
Aranea—Web Framework Construction and Integration Kit

Oleg Mürk
oleg.myrk@gmail.com

Jevgeni Kabanov
ekabanov@gmail.com

ABSTRACT
Currently there exist dozens of web controller frameworks
that are incompatible, but at the same time have large por-
tions of overlapping functionality that is implemented over
and over again. Web programmers are facing limitations on
code reuse, application and framework integration, exten-
sibility, expressiveness of programming model, and produc-
tivity.

In this paper we propose a minimalistic component model
Aranea aimed for constructing and integrating server-side
web controller frameworks in Java. It allows assembling
most of available web programming models out of reusable
components and patterns. We also show how to integrate
different existing frameworks using Aranea as a common
protocol. In its default configuration Aranea supports both
developing sophisticated user interface using stateful compo-
nents and nested processes, and high-performance stateless
components.

We propose to use this model as a platform for framework
development, integration, and research. This would allow
using different ideas together and avoid implementing the
same features over-and-over again. Open source implemen-
tation of Aranea framework together with reusable controls,
such as input forms and data lists, and a rendering engine
are ready for real-life applications.

1. INTRODUCTION
During the last 10 years we have witnessed immense ac-
tivity in the area of web framework design. Currently,
there are more than 30 actively developed open source web
frameworks in Java [13] let alone commercial products or
other platforms like .NET and numerous dynamic languages.
Not to mention in-house corporate frameworks that never
saw public light. Many different and incompatible design
philosophies are used, but even within one approach there
are multiple frameworks that have small implementation dif-
ferences and are consequently incompatible with each other.

The advantage of such a situation is that different ap-
proaches and ideas are tried out. Indeed, many very good
ideas have been proposed during these years, many of which
we will describe later in this paper. On a longer time-
scale the stronger (or better marketed) frameworks and ap-
proaches will survive, the weaker will diminish. However, in
our opinion, such situation also has a lot of disadvantages.

1.1 Problem Description
First of all let’s consider the problems of the web framework
ecosystem from the view point of application development.
Framework user population is very fragmented as a result
of having many incompatible frameworks with similar pro-
gramming models. Each company or even project is using a
different web framework, which requires learning a different
skill set. As a result, it is hard to find qualified work force
for the selected web framework. For the same reason it’s
even harder to reuse previously developed application code.

Moreover, sometimes it is useful to write different parts
of the same application using different approaches, which
might be impossible, because the required frameworks are
incompatible. Portal solutions that should facilitate inte-
grating disparate applications provide very limited ways for
components to communicate with each other. Finally, there
is a lot of poorly designed frameworks that limit expressive-
ness, productivity, and quality.

System programmers face additional challenges. Creators of
reusable components have to target one of the frameworks,
consequently their market shrinks. Framework designers im-
plement overlapping features over and over again, each new
feature must be added to each framework separately. Many
neat ideas cannot be used together because they have been
implemented in different frameworks.

We see the main cause of these problems to be the early
stage of evolution of web frameworks—no clear winner has
emerged yet. Some variation of web frameworks is inevitable
because of different application domains have different and
conflicting demands: complexity of user interface, applica-
tion performance, developer productivity, which leads to dif-
ferent programming models and approaches. Also, different
programming platforms with different language features and
philosophies affect how web frameworks are designed. Fi-
nally, there are many social, economical, and political rea-
sons of the problems, but these are out of scope of this paper.

We think that web framework market would win a lot if
there were two or three popular platforms with orthogonal
philosophies that would consolidate proponents of their ap-
proach. Application programmers would not have to learn
new web framework at the beginning of each project. Writ-
ing reusable components and application integration would
be easier and more rewarding. Framework designers could
try out new ideas much easier by writing extensions to the
framework, while maintaining a large potential user-base.

This is not to say that smaller frameworks would not exist—
completely new approaches always have to be tried out.
Some of these frameworks would survive and become big
players, others would diminish. We predict that web frame-
work ecosystem will converge to this situation anyway, we
just think that it needs some hints to converge faster.

1.2 Contributions
In this paper we will describe a component framework that
we named Aranea. Aranea is written in Java and allows
assembling server-side controller web frameworks out of
reusable components and patterns. Aranea applications are
pure Java and can be written without any static configura-
tion files. In Section 2 we describe our approach and motiva-
tion. We find that one of the strengths of this framework is
its conceptual integrity—it has very few core concepts that
are applied uniformly throughout the framework. The num-
ber of core interfaces is small, as is the number of methods
in the interfaces. Components are easy to reuse, extend,
and test, because all external dependencies are injected into
them. The details of the Aranea core abstractions are ex-
plained in Section 3.

In different configurations of Aranea components we can
mimic principles of most existing server-side web controller
frameworks and combine most of patterns in use, but we
can also use these configurations together. Possible config-
urations are described in Section 4. We concentrate on im-
plementation of server-side controllers, but we also intend
to support programming model where most of UI is im-
plemented on the client-side and server-side contains only
coarse-grained stateful components corresponding roughly
to activated use-cases.

Of particular interest is configuration supporting program-
ming model that allows expressing rich user interface as dy-
namic hierarchical composition of components and main-
taining call stacks of nested processes (we call them flows
further) at arbitrary place in the hierarchy. As an example
of rich user interface at extreme, consider Figure 1: multi-
ple interacting windows per user session, each window con-
tains a stack of flows, flows can call nested flows that after
completing return values, flows can display additional UI
(side-menu, context information) even when a nested flow
is executing, flows can contain tabbed areas, wizards, with
input forms, lists, other controls, and even other flows.

Further, the framework facilitates both event-based and se-
quential programming (using continuations). The program-
ming model is quite similar to the one used in Smalltalk web
framework Seaside [25], but has completely different imple-
mentation and is more general in terms of where sequential
programming can be used. This topic is discussed in Section

Figure 1: A sketch of a rich user interface.

8.1 as one of extensions.

All web frameworks have to handle such aspects as con-
figuration, security, error handling, and concurrency. We
explain how Aranea handles these issues in Section 5.

As a side-product, a reusable component library was created
featuring input forms and validation, data lists, tabbed di-
alogs and wizards, tree control, etc. Another side product
was a rendering framework based on Java Server Pages [11],
which allows describing the layout of user interface with-
out redundancy of W3C XHTML [22] and CSS [5]. We will
describe these additions shortly in Section 6.

We see, as one of the most important differentiating factors
of Aranea, its ability to serve as a vehicle for integration
of existing frameworks, thanks to its orthogonal design. In
Section 7 we show how Aranea can be used in one of the
following roles:

Host Aranea hosts components of other controller frame-
work.

Guest Aranea components used within other controller
framework.

Protocol Components of two frameworks communicate
with each other through Aranea interfaces.

The components mentioned can be either reusable controls
or whole application specific use-case implementations.

Finally, we see Aranea as a research platform. It it very easy
to try out a new feature without having to write a whole web
framework. A framework is assembled out of independent
reusable components so essentially everything can be recon-
figured, extended, or replaced. If Aranea becomes popular,

writing a new component for Aranea would also mean a large
potential user base.

Naturally, there are still numerous framework extensions to
be made and further directions to be pursued. These are
described in Section 8. Last, but not least, Aranea is based
on great ideas originating from prior work of many people.
When possible, we reference the original source of idea at
the time of introducing it. In Section 9 we compare Aranea
with existing work.

2. BACKGROUND
As we mentioned in the introduction, our aim is to sup-
port most of programming models and patterns available in
existing controller frameworks. We present here, unavoid-
ably incomplete and subjective, list of profound ideas used
in contemporary web controller frameworks.

The first important alternative is using stateless or reen-
trant components for high performance and low memory
footprint, available in such frameworks as Struts [3] and
WebWork [23].

Another important approach is using hierarchical composi-
tion of stateful non-reentrant components with event-based
programming model, available in such frameworks as JSF
[10], ASP.NET [4], Seaside [25], Wicket [24], Tapestry [7].
This model is often used for developing rich UI, but gener-
ally poses higher demands on server’s CPU and memory.

The next abstraction useful especially for developing rich
UI is nested processes, often referred to as modal processes,
present for instance in such web frameworks as WASH
[30], Cocoon [2], Spring Web Flow [21], and RIFE [17].
They are often referred to by the name of implementation
mechanism—continuations. The original idea comes from
Scheme [29], [26].

All of these continuation frameworks provide one top-level
call-stack—essentially flows are like function calls spanning
multiple web requests. A significant innovation can be found
in framework Seaside [25], where continuations are combined
with component model and call stack can be present at any
level of component hierarchy.

Yet another important model is using asynchronous requests
and partial page updates, coined Ajax [1]. It allows decreas-
ing server-side state representation demands and increases
responsiveness of UI. At an extreme, it allows creating es-
sentially fat client applications with sophisticated UI within
browser.

We would also like to support different forms of metapro-
gramming such as domain specific language for describing
UI as a state machine in Spring Web Flow [21] and domain-
driven design as implemented in Ruby on Rails [19] or
RIFE/Crud [18]. This often requires framework to allow
dynamic composition and configuration of components at
run-time.

2.1 Pitfalls
We have also studied implementations of many frameworks
and would like to avoid pitfalls that we have identified.

Some frameworks designs suffer such problems as poor
decomposition—core interfaces with 50-100 methods, and
lack of conceptual integrity—many core concepts with limi-
tations on how to combine them. One example of the former
is when external interfaces (framework contract) and inter-
nal interfaces (for custom logic) are mixed together. An
example of the latter would be creating a sophisticated com-
ponent model to compose pages but providing only trivial
navigation model between them.

Another common trouble is static decomposition of
application—the structure of application is defined at com-
pile time and new component instances cannot be configured
at run-time. In some cases components can be assembled at
run-time, but only before they are executed, which is limit-
ing with very dynamic UI.

Historically, there has been very little encapsulation of com-
ponent state—unnecessary shared state is kept for instance
in session data scope. This also makes harder to decide
when data should be released because it is unclear who else
is using it.

Commonly component life-cycle management is implicit—
components are instantiated based on information present
in the web request. This makes implementing access con-
trols more laborious and error-prone, because the developer
cannot make any assumptions about when the component
will be executed and what values will be contained in the
(shared) data scope.

Finally there are imposed limitations on how components
can interact with each other. Often the only way is either
shared data scope or redirecting.

Such problems are well described in the introduction of ar-
ticle on Seaside [25] and are compared to the goto program-
ming style popular in 70-s and earlier.

2.2 Our Approach
Based on these observations we decided to design Aranea
using object-oriented principles like encapsulation and poly-
morphism. Components are plain Java objects and we min-
imize usage of static configuration files. This allows to have
statically typed component system that is very dynamic and
can be reconfigured at the run-time. We use dependency in-
jection where possible to make components as reusable and
testable as possible.

The main approach is hierarchical composition of compo-
nents with event-driven programming model. The structure
of component composition is dynamic and can be changed
at the run-time. State is represented as Java fields of com-
ponent instances. Dependency injection gets an interesting
twist in case of hierarchical components—the way child com-
ponents are configured depends on which parent they belong
to. Also it is often very convenient to inherit dependencies of
a parent to a child component. Our solution to this problem
is based on something that we call environment, described
in the next section.

We use by default explicit state transition management—
the structure of component hierarchy does not depend on

parameters of web request and changes only when explicit
statement to do that is executed. Such approach also
makes authorization much easier, as will be described in
Section 5. Components can communicate among each other
as normal Java objects. We support communication both
through shared data scopes and method invocation. Exe-
cution model is such that each web request is processed on
one Java thread, which makes system considerably easier to
debug.

Nested processes are supported by introducing a component
that is a call stack containing special components—flows.
Call stack components can be present at any level of com-
ponent hierarchy. One could say that call stack is just a
form of component composition. Flows have event-based
interface—when starting a subflow, event handler is regis-
tered that will be notified when subflow returns. Blocking
semantics of flow invocation can be implemented in a more
general way as taking continuation and registering it as an
event handler of the event until which we need to block (e.g.
subflow returns).

3. CORE ABSTRACTIONS
Aranea framework is based on the abstraction of compo-
nents arranged in a dynamic hierarchy and two component
subtypes: services that model reentrant controllers and wid-
gets that model non-reentrant stateful controllers. In this
section we examine their interface and implementation ideas.
We omit the checked exceptions and some other details from
the interfaces for brevity.

3.1 Components
At the core of Aranea lies a simple notion of components
arranged into a dynamic hierarchy that follows the Com-
posite pattern with certain mechanisms for communicating
between children and parents. This abstraction is captured
in the following interface:

interface Component {

void init(Environment env);

void enable();

void disable();

void propagate(Message msg);

void destroy();

}

A component in itself is a very simple entity that

• Has a life-cycle which begins with an init() call and
ends with a destroy() call.

• Can be signaled to be disabled and then enabled again.

• Has an Environment that is passed to it by its parent
or creator during initialization.

• Can propagate Messages to its children.

Note that we imply that a component will have a parent and
may have children. Aranea actually implies that the compo-
nent would realize a certain flavor of the Composite pattern

that requires each child to have a unique identifier in rela-
tion to its parent. These identifiers can then be combined
to create a full identifier that allows tracing the component
starting from the hierarchy root. Note also that the hierar-
chy is in no way static and can be modified at any time by
any parent.

However, the hierarchy we have arranged from our compo-
nents so far is inert. To allow some communication between
different components we need to examine in detail the no-
tions of Environment and Message.

Environment is captured in the following interface:

interface Environment {

Object getEntry(Object key);

}

It is basically a simple yet powerful discovery mechanism
allowing the children to discover services (named contexts)
provided by their parents without actually knowing, which
parent has provided it. Looking up a context is done by call-
ing the environment getEntry() passing some well-known
context name as the key. By a convention this well-known
name is the interface class realized by the context. The fol-
lowing example illustrates how environment can be used:

L10nContext locCtx = (L10nContext)

getEnvironment().getEntry(L10nContext.class);

String message = locCtx.localize("message.key");

Environment may contain entries added by any of the cur-
rent component ancestors, however the current component
direct parent has complete control over the exact entries
that the current component can discover. It can add new
entries, override old ones as well as remove (or rather filter
out) entries it does not want the component to access. This
is done by wrapping the grandparent Environment into a
proxy that will allow only specific entries to be looked up
from the grandparent.

Message is captured in the following interface:

interface Message {

void send(Object key, Component comp);

}

While the environment allows communicating with the
component parents, messages allow communicating with
the component descendants (indirect children). Although
Message seems simple, it is actually a powerful modifica-
tion of the Visitor pattern. The idea is that a component
propagate(m) method will just call message m.send(...)

method for each of its children passing the message both
their instances and identifiers. The message can then prop-
agate itself further or call any other component methods.

It is easy to see that messages allow constructing both broad-
casting (just sending the message to all of the components

under the current component) and routed messages that re-
ceive a relative “path” from the current component and
route the message to the intended one. The following ex-
ample illustrates a component broadcasting some message
to all its descendants (BroadcastMessage will call execute
for all component under current):

Message myEvent = new BroadcastMessage() {

public void execute(Component comp) {

if (comp instanceof MyDataListener)

((MyDataListener) comp).setMyData(data);

}

}

myEvent.send(null, rootComponent);

3.2 Services
Although component hierarchy is a very powerful concept
and messaging is enough to do most of the communication,
it is comfortable to define a specialized component type that
is closer to the Controller pattern. We call this component
Service and it is captured in the following interface:

interface Service extends Component {

void action(

Path path,

InputData input,

OutputData output

);

}

Service is basically an abstraction of a reentrant con-
troller in our hierarchy of components. The InputData

and OutputData are simple generic abstractions over, corre-
spondingly, a request and a response, which allow the con-
troller to process request data and generate the response.
The Path is an abstracted representation of the full path
to the service from the root. It allows services to route
the request to the one service it is intended for. However
since service is also a component it still can enrich the en-
vironment with additional contexts that can be used by its
children. This leads to an understanding of a service as a
building block of the framework itself.

In fact a typical pattern that services realize is that of a Fil-
ter—a service that has a single child and that will block or
modify some requests as well as provide additional function-
ality by adding a context to its child environment. Although
it is similar Servlet [8] filters, the difference is that we can
do it in any place in the hierarchy, thus providing different
services. Some typical examples include file upload, local-
ization, synchronization, and multi-submit protection filter
services.

Another useful pattern that can be realized by services is
that of a Router. A router has several children, but routes
any given request to only one of them using some kind of as-
sociation, typically a request parameter. A router can have
a predefined number of children configured on deployment,
it can allow to add/remove children explicitly at any time,
or it can create children dynamically on-demand. Common
examples of routers include dynamic router that enables

adding new services on need and is used for top-level ser-
vices and popup services, and session router that allocates
a service per each user session and routes request to it.

3.3 Widgets
In the next section we will examine in more detail how we
can use services to put a framework together. However al-
though services are very powerful they are not too comfort-
able for programming stateful non-reentrant applications.
To do that as well as to capture GUI abstractions we will
introduce the notion of a Widget, which is captured in the
following interface:

interface Widget extends Service {

void update(InputData data);

void event(Path path, InputData input);

void process();

void render(OutputData output);

}

Widgets extend services, but unlike them widgets are usu-
ally stateful and are always assumed to be non-reentrant.
The widget methods form a request-response cycle that
should proceed in the following order:

1. update() is called on all the widgets in the hierarchy
allowing them to read data intended for them from the
request.

2. event() call is routed to a single widget in the hierar-
chy using the supplied Path. It allows widgets to react
to specific user events.

3. process() is also called on all the widgets in the hier-
archy allowing them to prepare for rendering whether
or not the widget has received an event.

4. render() calls are not guided by any conventions. If
called, widget should render itself (though it may del-
egate the rendering to e.g. template). The render()

method should be idempotent, as it can be called ar-
bitrary number of times after a process() call before
an update() call.

Although widgets also inherit an action() method from the
services, it may not be called during the widget request-
response cycle. The only time it is allowed is after a
process() call, but before an update() call. It may be
used to interact with a single widget, e.g. for the purposes of
making an asynchronous request through Ajax [1]. Standard
widget implementation allows setting event listeners that en-
able further discrimination between action()/event() calls
to the same widget. As services widgets may be used as
framework building blocks and can realize the Filter or
Router patterns.

So far we called our components stateful or non-stateful
without discussing the persistence of this state. A typical
framework would introduce predefined scopes of persistence,
however in Aranea we have very natural scopes for all our
components—their lifetime. In Aranea one can just use the

component fields and assume that they will persist until
the component is destroyed. If the session router is used
then the root component under it will live as long as the
user session. This means that in Aranea state management
is non-intrusive and invisible to the programmer, as most
components live as long as they are needed.

3.4 Flows
To support flows (nested processes) we construct a flow con-
tainer widget that essentially hosts a stack of widgets (where
only the top widget is active at any time) and enriches their
environment with the following context:

interface FlowContext {

void start(Widget flow, Handler handler);

void replace(Widget flow);

void finish(Object result);

void cancel();

}

This context is available in standard flow implementation
by calling getFlowCtx(). Its methods are used as follows:

• Flow A running in a flow container starts a child flow
B by calling start(new B(...), null). The data
passed to the flow B constructor can be thought as
incoming parameters to the nested process. The flow
A then becomes inactive and flow B gets initialized.

• When flow B is finished interacting with the user,
it calls finish(...) passing the return value to the
method. Alternatively flow B can call the cancel()

method if the flow was terminated by user without
completing its task and thus without a return value.
In both cases flow B is destroyed and flow A is reacti-
vated.

• Instead of finishing or canceling, flow B can also replace
itself by flow C by calling replace(new C(...)). In
such case flow B gets destroyed, flow C gets initialized
and activated, while flow A continues to be inactive.
When flow C will finish flow A will get reactivated.

Handler is used when the calling flow needs to somehow
react to the called flow finishing or canceling:

interface Handler {

void onFinish(Object returnValue);

void onCancel();

}

It is possible to use continuations to realize synchronous
(blocking) semantics of flow invocation, as shown in the sec-
tion 8, in which case the Handler interface is be redundant.

3.5 Protecting Framework Abstractions
Several problems come up in framework design, when the
objects that application programmers use and extend also
have a specific framework contract:

• Application programmer can call a framework method
in a way that will break the contract, e.g. in wrong
order, which is hard to enforce.

• Application programmer may extend a framework ob-
ject overriding the framework method and again break-
ing the contract (even harder to enforce).

• Framework programmer may inadvertently call a
method that is application-specific, since framework
and application methods share the same namespace.

• Since all methods are in the same namespace it may be
hard to find the one you need. There are frameworks
that have 50 to 100 methods in core interfaces, some
of which have to be extended, others called.

Java allows to solve “breaking the contract by overrid-
ing framework method” problem by declaring this method
final. However this also has its drawbacks, as sometimes
we would want framework programmers to still be able to
override or extend some of the framework logic. Java how-
ever does not provide any good means to restrict visibility
based on namespaces (unless the classes are in the same
package).

The solution chosen for Aranea is to hide the framework
interfaces in an inner class behind an additional method
call:

interface Component {

Component.Interface _getComponent();

interface Interface {

void init(Environment env);

void destroy();

void propagate(Message message);

void enable();

void disable();

}

}

The idea is that although we can’t enforce the contract onto
application programmers we can ensure that programmer is
fully aware when he is calling a system method:

widget._getComponent().init(childEnvironment);

widget._getWidget().update(input);

Note that this also breaks the methods into namespaces with
one global namespace for public custom application methods
and separate named namespaces for each of the framework
interfaces. This allows to document and use them in a con-
siderably clearer manner.

4. FRAMEWORK ASSEMBLY
Now that we are familiar with the core abstractions we can
examine how the actual web framework is assembled. First
of all it is comfortable to enumerate the component types
that repeatedly occur in the framework:

Filter A component that contains one child and chooses
depending on the request parameters whether to route
calls to it.

Router A component that contains many children, but
routes calls to only one of them depending on the re-
quest parameters.

Broadcaster A component that has many children and
routes calls to all of them.

Adapter A component that translates calls from one pro-
tocol to another (e.g. from service to a widget or from
Servlet [8] to a service).

Container A component that allows some type of children
to function by enabling some particular protocol or
functionality.

Of course of all of these component types also enrich the
environment and send messages when needed.

Aranea framework is nothing else, but a hierarchy (often
looking like a chain) of components fulfilling independent
tasks that are arranged together, we cannot just provide a
single way of assembling it. Instead we show how to assem-
ble frameworks that can host a flat namespace of reentrant
controllers (á la Struts [3] actions), a flat namespace of non-
reentrant stateful controllers (á la JSF [10] components) and
nested stateful flows (á la Spring Web Flow [21]). Finally
we also consider how to merge all these approaches in one
assembly.

4.1 Reentrant Controllers
The first model is easy to implement by arranging the frame-
work in a chain by containment (similar to pattern Chain-
of-Responsibility), which starting from the root would look
as follows:

1. Servlet [8] adapter component that translates the
servlet doPost() and doGet() to Aranea service
action() calls.

2. HTTP filter service that sets the correct headers (in-
cluding caching) and character encoding. Generally
this step consists of a chain of multiple filters.

3. URL path router service that routes the request to one
of the child services using the URL path after servlet.
One path will be marked as default.

4. A number of custom application services, each regis-
tered under a specific URL to the URL path router
service that correspond to the reentrant controllers.
We call these services actions.

The idea is that the first component object actually con-
tains the second as a field, the second actually contains
the third and so on. Routers keep their children in a
Map. When action() calls arrive each component propa-
gates them down the chain.

The execution model of this framework will look as follows:

• The request coming to the root URL will be routed to
the default service.

• When custom services are invoked they can render the
HTML response (optionally delegating it to a template
language) and insert into it URL paths of other custom
services, allowing to route next request to them.

• A custom service may also issue an HTTP redirect di-
rectly sending the user to another custom service. This
is useful when the former service performs some action
that should not be repeated (e.g. money transfer).

Of course in a real setup we might need a number of ad-
ditional filter services that would provide features like file
uploading, but this is enough to emulate the model itself.
Further on we will also omit the optional components from
the assembled framework for brevity.

In general, steps 3-4 could be extended to be composed out
of:

• Filter services that enrich InputData and OutputData

based on some criteria and then delegate work to the
single child service.

• Router services that route request to one of their chil-
dren based on remaining part of URL, accessible from
InputData.

Both filter and router services are stateful and reentrant.
Router services could either create a new stateless action
for each request (like WebWork [23] does) or route request
to existing reentrant actions (like Struts [3] does). Router
services could allow adding and removing (or enabling and
disabling) child actions at runtime, although care must be
taken to avoid destroying action that can be active on an-
other thread.

We have shown above how analogues of Struts and Web-
Work actions fit into this architecture. WebWork intercep-
tors could be implemented as a chain of filter services that
decide based on InputData and OutputData whether to en-
rich them and then delegate work to the child service. There
could be filter services both before action router and after.
The former would be shared between all actions while the
latter would be private for each action instance. A disad-
vantage of such approach is that each request must pass
through all shared filters, although which filters are needed
for particular action might be possible to decide statically
before the request arrives.

If this turns out to be a problem, we could introduce a new
concept of interceptor:

interface Interceptor extends Component {

void intercept(

Service service,

InputData,

OutputData

);

}

Interceptor is a stateful reentrant component that does
modifications to InputData and OutputData and then calls
action() method of the service. When creating a new ac-
tion, it could be wrapped into interceptors:

Interceptor i1 = ...

Interceptor i2 = ...

..

Service action = ...

Service p1 = new InterceptingProxy(i1, action);

Service p2 = new InterceptingProxy(i2, p1);

...

this.addService(pN);

Here InterceptingProxy(Interceptor, Service) proxies
all method invocations to the service except for the one
method:

void action(InputData in, OutputData out) {

iterceptor.intercept(service, in, out)

}

There is no need to create more than one instance of each in-
terceptor kind because they can be shared between wrapped
actions. Interceptors allow mimicking WebWork intercep-
tors more directly and are more space and time efficient as
compared to chains of filters performing the same role.

4.2 Stateful Non-Reentrant Controllers
To emulate the stateful non-reentrant controllers we will
need to host widgets in the user session. To do that we
assemble the framework as follows:

1. Servlet [8] adapter component.

2. Session router that creates a new service for each new
session and passes the action() call to the associated
service.

3. Synchronizing filter service that let’s only one request
proceed at a time.

4. HTTP filter service.

5. Widget adapter service that translates
a service action() call into a widget
update()/event()/process()/render() request-
response cycle.

6. Widget container widget that will read from request
the path to the widget that the event should be routed
to and call event() with the correct path.

7. Page container widget that will allow the current child
widget to replace itself with a new one.

8. Application root widget which in many cases is the
login widget.

This setup is illustrated on Figure 2.

Figure 2: Framework assembly for hosting pages

A real custom application would most probably have login
widget as the application root. After authenticating the
user, login widget would replace itself with the actual root
widget, which in most cases would be the application menu
(which would also contain another page container widget as
its child).

The menu would contain a mapping of menu items to widget
classes (or more generally factories) and would start the ap-
propriate widget in the child page container when the user
clicks a menu item. The custom application widgets would
be able to navigate among each other using the page context
added by the page container to their environment.

The execution model of this framework will look as follows:

• The request coming to the root URL will be routed
to the application root widget. If this is a new user
session, a new session service will be created by the
session router.

• Only one request will be processes at once (due to syn-
chronizing filter). This means that widget developers
should never worry about concurrency.

• The widget may render the response, however it has
no way of directly referencing other widgets by URLs.
Therefore it must send all events from HTML to itself.

• Upon receiving an event the widget might replace it-
self with another widget (optionally passing it data

through the constructor) using the context provided by
the page container widget. Generally all modification
of of widget hierarchy (e.g. adding/removing children)
can be done during event part of the request-response
cycle only.

• The hierarchy of widgets under the application root
widget (e.g. GUI elements like forms or tabs) may be
arranged using usual Composite widget implementa-
tions as no special routing is needed anymore.

In the real setup page container widget may be emulated
using flow container widget that allows replacing the current
flow with a new one.

Such an execution model is very similar to that of Wicket
[24], JSF [10], or Tapestry [7] although these frameworks
separate the pages from the rest of components (by declaring
a special subclass) and add special support for markup com-
ponents that compose the actual presentation of the page.

4.3 Stateful Non-Reentrant Controllers with
Flows

To add nested processes we basically need only to replace the
page container with a flow container in the previous model:

1. Servlet [8] adapter component.

2. Session router service.

3. Synchronizing filter service.

4. HTTP filter service.

5. Widget adapter service.

6. Widget container widget.

7. Flow container widget that will allow to run nested
processes.

8. Application root flow widget which in many cases is
the login flow.

The execution model here is very similar to the one outlined
in Subsection 4.2. The only difference is that the application
root flow may start a new subflow instead of replacing itself
with another widget.

This model is similar to that of Spring WebFlow [21], al-
though Spring WebFlow uses Push-Down Finite State Au-
tomaton to simulate the same navigation pattern and con-
sequently it has only one top-level call stack. In our model
call stacks can appear at any level of widget composition hi-
erarchy, which makes our model considerably more flexible.

4.4 Combining the Models
It is also relatively easy to combine these models, modifying
the model shown on figure 2 by putting a URL path router
service before the session router, map the session router to
a particular URL path and put a flow container in the end.

The combined model is useful, since reentrant stateless ser-
vices allow to download files from database and send other

semi-static data comfortably to the user. They can also be
used to serve parts of the application that has the highest
demand and thus load.

It is also worth noting that such a model allows cooperation
between the flows and reentrant services—e.g. widgets can
dynamically add/remove them on need.

5. FRAMEWORK ASPECTS
Next we examine some typical web framework aspects and
how they are realized in Aranea.

5.1 Configuration
The first aspect that we want to examine is configuration.
We have repeated throughout the paper that the compo-
nents should form a dynamic hierarchy, however it is com-
fortable to use a static configuration to wire parts of that
hierarchy that form the framework core.

To do that one can use just plain Java combining a hierar-
chy of objects using setter methods and constructors. But
in reality it is more comfortable to use some configuration
mechanism, like an IoC container. We use in our config-
uration examples Spring [20] IoC container and wire the
components together as beans. Note that even such static
configuration contains elements of dynamicity, since some
components (á la root user session service) are wired not as
instances, but via a factory that returns a new service for
each session.

SessionRouterService srs =

new SessionRouterService();

srs.setSessionServiceFactory(

new ServiceFactory() {

Service buildService(Environment env) {

Service result = ...

//Build a new session service...

return result;

}

}

);

5.2 Security
The most common aspect of security that frameworks have
to deal with is authorization. A common task is to deter-
mine, whether or not the current user has enough privileges
to see a given page, component or GUI element. In many
frameworks the pages or components are mapped to a par-
ticular URL, which can also be accessed directly by sending
an HTTP request. In such cases it is also important to re-
strict the URLs accessible by the user to only those he is
authorized to see.

When programming in Aranea using stateless re-entrant ser-
vices they might also be mapped to particular URLs that
need to be protected. But when programming in Aranea us-
ing widgets and flows (a stateful programming model) there
is no general way to start flows by sending HTTP requests.
Thus the only things that need protection are usually the
menu (which can be assigned privileges per every menu item)
and the active flow and widgets (which can only receive the
events they subscribe to).

This simplifies the authorization model to checking whether
you have enough privileges to start the flow before starting
it. Since most use-cases should have enough privileges to
start all their subflows it is usually enough to assign coarse-
grained privileges to use-cases that can be started from the
menu as well as fine-grained privileges for some particular
actions (like editing instead of viewing).

5.3 Error Handling
When an exception occurs the framework must give the user
(or the programmer) an informative message and also pro-
vide some recovery possibilities. Aranea peculiarity is that
since an exception can occur at any level of hierarchy the
informing and recovery may be specific to this place in the
hierarchy. Default behaviour for Aranea components is just
to propagate the error up the hierarchy to the first exception
handler component

For example it might be required to be able to cancel a
flow that has thrown an exception and return back to the
flow that invoked the faulty flow. A logical solution is to let
the flow container (and other similar components) to handle
their children’s exceptions by rendering an informative error
subpage instead in place of the flow. The error page can then
allow canceling flows by sending events to the flow container.

With such approach when we have several flow containers on
one HTML page, then if two or more flows under different
containers fail, they will independently show error subpages
allowing to cancel the particular faulty flows. Note also
that such approach will leave the usual navigation elements
like menus intact, which will allow the user to navigate the
application as usual.

Alternatively we may want to render the error page outside
the flow, hiding the usual navigation element. To do that
the flow container needs to re-throw the exception further
upwards to the top-level exception handler, accompanied by
a service that will be used to render the error page. This
service will be given the flow container environment, thus
allowing it to cancel flows.

With such approach only one flow can generate exception at
one time, since it will escape the exception to the top-level
exception handler. Both approaches have their merits and
Aranea allows the particular flow container to choose the
suitable strategy. Additionally Aranea provides a critical
error handler that will render the exception stack for an
error occurring high in the framework part of the hierarchy.

It should also be noted that to handle exceptions occurring
after some data has been written to the response stream (e.g.
during a render() call) we need to roll back this data alto-
gether and render an informative error page instead. This is
easily accomplished by wrapping the response stream with
a buffer.

Certainly these approaches don’t cover all possible use cases
and custom exception handlers may be needed for new type
of containers. However the approach is general enough to
be applied similarly in new use cases.

5.4 Concurrency

Execution model of Aranea is such that each web request is
processed on one Java thread, which makes system consid-
erably easier to debug. By default Aranea does not synchro-
nize component calls. It does, however, protect from trying
to destroy a working component. If a service or widget cur-
rently in the middle of some method call will be destroyed,
the destroyer will wait until it returns from the call. To
protect from deadlock and livelock, after some time the lock
will be released with a warning.

When we want to synchronize the actual calls (as we need
for example with widgets) we can use the synchronizing ser-
vice that allows only one action() call to take place simul-
taneously. This service can be used when configuring the
Aranea framework to synchronize calls on e.g. browser win-
dow threads. This will allow to program assuming that only
one request per browser window is processed at any mo-
ment of time. Note that widgets should aways be behind a
synchronizing filter and cannot process concurrent calls.

6. FRAMEWORK IMPLEMENTATION
The previously described components are more-or-less
straightforward to implement, however to actually develop
applications one needs considerably more functionality than
just a controller framework. In this section we present the
components and extensions that make Aranea a full-fledged
web framework usable for productive development of large
applications.

6.1 Standard Components
Aranea includes standard implementations of the core ab-
stractions: component, service, widget, environment and
message.

The standard component, service and widget implementa-
tions (named StandardComponent, StandardService and
StandardWidget) are similar to each other and mainly pro-
vide children management and synchronization of destruc-
tion. The chidren are managed using following methods
(with “Component” substituted for accordingly “Service”
or “Widget”):

• addComponent(key, Component) and
removeComponent(key) add and remove the child
to/from the parent as well as initializing/destroying
it.

• enableComponent(key) and disableComponent(key)

allow to enable/disable child blocking it from receiving
calls and notifying it via enable()/disable() calls.

• getChildComponentEnvironment() that can be over-
ridden to supply the child additional entries to its en-
vironment.

The standard component classes also implement call routing
according to the Composite pattern described in Section 3.

In addition to this, standard service and standard widget
implement event listener management that enable further
discrimination between action/event calls to the same ser-
vice/widget. This allows for truly event-driven program-
ming.

There are two standard implementations of message:
RoutedMessage and BroadcastMessage. The first one al-
lows to send a message to a component with a known full
path, while the second one broadcasts the message to all
components under current.

6.2 Reusable Widget Library
While standard widget and service implementations supply
the base classes for custom and reusable application coarse-
grained controllers, the reusable widget library implements
the fine-grained GUI abstractions like form elements, tabs,
wizards and lists.

One of the most common tasks in Web is data bind-
ing/reading the values from the request, validation and con-
version. Aranea Forms provide a GUI abstraction of the
HTML controls and allows to bind the data read from the re-
quest to user beans. Forms support hierarchical data struc-
tures, change detection and custom validation and conver-
sion.

Another common programming task is to display user a list
(also called grid) that can be broken in pages, sorted and
filtered. Aranea lists support both in-memory and database
backends, allowing to generate database queries that return
the exact data that is displayed. This allows to make lists
taking memory for the currently displayed items only, which
support tables with many thousands of records.

6.3 Presentation Framework
Finally Aranea also contains a JavaServer Pages [11] custom
tag library that not only allows to access services and wid-
gets, but also facilitates expressing user interface with less
redundancy than W3C XHTML [22] and W3C CSS [5].

The core idea is to break the application UI into logical
parts and capture them using reusable custom tags. Then
one can program using a higher-level model than XHTML,
operating with UI logical entities. The framework contains
standard implementations for the reusable widget library
tags and base implementations for the custom application
tags together with specific examples.

<html>

<body>

<ui:systemForm method="POST">

<h1>Aranea Template Application</h1>

This renders the child widget

with id "myChild":

<ui:widgetInclude id="myChild"/>

</ui:systemForm>

</body>

</html>

Since Aranea controller in no way enforces particular ren-
dering mechanism, every other component may be rendered
by a different view framework, so this particular JSP-based
rendering engine is in now way obligatory.

7. INTEGRATION SCENARIOS

In this section we describe our vision of how web controller
frameworks could be integrated with Aranea or between
each other. In practice, we have so far integrated Aranea
only with one internal framework with stateful Portlet-like
[15] components, where Aranea components were hosted
within the latter framework, but we are considering integrat-
ing with such frameworks as Wicket [24], JSF [10], Tapestry
[7], Spring WebFlow [21], Struts [3], and WebWork [23].

Integration is notorious for being hard to create generaliza-
tions about. Each integration scenario has its own set of
specialized problems and we find that this article is not the
right place to write about them. For this reason we keep this
section intentionally very abstract and high-level and try to
describe general principles of web controller framework in-
tegration without drowning in implementation details.

In the following we assume that depending on their nature
it is possible to model components of frameworks we want
to integrate as one of:

• service-like—reentrant and/or stateless component1,

• widget-like—non-reentrant stateful component.

Note that both notions consist of two contracts: interface of
component and contract of the container of the component.

In our abstraction we have essentially the following integra-
tion scenarios:

• service-service,

• service-widget,

• widget-service,

• widget-widget.

Here, for instance, ”service-widget” should be read as: ”ser-
vice-like component of framework X containing widget-like
component of framework Y”. In homogeneous (i.e. service-
service and widget-widget) integration scenarios one has to
find a mapping between service (resp. widget) interface
methods invocations of two frameworks. Although we don’t
find this mapping trivial, there is little we can say with-
out considering specialized details of particular frameworks.
However, our experience shows that, thanks to minimalis-
tic and orthogonal interfaces and extensibility of Aranea,
the task becomes more tractable than with other monolithic
frameworks. We now concentrate on heterogeneous cases of
server-widget and widget-service integration. They can also
occur within Aranea framework itself, but are more typi-
cal when disparate frameworks using different programming
models are integrated.

In service-widget scenario, generally, each web request is
processed by some service and then the response is rendered
by possibly a different service, whereas both services can be

1 Note that Servlets [8] are, for instance, service-like com-
ponents.

reentrant and/or stateless. As a result, such services cannot
host themselves the widgets whose life-time spans multiple
requests handled by different services. Consequently, widget
instances should be maintained in stateful widget container
service(s) with longer life-span. At each request such ser-
vices would call update() and event() methods of the con-
tained widgets. Widgets would be instantiated by services
processing the request and rendered using render() method
by services generating the response. Generally, the life-time
of a widget container service would not match the required
life-times of contained widgets. For this reason some other
mechanisms should be used, for instance:

• Each service processing a request should explicitly de-
cide which widgets are to be kept further, all the rest
are to be destroyed (within current session).

• Associating with each widget and web request a hi-
erarchical namespace and keeping only those widgets
whose namespace is a prefix of web request namespace
(within current session).

As the services are generally reentrant, it is important to
exclude concurrent access to the widgets belonging to the
same session. The simplest solution is to synchronize on
session at each web request that accesses widgets.

In widget-service scenario, services should be contained in
service container widgets in the position within widget hi-
erarchy most suitable for rendering the service. On widget
update(), the data entitled for the contained service should
be memorized. On widget render() the memorized data
should be passed to the action() method of contained ser-
vice to render the response. If the service responds with
redirection, which means that the request should not be
rerun, the service should be replaced with the service to
which the redirection points. After that and on all subse-
quent renderings the action() method of the new service
should be called with redirection parameters. Most often,
requests that lead to redirection are very easy to identify
(e.g. HTTP POST vs GET [6]). In this case such requests
should be routed as event() instead of update() invocations
and executed there at once instead of waiting for render()

invocation.

Coming back to not-so-abstract reality, when integrating
frameworks the following issues should be handled with care:

• How data is represented in the web request and how
output of multiple components coexists in the gener-
ated web response.

• Namespaces (e.g. field identifiers in web request) of
contained components should not mix with the names-
pace of container components, which in general means
appending to the names a prefix representing location
of contained component within the container.

• State management, especially session state history
management (browser’s back, forward, refresh, and
new window navigation commands) and keeping part
of the state on the client, should match between inte-
grated components. We explore this topic further in
Subsection 8.2.

• A related issue to consider is view integration. Many
web frameworks support web components that are
tightly integrated with some variant of templating.
Consequently it is important that these templating
technologies could be intermixed easily.

Incompatibilities in these aspects lead to a lot of mundane
protocol conversion code, or even force modifying integrated
components and/or frameworks.

Generalized solutions to these issues could be standardized
as Aranea Protocol. As compared to such protocol, current
Aranea Java interfaces are relatively loose—i.e. functional-
ity can be considerably cutsomized by using Message proto-
col and extending core interfaces (InputData, OutputData,
Component) with new subintefaces.

Altogether, we envision the following integration scenarios
with respect to Aranea:

Guest Aranea components (resp. services or widgets) are
hosted within components of framework X that comply
to the Aranea component (resp. service or widget)
container contract.

Host Aranea components host components (resp. service-
like or widget-like) of framework X through an adapter
component that wraps framework X components into
Aranea component (resp. service or widget) interface.

Protocol Framework X components provide Aranea com-
ponent (resp. service or widget) container contract
that hosts framework Y components wrapped into
Aranea component (resp. service or widget) interface
using an adapter component.

8. EXTENSIONS AND FUTURE WORK
In this section we discuss important functionality that is
not yet implemented in Aranea. In some cases we have very
clear idea how to do it, in other cases our understanding is
more vague.

8.1 Blocking Calls and Continuations
Consider the following very simple scenario:

1. When user clicks a button, we start a new subflow.

2. When this subflow eventually completes we want to
assign its return value to some text field.

In event-driven programming model the following code
would be typical:

OnClickListener listener = new OnClickListener() {

void onClick() {

Handler handler = new Handler() {

void onFinish(Object result) {

field.setText((String)result);

}

}

getFlowCtx().

start(new SubFlow(), handler);

}

}

button.addOnClickListener(listener);

What strikes here is the need to use multiple event listeners,
and as a result writing multiple anonymous classes that are
clumsy Java equivalent of syntactical closures. What we
would like to write is:

OnClickListener listener = new OnClickListener() {

void onClick() {

String result = (String)getFlowCtx().

call(new SubFlow());

label.setText(result);

}

}

button.addOnClickListener(listener);

What happens here is that flow is now called using blocking
semantics. Going further in this direction, we would like to
get rid of all event handlers in this example:

button.waitOnClick();

String result = (String)getFlowCtx().

call(new SubFlow());

label.setText(result);

Essentially, we would like to allow waiting for arbitrary
events, even ANDs and ORs of events—any monotonous
propositions.

Typically blocking behavior is implemented by suspending
executed thread and waiting on some concurrency primi-
tive like semaphore or monitor. The disadvantage of such
solution is that operating system threads are expensive, so
using an extra thread for each user session would be a ma-
jor overkill—most application servers use a limited pool of
worker threads that would be exhausted very fast. Besides,
threads cannot be serialized and migrated to other cluster
nodes. A more conceptual problem is that suspended thread
contains information regarding processing of the whole web
request, whereas it can be woken up by a different web re-
quest. Also, in Java blocking threads would retain ownership
of all monitors.

In [29] and [26] continuations were proposed to solve the
blocking problem in web applications, described above.
Continuation can be thought of as a lightweight snapshot
of thread’s call stack that can be resumed multiple times.
In the context of this problem the differences between con-
tinuation and thread is that continuation is much more
lightweight in terms of OS resources, can be serialized, and
it can be run multiple times. There still remains the prob-
lem that both thread and continuation contain information
regarding processing of the whole request, but can be woken
up by a different web request.

To solve this problem partial continuations [27] can be used.
Essentially, the difference is that the snapshot of call stack

is taken not from the root, but starting from some stack
frame that we will call boundary. In case of Aranea, the
boundary will be the stack frame of event handler invocation
that may contain blocking statements. So in case of our
previous example the boundary will be invocation of method
onClick():

OnClickListener listener = new OnClickListener() {

@Blocking

void onClick() {

String result = (String)getFlowCtx().

call(new SubFlow());

label.setText(result);

}

}

button.addOnClickListener(listener);

When we need to wait for an event, the following should be
executed:

1. Take current partial continuation,

2. Register it as an event handler,

3. Escape to the boundary.

Similar approach can be also applied to services though
mimicking such frameworks as Cocoon [2] and RIFE [17].
We’d like to stress that by applying continuations to widget
event handlers we can create a more powerful programming
model because there can be simultaneous linear flows at dif-
ferent places of the same widget hierarchy, e.g. in each flow
container. This programming model is similar to that of
Smalltalk web framework Seaside [25] that uses continua-
tions to provide analogous blocking call semantics of flows,
but not event handlers in general.

Java does not support continuations in any form, but luckily
there exists experimental library [9] that allows suspending
current partial continuation and later resuming it:

Runnable myRunnable = new Runnable {

void run() {

...

Continuation.suspend();

...

}

}

Continuation cont1 =

Continuation.startWith(myRunnable);

...

Continuation cont2 =

Continuation.continuteWith(cont1);

Aranea currently does not have implementation of this ap-
proach, however, it should be relatively easy to do that.
Event handlers containing blocking statements should be
instrumented with additional logic denoting continuation
boundaries. We could use AspectJ [28] to do that.

Altogether we view blocking calls as a rather easily imple-
mentable syntactic sugar above the core framework. At the
same time we find that combining event-based and sequen-
tial programming in a component framework is a very pow-
erful idea because different parts of application logic can be
expressed using the most suitable tool.

8.2 State Management
In this subsection we consider multiple aspects of application
state management:

• Optimizing memory server-side memory consumption.

• Keeping session state on the client-side.

• Supporting (or sensibly ignoring) browser’s back, for-
ward, refresh, and new window navigation commands.

• Providing semantic back, refresh, and new window
functionality in the application.

The fact that a part of session state can be saved into gen-
erated web response and later restored when corresponding
web request arrives allows decreasing demands on server-
side memory consumption. This approach is very natural
for frameworks based on reentrant or stateless service-like
components. Most often, application’s navigation history is
represented only within browser’s request history.

However such approach either allows very simple UI struc-
ture or requires lots of manual copying of state infor-
mation between server-side representation and web re-
quest/response. Stateful non-reentrant widgets provide
more productive development model of rich UI. Below we
show how client-side state and navigation history can be
supported in applications that also have widget-like compo-
nents.

8.2.1 Optimizing Memory Consumption
In high performance applications low memory consumption
of session state representation is essential. The interface
of Component has methods disable() and enable() that
should release all unnecessary resources. The semantics is
such that disabled component can be only destroyed and
does not have to respond to other events. Disabling compo-
nents could be used for flows that wait for subflows to return
and with inactive sessions.

What could component do when disabled? For instance in-
put form and data list component are quite memory con-
suming in default Aranea implementation. Input forms are
essentially hierarchical tree of components corresponding to
input fields. Normally, these components also memorize last
values entered by the user. In order to conserve space, mem-
orized values could be dropped when components are dis-
abled. Even more, the structure of input form is usually
determined by very few state variables, so the whole input
form could be released and later reconstructed from these
variables. Of course, this also generalizes to any compo-
nents, not just input forms. Data lists usually cache data
rows of the visible page and could release this cache when
disabled.

An alternative way of server-side state conservation is to
store it on the client-side within the web response that later
becomes web request. This behavior relies on browser’s re-
quest history and is described in the next section.

8.2.2 Client-Side State
Widgets can support saving state on the client-side using
the following interface:

interface Deflatable extends Component {

void deflate(OutputData)

void inflate(InputData)

Essence getEssence(OutputData)

}

interface Essence {

Component inflate(IntputData)

}

It would follow the following logic:

• Method deflate() writes out state to be kept on the
client-side into OutputData and releases internal rep-
resentation of the state.

• Method inflate() reads in information arriving from
the client-side from the InputData and restores inter-
nal representation of the state.

• Methods deflate()/inflate() could also recursively
call deflate()/inflate() on child components.

• When a reference to a child component can be released,
getEssence() can be called to get an Essence, which
allows similarly inflating the component, but does not
guarantee that object’s identity remains the same as
before deflating. Component essence, which is presum-
ably smaller than the component itself, should be kept
on the server-side.

Before update (resp. after rendering) phase a special Mes-
sage would traverse widget tree and if the widget is instance
of Deflatable call inflate() (resp. deflate()) method.
The data written out by deflate() methods would be stored
in the web requst. In order to guarantee integrity, their di-
gest would be kept on the server-side. If confidentiality is
needed, it could be also encrypted, although it makes more
sense to keep confidential data on the server-side instead.

8.2.3 Navigation History
Working with browser’s navigation commands is trivial if
there is no navigation state kept on the server-side which of-
ten happens with service-based applications. Otherwise the
problem essentially boils down to thinking of session as an
oriented graph, where nodes are particular states reached so
far and arcs show transitions between the states as a result
of web request. Its important to remember that the state
does not contain all components comprising the framework,
but only those instances that are bound to particular session
(or even particular window within session). Also in general
the state representation will consist of two parts: server-side

part and client-side part encoded in web response and subse-
quently in corresponding web request. In general this graph
is a tree rooted in the initial state, where multiple branches
occur because of using browser’s navigation commands. If
we add expiration of old states the graph becomes an ori-
ented forest. If each response contains the ID of the state
that generated it (i.e. the state after generation) then multi-
ple things can be done when corresponding request arrives:

• All states are maintained, split between server-side
and client-side representation. When request arrives,
session state with corresponding ID is easily recon-
structed based on information stored on the server-side
and information present in the request. After that
the request is executed in this state. The resulting
server-side part of the state is serialized (thus facili-
tating deep-copy) in order to allow processing multiple
times requests referring to this state. Such approach
integrates best with browser’s navigation commands
but poses increased demands on server-side memory
consumption.

• When request arrives that should not be run multiple
times (e.g. money transfer), it should be processed as
normal, but instead of rendering, a redirection should
be issued that causes rendering of the state resulting
from the original request. Rendering is idempotent
and can be run multiple times.

• Older states can be removed based on some expiration
policy to conserve memory or when application explic-
itly demands removing all previous states. If user goes
back too many times and reaches deleted state, he is
warned and told to move forward.

• Only one last state is kept on the server-side. When
request with an older ID arrives it is ignored and the
last state is rendered, possibly with a warning that
back-button, refresh, and new window commands are
ignored. This is actually the policy currently imple-
mented in Aranea.

• By comparing the last generated state ID and the ID in
the request application can infer that user has issued
back or forward commands. This can be translated
into a semantic event within the application that could
be interpreted, for instance, as pressing cancel button
on the flows. Similar tricks can be done to identify
when user issues new window command, although this
whole approach belongs to the domain of hacking (i.e.
unreliable and unaesthetic).

Note that the last two approaches exclude keeping part of
the server-side state on the client within web response. In-
stead we could keep the client-side part of the state in cook-
ies [16] of which only the last value is memorized by the
browser.

Maintaining multiple session states on the server-side cre-
ates problems of memory consumption. This can be relieved
by using copy-on-write of objects shared between multiple
state versions. Seaside [25] claims to have a possible solu-
tion for copy-on-write in Smalltalk that requires registering

all objects that have to be versioned. When processing web
request, the value of versioned objects is restored to the
needed state, while their identity remains the same, con-
sequently all object references remain intact. Extraneous
references to versioned objects are weak in order to sup-
port garbage collection. It remains an open question for
us whether such versioned, garbage collected, expiring data
structure could be implemented in Java in an efficient and
unobtrusive way, but we think that solution would benefit
a lot from using AspectJ [28] in order to weave versioning
logic into objects.

Finally, we find that supporting browser’s navigation com-
mands in rich user interface applications leads to clumsy user
interface, increased demands on server-side memory and
CPU and/or more complicated programming model. Also,
Ajax [1] technology integrates badly with this approach be-
cause all Ajax-based state transitions are not recorded in
browser’s navigation history. Instead, similar capability
should be built into application logic in form of commands
like cancel and undo.

8.3 Integration and Portals
It is important to note that so far we have described only ap-
plications that are configured before deployment and work
within one Java virtual machine (or homogeneous cluster).
There are portal applications that would benefit from dy-
namic reconfiguration and using widgets or flows deployed
to another environment. The latter could happen for mul-
tiple reasons such as using a different platform (like .NET),
co-location of web application with database, or just admin-
istrative reasons.

One possible approach is to integrate with Portlet [15] spec-
ification together with remote integration protocol WSRP
[12]. Unfortunately portlets cannot be composed into hier-
archies and have many limitations on how they can commu-
nicate with each other. There is also no notion of nested
process in portlets. Finally, portal implementations that we
are aware of allow reconfiguring portals only by redeploy-
ment.

It should be easy to assemble out of Aranea components a
portal application that would contain multiple pre-packaged
applications, communicating with each other, but the con-
figuration would have to be read on deployment. One fur-
ther direction is to integrate Aranea with some component
framework allowing dynamic reconfiguration, such as OSGi
[14]. This creates interesting problems of interference be-
tween parts of application being in different class-loaders,
serialization, reentrancy, and cluster replication. Also, dy-
namic changes would have to be broadcasted to all initiated
user sessions to reconfigure application.

Another related direction is to develop a remote integration
protocol that would allow creating a widget that would be
a proxy to a widget located in another environment. One
important issue would be minimizing the number of round-
trips.

8.4 Fat Client
Lately, more and more web applications started using asyn-
chronous requests to update parts of the page without resub-

mitting and refreshing the whole page. Some applications
even implement most of UI logic on the client-side and use
web server essentially as a container for the business layer.
The enabling technology is called Ajax [1] and is essentially
a small API that allows sending web requests to the server.
We think that this trend will continue and in future most
application will use this approach to a varying extent. We
see the following scenarios for using Ajax technology.

The first option is when UI logic is still implemented on
the server-side, but in order to make web pages more re-
sponsive sometimes ad-hoc asynchronous requests are used
to update page structure without refreshing the whole page.
In this case server-side controller framework must support
occasional asynchronous requests to stateful widgets which
can be accomplished in Aranea using either messages or
the fact that widgets extend services and consequently have
action(input,output) method. Within widget, some kind
of simple event handling logic could be implemented. The
most of the burden lies on the presentation framework, but
this is out of scope of this paper.

An interesting alternative would be to have a new proto-
col that would extend HTTP and XHTML. It would allow
representing the hierarchical structure and state of UI as
an XML, where with each tag one could associate custom
client-side component. The main difference from HTTP and
XHTML would be that only changes from previous UI struc-
ture would be sent from server to the client and from client
to server when user fires an event. This could be used to
optimize request processing, communication, and rendering
performance. Although there is nothing asynchronious in
this approach, ad-hoc asynchronous requests described in
the previous paragraph can be viewed as a special case of
this model. If such protocol existed Aranea could be ex-
tended to work with it in a straightforward manner.

Another option is when all UI implemented on the client
side within browser and server-side controller acts essen-
tially as a business layer. Although business layer is often
stateless, we find that Aranea could be used to create a
coarse-grained server-side representation of UI state, essen-
tially representing activated use-cases, modeled most natu-
rally as flows. Client-side UI would we able to only execute
commands making sense in the context of current server-
side UI state. Such approach is very convenient for enforc-
ing complex stateful authorization rules and data validation
would have to be performed on the server-side in any case.

9. RELATED WORK
As it was mentioned before, Aranea draws its ideas from
multiple frameworks such as Struts [3], WebWork [23],
JavaServer Faces [10], ASP.NET [4], Wicket [24], Tapestry
[7], WASH [30], Cocoon [2], Seaside [25], Spring Web Flow
[21], and RIFE [17]. When possible we have referenced the
original source of idea at the moment of introducing it.

Although we were not aware of Seaside [25] when develop-
ing this framework, we have to acknowledge that rich UI
programming interface of widgets and flows is almost iden-
tical with programming interface of Seaside, but the design
of Seaside differs a lot and it is not intended as a compo-
nent model for web framework construction and integration.

Also, from private communication we became aware that
Seaside does not currently support blocking for any event
other than completion of a flow, but this is not a concep-
tual, but rather implementation issue. Finally, Aranea is
written in Java, Seaside in Smalltalk.

10. ACKNOWLEDGEMENTS
Development of Aranea implementation has been supported
by Webmedia, Ltd. We are grateful to Maksim Boiko, who
prototyped the implementation in his bachelor thesis and
Konstantin Tretyakov, who provided valuable input as well
as help with developing the presentation module. This work
was partially supported by Estonian Science Foundation
grant No. 6713.

11. SUMMARY
In this paper we have motivated and described a component
model for assembling web controller frameworks. We see it
as a platform for framework development, integration, and
research.

There exists an open source implementation of Aranea
framework available at http://araneaframework.org/. It
is bundled together with reusable controls, such as input
forms and data lists, and advanced JSP-based rendering en-
gine. This framework has been used in real projects and we
find it ready for production use.

We urge readers of this paper to visit address and give it a
try. We realize that current component model will probably
have to be adapted for new domains and approaches. We
urge readers to validate current framework design, especially
core interfaces against Your needs and ideas. Your proposals
are very welcome.

12. REFERENCES
[1] Ajax. Wikipedia encyclopedia article available at

http://en.wikipedia.org/wiki/AJAX.

[2] Apache Cocoon project. Available at
http://cocoon.apache.org/.

[3] Apache Struts project. Available at
http://struts.apache.org/.

[4] ASP.NET. Available at http://asp.net/.

[5] Cascading Style Sheets. Available at
http://www.w3.org/Style/CSS/.

[6] Hypertext Transfer Protocol. Available at
http://www.w3.org/Protocols/.

[7] Jakarta Tapestry. Available at
http://jakarta.apache.org/tapestry/.

[8] Java Servlet 2.4 Specification (JSR-000154). Available
at http://www.jcp.org/aboutJava/

communityprocess/final/jsr154/index.html.

[9] The Javaflow component, Jakarta Commons project.
Available at http://jakarta.apache.org/commons/

sandbox/javaflow/index.html.

[10] JavaServer Faces technology. Available at
http://java.sun.com/javaee/javaserverfaces/.

http://araneaframework.org/
http://en.wikipedia.org/wiki/AJAX
http://cocoon.apache.org/
http://struts.apache.org/
http://asp.net/
http://www.w3.org/Style/CSS/
http://www.w3.org/Protocols/
http://jakarta.apache.org/tapestry/
http://www.jcp.org/aboutJava/communityprocess/final/jsr154/index.html
http://www.jcp.org/aboutJava/communityprocess/final/jsr154/index.html
http://jakarta.apache.org/commons/sandbox/javaflow/index.html
http://jakarta.apache.org/commons/sandbox/javaflow/index.html
http://java.sun.com/javaee/javaserverfaces/

[11] JavaServer Pages Technology. Available at
http://java.sun.com/products/jsp/.

[12] OASIS Web Services for Remote Portlets. Available at
www.oasis-open.org/committees/wsrp/.

[13] Open source web frameworks in Java. Available at
http://java-source.net/open-source/

web-frameworks.

[14] OSGi Service Platform. Available at
http://www.osgi.org/.

[15] Portlet Specification (JSR-000168). Available at
http://www.jcp.org/aboutJava/communityprocess/

final/jsr168/.

[16] RFC 2109 - HTTP State Management Mechanism.
Available at
http://www.faqs.org/rfcs/rfc2109.html.

[17] RIFE. Available at http://rifers.org/.

[18] RIFE/Crud. Available at
http://rifers.org/wiki/display/rifecrud/.

[19] Ruby on Rails. Available at
http://www.rubyonrails.org/.

[20] Spring. Available at http://springframework.org.

[21] Spring Web Flow. Available at
http://opensource.atlassian.com/confluence/

spring/display/WEBFLOW/.

[22] The Extensible HyperText Markup Language.
Available at http://www.w3.org/TR/xhtml1/.

[23] WebWork, OpenSymphony project. Available at
http://struts.apache.org/.

[24] Wicket. Available at
http://wicket.sourceforge.net/.

[25] S. Ducasse, A. Lienhard, and L. Renggli. Seaside — a
multiple control flow web application framework.
ESUG 2004 Research Track, pages 231–257,
September 2004.

[26] P. T. Graunke, S. Krishnamurthi, V. der Hoeven, and
M. Felleisen. Programming the web with high-level
programming languages. In European Symposium on
Programming (ESOP 2001), 2001.

[27] R. Hieb, K. Dybvig, and C. W. Anderson, III.
Subcontinuations. Lisp and Symbolic Computation,
7(1):83–110, 1994.

[28] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. Lecture Notes in Computer Science,
2072:327–355, 2001. Project web site:
http://www.eclipse.org/aspectj/.

[29] C. Queinnec. The influence of browsers on evaluators
or, continuations to program web servers. ICFP ’00:
Proceedings of the fifth ACM SIGPLAN international
conference on Functional programming, pages 23–33,
2000.

[30] P. Thiemann. An embedded domain-specific language
for type-safe server-side web-scripting. Available at
http://www.informatik.uni-freiburg.de/

~thiemann/haskell/WASH/.

http://java.sun.com/products/jsp/
www.oasis-open.org/committees/wsrp/
http://java-source.net/open-source/
web-frameworks
http://www.osgi.org/
http://www.jcp.org/aboutJava/communityprocess/final/jsr168/
http://www.jcp.org/aboutJava/communityprocess/final/jsr168/
http://www.faqs.org/rfcs/rfc2109.html
http://rifers.org/
http://rifers.org/wiki/display/rifecrud/
http://www.rubyonrails.org/
http://springframework.org
http://opensource.atlassian.com/confluence/spring/display/WEBFLOW/
http://opensource.atlassian.com/confluence/spring/display/WEBFLOW/
http://www.w3.org/TR/xhtml1/
http://struts.apache.org/
http://wicket.sourceforge.net/
http://www.eclipse.org/aspectj/
http://www.informatik.uni-freiburg.de/~thiemann/haskell/WASH/
http://www.informatik.uni-freiburg.de/~thiemann/haskell/WASH/

	Introduction
	Problem Description
	Contributions

	Background
	Pitfalls
	Our Approach

	Core Abstractions
	Components
	Services
	Widgets
	Flows
	Protecting Framework Abstractions

	Framework Assembly
	Reentrant Controllers
	Stateful Non-Reentrant Controllers
	Stateful Non-Reentrant Controllers with Flows
	Combining the Models

	Framework Aspects
	Configuration
	Security
	Error Handling
	Concurrency

	Framework Implementation
	Standard Components
	Reusable Widget Library
	Presentation Framework

	Integration Scenarios
	Extensions and Future Work
	Blocking Calls and Continuations
	State Management
	Optimizing Memory Consumption
	Client-Side State
	Navigation History

	Integration and Portals
	Fat Client

	Related Work
	Acknowledgements
	Summary
	References

