device

• PKCS #7 Container
■ Signature certificates

■ Verify authenticity
■ OpenSSL can be used

■ ASN.1 format receipt data
■ Use asn1c for boiler plate

PKCS #7 Container
ASN.1 Purchase Information

Signature

Certificates

Attributes 2-5

Type

Attribute 17

In-App Purchase Record

Value

Server-to-Server validation
Validate Online

•Allows your servers to validate the
receipt before issuing content

• Send the receipt to your server
■ Not directly from the device

• Your server sends the receipt to Apple

•Apple returns JSON receipt data
• Check purchases, provide content

Your Server

Apple Validation
Server

Receipt

Receipt Valid
Receipt Info

Your Application

Implementing Validation

On iOS 7
Implementing Validation

• If the receipt doesn’t exist or is invalid
■ Refresh the receipt using Store Kit

// Refresh the Receipt
SKReceiptRefreshRequest *request = [SKReceiptRefreshRequest alloc] init];
[request setDelegate:self];
[request start];

• Receipt refresh will require network
• Store sign-in will be required

On iOS 7
Implementing Validation

• If the receipt doesn’t exist or is invalid
■ Refresh the receipt using Store Kit

// Refresh the Receipt
SKReceiptRefreshRequest *request = [SKReceiptRefreshRequest alloc] init];
[request setDelegate:self];
[request start];

• Receipt refresh will require network
• Store sign-in will be required

On OS X
Implementing Validation

• If the receipt is invalid
■ Exit with code 173 to refresh receipt

// Receipt is invalid
exit(173);

• Receipt refresh will require network
• Store sign-in will be required

On OS X
Implementing Validation

• If the receipt is invalid
■ Exit with code 173 to refresh receipt

// Receipt is invalid
exit(173);

• Receipt refresh will require network
• Store sign-in will be required

In-app purchase lifecycle
Implementing Validation

• Consumable and non-renewing subscriptions
■ Will only appear once
■ In the receipt issued at time of purchase
■ Will not be present in subsequent receipts issued

•Non-consumable and auto-renewable subscriptions
■ Always in the receipt
■ Can be restored via Store Kit API

If the receipt is invalid
Implementing Validation

•Match the user experience to the value
• iOS apps cannot quit but can limit functionality
•OS X apps can quit or keep running

Using the Test Environment

Test Environment

Test Environment

Doesn’t work, says I haven’t paid!

Test Environment

• Test thoroughly
■ No receipt
■ Invalid receipt

■ Valid on refresh
■ Invalid on refresh

■ Volume Purchase Program receipts

Getting a receipt
Test Environment

• iOS Developers
■ Run the app from Xcode
■ Use Store Kit API to get a receipt

•Must be signed with Development Certificate

Getting a receipt
Test Environment

•OS X Developers
■ Build the app in Xcode
■ Run the app from Finder
■ Exit with code 173 to get a receipt

•Must be signed with Development Certificate

Must be signed with Development Certificate

Avoid common mistakes
Test Environment

• Check which profile is being used to sign the app
■ Must be developer signed to use sandbox

• Sign In with Test Environment account
■ Don’t use Production Apple ID

App Submission

With receipt validation
App Submission

•Developers use Developer Certificate and Test Environment
• Store uses Production Certificate and Production Environment

•App review is different
■ Production signed
■ Test Environment
■ Test receipts

•Do not invalidate Test Environment receipts
■ App will be rejected

Summary

Protect Your In-App Purchases

• Verify and inspect the receipt
■ It’s your trusted record of purchase

• Choose a model that suits the value of your products
• Validation can be done on-device or server-to-server
•Use Test Environment

■ Developer signed
■ Test Environment accounts

More Information

Paul Marcos
App Services Evangelist
pmarcos@apple.com

Documentation
Receipt Validation Programming Guide
http://developer.apple.com

Apple Developer Forums
http://devforums.apple.com

Labs

Store Kit and Receipts Lab Services Lab B
Thursday 3:15PM

