An Opening in the Clouds:
Open-source Cloud Computing at UCSB

Chandra Krintz
Associate Professor
Computer Science Dept, UCSB

July 2009

Cloud Computing

« Software systems for accessing easily and transparently
scalable CPU/storage/network resources via a network
connection or web interface - “as-a-service”

« Ona rental basis

-

Web Services

Cloud Computing

« Software systems for accessing easily and transparently
scalable CPU/storage/network resources via a network
connection or web interface - “as-a-service”

* Service level agreements (SLAS)

* Users get small fraction of resource pool

* Resources are opaque
* Pay-as-you-go or flat-rate (e-commerce based)
* Fully customer/user self-service

« Ona rental basis

Cloud Computing

« Software systems for accessing easily and transparently
scalable CPU/storage/network resources via a network
connection or web interface - “as-a-service”

— Infrastructure, e.g. Amazon Web Services (AWS) TaasS
* Provision isolated resources under contract
* Full-system images deployed over virtual machine monitor

— Platform, e.g. Google AppEngine (GAE), Microsoft Azure PaaS
 Enable construction of network-accessible applications
* Process-level runtime isolation
« Specialized/scalable runtime and library support

— Software, e.g. Salesforce SaaS
« Remotely accessible and customizable applications

Cloud Fabrics Today

 Culmination of grid/cluster/utility/elastic computing

— Software: Virtualization, operating systems, programming and
runtime support, fault tolerance & distributed computing

— Hardware (multicore platforms)

* Has experienced a rapid uptake in the commercial sector

— Public clouds - you run your systems/apps on others' systems
 Reduces hardware and IT costs, administration overhead
 Very easy to use - broadens the user community
— Availability guarantees and extreme scale
 Enabled via significant constraints on resource and service use
— SLAs limit resource use
» CPU hours, network bandwidth, memory, storage
— Platform-level
» Restricted app domain and subset of language/libraries
» Responses must complete very quickly %

Cloud Fabrics Today

 Culmination of grid/cluster/utility/elastic computing

— Software: Virtualization, operating systems, programming and
runtime support, fault tolerance & distributed computing

— Hardware (multicore platforms)
* Has experienced a rapid uptake in the commercial sector

— Public clouds - you run your systems/apps on others' systems
 Reduces hardware and IT costs, administration overhead
 Very easy to use - broadens the user community

— Availability guarantees and extreme scale
 Enabled via significant constraints on resource and service use

 Application domain continues to be primarily web services

Cloudy Issues

Many institutions and companies own IT infrastructure

Public cloud features also useful for “"on-premise” clouds
— Privacy of code and data

— Avoids vendor "lock-in" and pay-per-use

— Potential for hybrid and customized approaches

— Potential for easing resource constraints
« Storage/data management, cpu/memory, communication

Public clouds are opaque - open APIs, closed implementation

Can cloud fabrics support other application domains,
services, performance/availability requirements?

An Opening in the Clouds

+ Open-source cloud computing systems from the
UCSB Computer Science Department
— Goal: Bring popular cloud fabrics to "on-premise” clusters that
are easy to use and are transparent
— To facilitate investigation of
* Novel application domains, services, underlying device technology
 Hybrid cloud solutions (public and on-premise)
 Support technologies (e.g. tools, data management, autoscaling)
* Customization (availability, performance, application behavior)
— By emulating key cloud layers from the commercial sector
* Private clouds are hybrid clouds - users want the same APIs
— Applications/services/tools execute on either
* Leverage extant software technologies

— Not replacement technology for any Public Cloud service

Cloud Computing

« Software systems for accessing easily and transparently
scalable CPU/storage/network resources via a network
connection or web interface - "as-a-service”

TaaS

— Platform, e.g. Google AppEngine (GAE), Microsoft Azure PaaS
 Enable construction of network-accessible applications
* Process-level runtime isolation
« Specialized/scalable runtime and library support
SaaS

Cloud Computing

« Software systems for accessing easily and transparently
scalable CPU/storage/network resources via a network
connection or web interface - "as-a-service”

— Platform, e.g. Google AppEngine (GAE), Microsoft Azure PaaS
 Enable construction of network-accessible applications
* Process-level runtime isolation
« Specialized/scalable runtime and library support
— AppScale
« Web services based implementation of Google App Engine

— Complete application stack for MVC-based web applications

— Written in Python orJava

From Google App Engine to AppScale

 Open-source platform-as-a-service (PaaS) that

emulates Google App Engine (GAE)

« GAE is a full application stack that facilitates construction
of interactive webpages with a database backing store

— Users develop Python and Java apps using well defined APIs
* Highly scalable proprietary implementation on Google resources
Datastore -> Bigtable/Mapreduce
MemCache -> in-memory datastore
Authentication -> Google Accounts
Mail -> GMail
URL-Fetch (for HTTP/S communication)

Images

Task Queues for short background jobs

From Google App Engine to AppScale

 Open-source platform-as-a-service (PaaS) that

emulates Google App Engine (GAE)

« GAE is a full application stack that facilitates construction
of interactive webpages with a database backing store

— Users develop Python and Java apps using well defined APIs
« Test/debug via a non-scalable SDK
— Simple implementations of APIs, e.g. flat file for Datastore
 Upload to Google's highly scalable resources
— Execute within a sandbox for isolation, control, autoscaling
— Only a small subset of the language APIs can be employed

From Google App Engine to AppScale

 Open-source platform-as-a-service (PaaS) that

emulates Google App Engine (GAE)

« GAE is a full application stack that facilitates construction
of interactive webpages with a database backing store
— Sandbox / restrictions

Pure Python or Java, no thread/subprocess spawning, system calls
No writes to file system, reads only to static files uploaded w/app
Storage using key-value, schema-free datastore (Bigtable-based)
HTTP/S communication only, CGI to handle page requests
Limit on number of datastore elements accessed per request
Limit on response duration, task frequency, request rate
Enforced quotas (BW, CPU, requests/s, files, app size, ...)

« Extension of GAE SDK with APT implementations replaced
Datastore -> HBase, Hypertable, Cassandra, Voldemorte, MySQL
MapReduce -> Hadoop
Authentication -> built-in, decoupled from Google Accounts
All inter-component communication via SSL

AppLoadBalancer (ALB) Database Master/Peer (DBM)
AppServer (AS) Database Slave/Peer (DBS)

AppScale Cloud
GAE App g . —
Developer | . BEY ¢ 49 AppScale Tools
(AppScale Admin) | \

<9 AppController (AC)

@ HTTPS

* Process
— Deploy AppScale using the AppScale Tools (admin)
 Specifies the datastore implementation for the system
« Multiple GAE apps can use single AppScale infrastructure
— Upload/remove GAE apps to the AppScale Deployment (devs)

— Users of GAE apps access the ALB initially then an AS directly
once rerouted

« If AS goes down, user revisits the ALB fo locate another AS

appscale-run-instances //deploy a new AppScale instance
- identifies the cloud type, initial GAE app if any, and datastore

appscale-describe-instances //list all running AppScale instances
appscale-upload-app //upload a GAE app to an AppScale instance
appscale-remove-app //shutdown/remove an uploaded GAE app
appscale-terminate-instances //shutdown an AppScale instance

 Deploys and executes automatically over (cloud types)

— Eucalyptus Lead: Rich Wolski, Eucalyptus Systems, Inc

e Elastic Utility Computing Architecture Linking Your Programs To
Useful Systems

Open source Infrastructure-as-a-service (IaaS) framework

Web services based implementation of elastic/utility/cloud
computing infrastructure

Linux image hosting via virtualization
— Available via popular Linux distros: Ubuntu, Debian, CentOS...
Emulates the Amazon AWS interface

http://www.eucalyptus.com

— Eucalyptus
 Virtualization via Xen, VMWare, KVM

* Prefered installation/use of AppScale
— Amazon's EC2

With some manual intervention to set up VM instances

— Xen
— KVM

Can run on non-virtualized Linux systems as well
Suggested distro: Ubuntu Hardy and soon Ubuntu Jaunty

Number of Transactions Completed over Time

Number of Transactions

' ' ' " appscale-guestbook - 'G";“ |
google-guestbook - .
appscale-shell * G
google-shell b -
.
.'.':6:5.;_;:'
SRS '
':....?*i~ " o
Te® . - |
0@3.:._ :
i@t aTL i 7. 13O
NSEAFLIPTTINETT
LTI AP IR L Aok
iYL ian"¥E
Y TR ai.. - S
W 288° st -
003, 282 ga? 000 Bp5.
*m-§599§e°' i 008086 0ag
'Q.‘.I P
Loe 1
L 1 1 N) - .

20 40 60 80 100 120 140 160
Time (seconds)

Scale

« Research and development roadmap
— Support for Java and additional DBs
— ASs and DBs grow and shrink according to load and failure
* Resource monitoring & allocation (SLA support)
— Automatic and dynamic renegotiation, improved scaling
— Performance and availability monitoring
* Capture full-system behavior via sampling
— For debugging, performance/energy feedback, optimization

— Administrator/Developer control of

« Replication of data for fault tolerance Scaling triggers
« Type and amount of system monitoring Sandbox restrictions
* Parallelism/Concurrency MapReduce tasks

— Alternative computation models, e.g. streaming

AppScale + Eucalyptus

« Research and development roadmap
— Paa$ integration with other cloud fabrics

— Paas+Iaa$S integration (AppScale + Eucalyptus)

 Resource allocation, specialization/customization, alternative
application domains (computationally intensive, data intensive)

« Isolation/performance tradeoffs

O
[]

FEWIJ_\II!'III_'III

IIIIIII.IIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Multi-core server
Virtualization m M 1 Applications/libraries

Technology (SW+HW) m AppScale

[JLinux + Eucalyptus

Cloud Computing at UCSB

Open-source implementations of popular cloud systems

Scale 77| Eucalyptus

* Platform-as-a-service (PaaS) framework * Infrastructure-as-a-service (laaS) framework
* Web services based implementation of * Web services based implementation of
Google AppEngine APIs elastic/utility/cloud computing infrastructure
* Runs over Eucalyptus, Amazon EC2, and * Linux image hosting via virtualization
virtualization layers (Xen/KVM) * Emulates the Amazon AWS interface —
* Implements multiple database backends applications and tools can’t tell the difference
(Hbase, Hypertable, Cassandra, MySQL,...) * Real use, real users, real impact
* Real use, real users, real impact * Distributed with Ubuntu

* International user community * Large international user community

http://appscale.cs.ucsb.edu http://www.eucalyptus.com

Lead: Chandra Krintz Lead: Rich Wolski

* Open, extensible, easy to install/use/maintain, transparent, scalable
* Enables investigation of and experimentation with

* Real applications in real settings

e |aaS + PaaS interoperation and integration

* Frameworks for investigation the next generation of distributed systems
technologies, languages, applications, and services %

