

static void
_f_do_barnacle_install_properties(GObjectClass

*gobject_class)
{

 GParamSpec *pspec;

 /* Party code attribute */
 pspec = g_param_spec_uint64

(F_DO_BARNACLE_CODE,
 "Barnacle code.",
 "Barnacle code",

 0,
 G_MAXUINT64,

 G_MAXUINT64 /*
default value */,

 G_PARAM_READABLE
| G_PARAM_WRITABLE |

 G_PARAM_PRIVATE);

 g_object_class_install_property (gobject_class,

F_DO_BARNACLE_PROP_CODE,

Silvia Cho
mscho@igalia.com

Browsers for the
automotive: an introduction
to WebKit for Wayland

Igalia and WebKit/Chromium

● Open source consultancy founded in 2001

● Top contributor to upstream WebKit and Chromium

● Working with many industry actors: tablets, phones, IVI,
smart TV, set-top boxes, and smart home

Outline

➢ Browser requirements for the automotive
➢ A bit of history
➢ Selecting the best alternatives

Introduction to WebKit for Wayland
➢ Conclusions

Browser requirements for the
automotive

Requirements

● Browser as an application and as a runtime:
- User Experience: specific standards and UI modification
- Portability: support of specific hardware boards
 (performance optimization)
- OTA updates

● Browser as an application:
- Functionalities

● Browser as a run time:

- Application manager integration

Available alternatives

1) Licensing a proprietary solution

2) Deriving a new browser from the main open

source browser technologies:

- Chromium
- WebKit

(Firefox: Mozilla removed support in their engine for
third party browser developers)

Understanding the main alternatives

● Decision between Chromium and WebKit

● Chromium and WebKit share a lot of history,
design and code

● Learning the history of WebKit and
Chromium improves the understanding of the
pros and cons of each solution

A bit of history

WebKit Project History

2001 2005 20092005 2011 2013 2014

Fork of KHTML & KJS

Open sourced as WebKit

Chromium upstream

WebKit 2: big architectural change

Blink: Google departs

WebKit for Wayland

App (host process)

Webcore

V8

Chrome-WebKit

WebKit

Application

WebKit

Webcore

JS Engine

WebKit1

App (render process)

Application

WebKit (UI process)

Webcore

JS Engine

WebKit2

WebKit (web process)

WebKit1 vs Chrome-WebKit vs WebKit2 (2012)

Google’s Departure and Blink

● Google announced on April 3rd, 2013 that they would
fork WebKit and create Blink

● Motivations according to Google:
They were not using WebKit2 anyway

Easier to do ambitious architectural changes after the fork

Simplification of the codebase in Blink

● Tension between Apple and Google before the fork
Architectural decisions: Network Process

Code governance: Owners need to approve some core changes

● Big shock within the WebKit community

Current status in consumer industry

● Early consequences:

- Many WebKit contributors chose to migrate their projects to
 Blink/Chromium and created Crosswalk, QtWebEngine, etc.

- Some WebKit ports became deprecated

● Ports have been removed. Many libraries became default inside Chromium
(SKIA, V8, FFMPEG, AURA, etc)

● Because of porting and maintenance challenges, the adoption of
Chromium in consumer industry has been slower than expected.

● Recent trend towards more use of Chromium

Selecting the best alternative:
Introduction to WebKit for Wayland

● Chromium alternatives:

- Chromium directly

- Chromium Embedded Framework (CEF)

- QtWebEngine

- Crosswalk

Selecting the alternatives

App (host process)

Webcore

V8

Chrome-WebKit

WebKit

Application

WebKit

Webcore

JS Engine

WebKit1

App (render process)

Application

WebKit (UI process)

Webcore

JS Engine

WebKit2

WebKit (web process)

WebKit1 vs Chrome-WebKit vs WebKit2 (2012)

Chromium

● Architecture designed primarily for browser application
development

- Latest HTML5 specs implementations

- Content API changing constantly; embedding APIs is unstable

- Wayland support is not finished

- Ports have been removed and many libraries became default

- FFMPEG is the default multimedia framework; AURA is the default
graphics toolkit. If changes or replacements are needed, it will
require big changes to the source base.

● Chromium alternatives:

- Chromium directly

- Chromium Embedded Framework (CEF)

- QtWebEngine

- Crosswalk

● WebKit alternatives:

- QtWebKit (legacy, efforts to revive it)

- WebKitEFL (maintenance mode)

- WebKitGTK+ (active)

- WebKit for Wayland (active)

Selecting the alternatives

WebKit for Wayland

● Designed for embedded systems
● It does not depend on a toolkit anymore;

it doesn’t necessarily need Wayland
● Output can be embedded into a separate

OpenGL scene or into a toolkit (e.g., Qt)
● Output can be displayed directly via the window

or display manager
● Less memory footprint

WebKit for Wayland

● It is hardware-accelerated which relies on EGL and
OpenGL ES

● It abstracts underlying rendering and presentation
interfaces

● Flexible architecture
- easy to plug in components (e.g. multimedia
framework)

- possible to modify the whole stack without
diverging much from the latest upstream version

WebKit for Wayland

Things to do:
● Upstream remaining work (end of 2016)
● Optimize on specific hardware
● Implement custom UIs
● Implement latest HTML5 specs (if needed)

Conclusion:
● From technical POV in what regards to an embedded

environment, WebKit for Wayland is a great choice

Chromium: things to consider

● Architecture designed primarily for browser application development

- Latest HTML5 specs implementations

- Content API changing constantly; embedding APIs is unstable

- Wayland support is not finished

- Ports have been removed and many libraries became default

- FFMPEG is the default multimedia framework; AURA is the default graphics toolkit. If
changes or replacements are needed, it will require big changes to the source base.
Forking is one way to have control of the code for your needs.

- Forks have a natural maintenance burden risk, given that upstream Chromium evolves
very fast.

● But it can still be used for the embedded environment if
following issues are properly addressed:

Chromium: things to do

● Create a stable API (or use CEF)

● Finish Ozone-Wayland support

● Integrate native multimedia framework

● Set up a proper branching strategy
 for a possible Chromium fork

● Optimize on specific hardware

● Implement custom UIs

Conclusions

Conclusions

● Both WebKit for Wayland and Chromium are active
open source projects in terms of code and
contributors

● Each solution has a different design purpose

Apples vs. Oranges

- Wrong question: which is better?

- Correct question: what needs do I have?

● It is important to be aware of the implications of the
pending issues and set up proper strategies to
cope them

Thank you!

Silvia Cho (mscho@igalia.com)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

