Using Receipts to Protect
Your Digital Sales

Session 308

James Wilson
Mac App Store

These are confidential sessions—please refrain from streaming, blogging, or taking pictures

In-App Purchases

In-App Purchases

969%

Of the Top-Grossing Apps

Agenda

Agenda

Introduction
The receipt

* Trusted record of purchase

- Issued by the App Store ! Receipt
- Stored on device

* Signed and verifiable
* For your app, on that device

- Copy protection
- In-App purchase verification

Introduction

* Free or paid
- In-App Purchases
* Know exactly what the user has paid for

Unified Receipt
on i0S 7 and OS X

Introduction
What's new

*10S 7

- Grand Unified Receipt
- Same receipt format as OS X

* Receipt now includes

- Volume purchase information
- Support paid to free with in-app purchase

Introduction
Protect your purchases

* Apple provides you with
- The receipt format specification
- The receipt itself
- Instructions for On-Device Receipt Validation
- Online service for Server-to-Server Validation

* You chose a security level appropriate for your products
 You decide the complexity of the implementation

Understanding Receipts

Understanding Receipts

Receipt workflow

* Receipt is issued when

- App is purchased or updated
- In-App purchase completed or restored

« Volume Purchase license revoked

« On-Demand Refresh API

- Receipt Is not present
- Receipt is not valid on that device

Understanding Receipts

Inside the receipt

» Certificates and signatures
* Information that ties your app to this device
* Purchase information

- App and in-app purchases
 Product, quantity, and version
- Volume Purchase Program

- Initial purchase date

Understanding Receipts

Inside the receipt

* Transition from paid to free with in-app purchases

- Receipt contains the initial purchase date
- Use this date to determine eligibility for paid content

Transition from iOS 6 to iI0S 7

Transition from iOS 6 to iOS 7

*i0OS 7 is binary compatible with iOS 6

- Both receipt formats are issued
- Both APIs will work
- 10S 6 receipt APl is deprecated

*i0S 7 and OS X manage the receipt for you
- Receipt is stored on device, in the app bundle

* Supporting both iOS 6 and iOS 7
- Weak link to i10S 7 API

Transition from iOS 6 to iOS 7
Weak linking

* Example of weak linking

NSURL xreceiptURL = nil,;

NSBundle xbundle = [NSBundle mainBundle];

if ([bundle respondsToSelector:@selector(appStoreReceiptURL)])
{

receiptURL = [bundle performSelector:@selector(appStoreReceiptURL)]
}

* Do NOT check the system version

- Use the run-time to determine which API to use

Validating and Inspecting Receipts

Validate On Device
The receipt file

e Stored in the App Bundle
- APl to get the path
* Single file

Receipt

- Purchase data
- Signature to check authenticity

Three Step Process

Validating Receipts

Verify Confirm Check
Signature Device Purchases

Authentic and trusted For this device What the user paid for

Validating Receipts

Authentic and trusted For this device What the user paid for

Validate On Device
Verify authenticity

» Use signature to confirm the receipt is
authentic and unaltered

1. Locate the file
2. Read the contents

Receipt

Purchase Information

3. Verity the signature

Certificates

+ PKCS #7 Container

- Can use OpenSSL to verity

Validate On Device
Verify authenticity

» Use signature to confirm the receipt is
authentic and unaltered

1. Locate the file
2. Read the contents

Receipt

Purchase Information

3. Verity the signature

// Locate the Receipt

[INSBundle mainBundle] appStoreReceiptURL];
Certificates

* PKCS #7 Container

- Can use OpenSSL to verity

Verify Receipt Signature

BIO *b_receipt; | Load the Receipt and Apple Root CA Certificate

BIO xb x509; Binary data from receipt plus certificate

Verify Receipt Signature

BIO *b_receipt; | Load the Receipt and Apple Root CA Certificate

BIO xb x509; Binary data from receipt plus certificate

// Convert receipt data to PKCS #7 Representation
PKCS7 *p7 = d2i_PKCS7 bio(b receipt, NULL);

Verify Receipt Signature

BIO *b_receipt; | Load the Receipt and Apple Root CA Certificate

BIO xb x509; Binary data from receipt plus certificate

// Convert receipt data to PKCS #7 Representation
PKCS7 *p7 = d2i_PKCS7 bio(b receipt, NULL);

// Create the certificate store
X509 STORE *store = X509 STORE new():
X509 xappleRootCA = d2i_ X509 bio(b_x509, NULL);

X509 _STORE_add_cert(store, appleRootCA);

Verify Receipt Signature

BIO *b_receipt; | Load the Receipt and Apple Root CA Certificate
BIO xb x509; Binary data from receipt plus certificate

// Convert receipt data to PKCS #7 Representation
PKCS7 *p7 = d2i_PKCS7 bio(b receipt, NULL);

// Create the certificate store

X509 STORE *store = X509 STORE new():

X509 xappleRootCA = d2i X509 bio(b_x509, NULL);
X509 STORE_add_cert(store, appleRootCA);

// Verify the Signature
BIO *xb_receiptPayload;
int result = PKCS7 verify(p7, NULL, store, NULL, b_receiptPayload, 0);
if (result == 1)
{
// Receipt Signature 1s VALID
// b_receiptPayload contains the payload

Validating Receipts

Verify Confirm Check
Signature Device Purchases

Authentic and trusted For this device What the user paid for

Validating Receipts

Authentic and trusted For this device What the user paid for

Validate On Device
Confirm app and device

* Reading the receipt

Receipt

e Series of attributes
- Type, version, value
 ASN.]

- Abstract Syntax Notation

Certificates

Signature

Reading ASN.1

* Receipt Payload Format Definition

ReceiptModule DEFINITIONS ::=
BEGIN

ReceiptAttribute ::= SEQUENCE {
type INTEGER,
version INTEGER,
value OCTET STRING

}

Payload ::= SET OF ReceiptAttribute

END
* Use asn1c to generate boiler plate code

Reading ASN.1

* Using boiler plate from asnlc

Payload_t xpayload = NULL,;

asn_dec_rval_t rval = asn_DEF _Payload.ber_decoder(NULL,
&asn_DEF_Payload,
(void *x)&payload,
pld, pld_sz, 0);

// Walk the attributes
for (i = 0; 1 < payload—>1list.count; i++) {
ReceiptAttribute_t xentry = payload->list.array[i];
switch (entry—->type) {
case 2: // 2 = Bundle ID
bundle_1d = &entry->value;
break;

Validate on Device
Confirm app and device

Receipt

e Check the Bundle Identifier
* Check the Bundle Version

* Check Device Identifier hash

« iOS - Vendor ldentifier

- OS X - Machine GUID
- See documentation for Example

Validating Receipts

Verify Confirm Check
Signature Device Purchases

Authentic and trusted For this device What the user paid for

Validating Receipts

Authentic and trusted For this device What the user paid for

In-App Purchases

Receipt

In-App Purchases

Receipt

ReceiptModule DEFINITIONS ::=
BEGIN

ReceiptAttribute ::= SEQUENCE {
type INTEGER,
version INTEGER,
va lue OCTET STRING

}

Payload ::= SET OF ReceiptAttribute

END

Validate On Device
Key technologies

e PKCS #7/ Container

- Signature certificates

- Verity authenticity
- OpenSSL can be used

- ASN.1 format receipt data
- Use asnc for boiler plate

PKCS #7 Container

Validate Online

Server-to-Server validation

» Allows your servers to validate the
receipt before issuing content

* Send the receipt to your server
 Not directly from the device
* Your server sends the receipt to Apple

* Apple returns JSON receipt data
* Check purchases, provide content

Receipt valid
Receipt Info

Your Server

I Receipt

e

Your Application

Implementing Validation

Implementing Validation
Oni0S 7

* |f the receipt doesn’t exist or is invalid
- Refresh the receipt using Store Kit

* Receipt refresh will require network
» Store sign-in will be required

Implementing Validation
Oni0S 7

* |f the receipt doesn’t exist or is invalid
- Refresh the receipt using Store Kit

// Refresh the Receipt

SKReceiptRefreshRequest *request = [SKReceiptRefreshRequest alloc] init];
[request setDelegate:self];

[request start];

* Receipt refresh will require network
» Store sign-in will be required

Implementing Validation
On OS X

* |f the receipt is invalid
- Exit with code 173 to refresh receipt

* Receipt refresh will require network
e Store sign-in will be required

Implementing Validation
On OS X

* |f the receipt is invalid
- Exit with code 173 to refresh receipt

// Receilpt 1s 1nvalaid
exit(173);

* Receipt refresh will require network
e Store sign-in will be required

Implementing Validation
In-app purchase lifecycle

* Consumable and non-renewing subscriptions

- Will only appear once
- In the receipt issued at time of purchase
- Will not be present in subsequent receipts issued

* Non-consumable and auto-renewable subscriptions

- Always in the receipt
= Can be restored via Store Kit API

Implementing Validation
If the receipt is invalid

* Match the user experience to the value
* i0S apps cannot quit but can limit functionality
* OS X apps can quit or keep running

Using the Test Environment

Test Environment

Test Environment

Doesn't work, says | haven't paid!

Test Environment

* Test thoroughly
* No receipt

- Invalid receipt

= Valid on refresh
« Invalid on refresh

- Volume Purchase Program receipts

Test Environment
Getting a recelpt

* iOS Developers

- Run the app from Xcode
- Use Store Kit APl to get a receipt

* Must be signed with Development Certificate

Test Environment
Getting a recelpt

* OS X Developers

- Build the app in Xcode
- Run the app from Finder
- Exit with code 173 to get a receipt

* Must be signed with Development Certificate

Must be signed with Development Certificate

Test Environment
Avoid common mistakes

» Check which profile is being used to sign the app
- Must be developer signed to use sandbox

* Sign In with Test Environment account
- Don't use Production Apple ID

App Submission

App Submission
With receipt validation

* Developers use Developer Certificate and Test Environment
» Store uses Production Certificate and Production Environment

* App review is different

 Production signed
 Test Environment
= Test recelpts

* Do not invalidate Test Environment receipts
- App will be rejected

Protect Your In-App Purchases

* Verity and inspect the receipt

- It's your trusted record of purchase
* Choose a model that suits the value of your products
» Validation can be done on-device or server-to-server
* Use Test Environment

- Developer signed
» Test Environment accounts

More Information

Paul Marcos

App Services Evangelist
pmarcos@apple.com

Documentation

Receipt Validation Programming Guide
http://developer.apple.com

Apple Developer Forums
http://devforums.apple.com

Labs

Services Lab B

Store Kit and Receipts Lab Thursday 3:15PM

& WWDC2013

