
An Opening in the Clouds:  
Open-source Cloud Computing at UCSB 

Chandra Krintz 
Associate Professor 

Computer Science Dept, UCSB 

July  2009 



Cloud Computing 
•  Software systems for accessing easily and transparently 

scalable CPU/storage/network resources via a network 
connection or web interface – “as-a-service” 

•  On a rental basis 

SLAs 

Web Services 

Virtualiza3on 



Cloud Computing 
•  Software systems for accessing easily and transparently 

scalable CPU/storage/network resources via a network 
connection or web interface – “as-a-service” 

•  On a rental basis 

SLAs 

Web Services 

Virtualiza3on 

•  Service level agreements (SLAs) 
•  Users get small frac5on of resource pool 
•  Resources are opaque 

•  Pay‐as‐you‐go or flat‐rate (e‐commerce based) 
•  Fully customer/user self‐service 



Cloud Computing 
•  Software systems for accessing easily and transparently 

scalable CPU/storage/network resources via a network 
connection or web interface – “as-a-service” 
–  Infrastructure, e.g. Amazon Web Services (AWS) 

•  Provision isolated resources under contract 
•  Full-system images deployed over virtual machine monitor 

–  Platform, e.g. Google AppEngine (GAE), Microsoft Azure 
•  Enable construction of network-accessible applications 
•  Process-level runtime isolation 
•  Specialized/scalable runtime and library support 

–  Software, e.g. Salesforce 
•  Remotely accessible and customizable applications 

IaaS 

PaaS 

SaaS 



Cloud Fabrics Today 
•  Culmination of grid/cluster/utility/elastic computing 

–  Software: Virtualization, operating systems, programming and 
runtime support, fault tolerance & distributed computing 

–  Hardware (multicore platforms) 
•  Has experienced a rapid uptake in the commercial sector 

–  Public clouds – you run your systems/apps on others’ systems 
•  Reduces hardware and IT costs, administration overhead 
•  Very easy to use – broadens the user community 

–  Availability guarantees and extreme scale 
•  Enabled via significant constraints on resource and service use 

– SLAs limit resource use 
»  CPU hours, network bandwidth, memory, storage 

–  Platform-level 
»  Restricted app domain and subset of language/libraries 
»  Responses must complete very quickly 



Cloud Fabrics Today 
•  Culmination of grid/cluster/utility/elastic computing 

–  Software: Virtualization, operating systems, programming and 
runtime support, fault tolerance & distributed computing 

–  Hardware (multicore platforms) 
•  Has experienced a rapid uptake in the commercial sector 

–  Public clouds – you run your systems/apps on others’ systems 
•  Reduces hardware and IT costs, administration overhead 
•  Very easy to use – broadens the user community 

–  Availability guarantees and extreme scale 
•  Enabled via significant constraints on resource and service use 

•  Application domain continues to be primarily web services 



Cloudy Issues 
•  Many institutions and companies own IT infrastructure 

•  Public cloud features also useful for “on-premise” clouds 
–  Privacy of code and data 
–  Avoids vendor “lock-in” and pay-per-use 
–  Potential for hybrid and customized approaches 
–  Potential for easing resource constraints  

•  Storage/data management, cpu/memory, communication 

•  Public clouds are opaque – open APIs, closed implementation 

•  Can cloud fabrics support other application domains, 
services, performance/availability requirements? 



An Opening in the Clouds 
•  Open-source cloud computing systems from the            

UCSB Computer Science Department 
–  Goal: Bring popular cloud fabrics to “on-premise” clusters that 

are easy to use and are transparent 
–  To facilitate investigation of 

•  Novel application domains, services, underlying device technology 
•  Hybrid cloud solutions (public and on-premise) 
•  Support technologies (e.g. tools, data management, autoscaling) 
•  Customization (availability, performance, application behavior) 

–  By emulating key cloud layers from the commercial sector 
•  Private clouds are hybrid clouds – users want the same APIs 

– Applications/services/tools execute on either 
•  Leverage extant software technologies 

–  Not replacement technology for any Public Cloud service 



Cloud Computing 
•  Software systems for accessing easily and transparently 

scalable CPU/storage/network resources via a network 
connection or web interface – “as-a-service” 
–  Infrastructure, e.g. Amazon Web Services (AWS) 

•  Provision isolated resources under contract 
•  Full-system images deployed over virtual machine monitor 

–  Platform, e.g. Google AppEngine (GAE), Microsoft Azure 
•  Enable construction of network-accessible applications 
•  Process-level runtime isolation 
•  Specialized/scalable runtime and library support 

–  Software, e.g. Salesforce 
•  Remotely accessible and customizable applications 

IaaS 

PaaS 

SaaS 



Cloud Computing 
•  Software systems for accessing easily and transparently 

scalable CPU/storage/network resources via a network 
connection or web interface – “as-a-service” 
–  Infrastructure, e.g. Amazon Web Services (AWS) 

•  Provision isolated resources under contract 
•  Full-system images deployed over virtual machine monitor 

–  Platform, e.g. Google AppEngine (GAE), Microsoft Azure 
•  Enable construction of network-accessible applications 
•  Process-level runtime isolation 
•  Specialized/scalable runtime and library support 

–  AppScale 
•  Web services based implementation of Google App Engine 

–  Complete application stack for MVC-based web applications 
– Written in Python orJava 

PaaS 



From Google App Engine to AppScale 

•  Open-source platform-as-a-service (PaaS) that  
 emulates Google App Engine (GAE) 

•  GAE is a full application stack that facilitates construction 
of interactive webpages with a database backing store 
–  Users develop Python and Java apps using well defined APIs 

•  Highly scalable proprietary implementation on Google resources  
Datastore -> Bigtable/Mapreduce   
MemCache -> in-memory datastore 
Authentication -> Google Accounts 
Mail -> GMail 
URL-Fetch (for HTTP/S communication) 
Images 
Task Queues for short background jobs 



From Google App Engine to AppScale 

•  Open-source platform-as-a-service (PaaS) that  
 emulates Google App Engine (GAE) 

•  GAE is a full application stack that facilitates construction 
of interactive webpages with a database backing store 
–  Users develop Python and Java apps using well defined APIs 

•  Test/debug via a non-scalable SDK 
– Simple implementations of APIs, e.g. flat file for Datastore 

•  Upload to Google’s highly scalable resources 
–  Execute within a sandbox for isolation, control, autoscaling 
– Only a small subset of the language APIs can be employed 



From Google App Engine to AppScale 

•  Open-source platform-as-a-service (PaaS) that  
 emulates Google App Engine (GAE) 

•  GAE is a full application stack that facilitates construction 
of interactive webpages with a database backing store 
–  Sandbox / restrictions 

Pure Python or Java, no thread/subprocess spawning, system calls 
No writes to file system, reads only to static files uploaded w/app 
Storage using key-value, schema-free datastore (Bigtable-based) 
HTTP/S communication only, CGI to handle page requests 
Limit on number of datastore elements accessed per request 
Limit on response duration, task frequency, request rate   
Enforced quotas  (BW, CPU, requests/s, files, app size, …) 



AppScale 

•  Extension of GAE SDK with API implementations replaced 
Datastore -> HBase, Hypertable, Cassandra, Voldemorte, MySQL 
MapReduce -> Hadoop 
Authentication -> built-in, decoupled from Google Accounts 
All inter-component communication via SSL 

  AppLoadBalancer (ALB)   Database Master/Peer (DBM) 
  AppServer (AS)     Database Slave/Peer (DBS) 



AppScale 

•  Process 
–  Deploy AppScale using the AppScale Tools (admin) 

•  Specifies the datastore implementation for the system 
•  Multiple GAE apps can use single AppScale infrastructure 

–  Upload/remove GAE apps to the AppScale Deployment (devs) 
–  Users of GAE apps access the ALB initially then an AS directly 

once rerouted 
•  If AS goes down, user revisits the ALB to locate another AS 

appscale‐run‐instances       //deploy a new AppScale instance 
 ‐ iden5fies the cloud type, ini5al GAE app if any, and datastore   

appscale‐describe‐instances  //list all running AppScale instances 
appscale‐upload‐app      //upload a GAE app to an AppScale instance 
appscale‐remove‐app      //shutdown/remove an uploaded GAE app 
appscale‐terminate‐instances   //shutdown an AppScale instance 



AppScale 

•  Deploys and executes automatically over  (cloud types) 
–  Eucalyptus   Lead: Rich Wolski, Eucalyptus Systems, Inc 

•  Elastic Utility Computing Architecture Linking Your Programs To 
Useful Systems 

•  Open source Infrastructure-as-a-service (IaaS) framework 
•  Web services based implementation of elastic/utility/cloud 

computing infrastructure 
•   Linux image hosting via virtualization 

– Available via popular Linux distros: Ubuntu, Debian, CentOS… 
•  Emulates the Amazon AWS interface 
•  http://www.eucalyptus.com 



AppScale 

•  Deploys and executes automatically over  (cloud types) 
–  Eucalyptus 

•  Virtualization via Xen, VMWare, KVM 
•  Prefered installation/use of AppScale 

–  Amazon’s EC2 

•  With some manual intervention to set up VM instances 
–  Xen 
–  KVM 

•  Can run on non-virtualized Linux systems as well 
•  Suggested distro: Ubuntu Hardy and soon Ubuntu Jaunty 



AppScale 



AppScale 

•  Research and development roadmap 
–  Support for Java and additional DBs 
–  ASs and DBs grow and shrink according to load and failure 

•  Resource monitoring & allocation (SLA support) 
– Automatic and dynamic renegotiation, improved scaling 

–  Performance and availability monitoring 
•  Capture full-system behavior via sampling 

–  For debugging, performance/energy feedback, optimization 
–  Administrator/Developer control of  

•  Replication of data for fault tolerance   Scaling triggers 
•  Type and amount of system monitoring   Sandbox restrictions 
•  Parallelism/Concurrency       MapReduce tasks 

–  Alternative computation models, e.g. streaming 



•  Research and development roadmap 
–  PaaS integration with other cloud fabrics 
–  Paas+IaaS integration  (AppScale + Eucalyptus) 

•  Resource allocation, specialization/customization, alternative 
application domains (computationally intensive, data intensive) 

•  Isolation/performance tradeoffs 

Multi-core server 
Virtualization  
Technology (SW+HW) 

Linux + Eucalyptus 

AppScale 

Applications/libraries 

AppScale + Eucalyptus 



Cloud Computing at UCSB 
Open-source implementations of popular cloud systems 

•  Infrastructure‐as‐a‐service (IaaS) framework 
•  Web services based implementa5on of 
elas5c/u5lity/cloud compu5ng infrastructure 
•  Linux image hos5ng via virtualiza5on 
•  Emulates the Amazon AWS interface – 
applica5ons and tools can’t tell the difference 
•  Real use, real users, real impact 

•  Distributed with Ubuntu  
•  Large interna5onal user community 

         h9p://www.eucalyptus.com 
         Lead: Rich Wolski 

•  Open, extensible, easy to install/use/maintain, transparent, scalable 
•  Enables inves5ga5on of and experimenta5on with  

•  Real applica5ons in real seSngs 
•  IaaS + PaaS interopera5on and integra5on 

•  Frameworks for inves5ga5on the next genera5on of distributed systems 
technologies, languages, applica0ons, and services 

•  PlaUorm‐as‐a‐service (PaaS) framework 
•  Web services based implementa5on of 
Google AppEngine APIs 
•  Runs over Eucalyptus, Amazon EC2, and 
virtualiza5on layers (Xen/KVM) 
•  Implements mul5ple database backends 
(Hbase, Hypertable, Cassandra, MySQL,…) 
•  Real use, real users, real impact 

•  Interna5onal user community 
          h9p://appscale.cs.ucsb.edu 
          Lead: Chandra Krintz 


