
1

Boot time Optimization of
Automotive Grade Linux

Shilu SL & Renjith G
14-Jul-2016

2

Agenda

 Importance of Fast Boot in AGL

 Setting up of targets

 Boot time optimization techniques

 Explaining with a live example

 Conclusion

 Q&A

3

Why Fast Boot for AGL

 Differentiate AGL from main stream Linux

 Making AGL compete with any other traditional RTOSs

 Enhancing user experience

 Legal requirements

 Power saving (reducing standby power)

 Increasing SoC complexity and Boot time

 Increasing application complexity

 Issues with Hibernation, Snapshot boot and Sleep methods

 Marketing

4

Setting the targets

 End application and use case

 Required functionalities

 Required flexibilities

 Hardware limitations

 Commercial needs and limitations

5

AGL Booting Sequence

 Same as mainstream Linux

 Difference in use cases

 Limitations in HW selection

Boot
ROM

Boot
Loader

Kernel
File

system
User

Space
HW Reset

6

HW Optimization

 SoCs designed for automotive applications are limited

 The SoC architecture and the board design are influenced by many other

factors and most of the time the fast boot requirements were not taken

care of but it is an important thing affecting the boot time.

 Possible optimizations

 Quick HW reset logic

 Good power supply design

 Good boot logic

 Faster boot media

 Careful selection of peripherals (with fast initialization possible)

 Faster memory

7

Boot ROM Optimization

 Not much optimization scope as it is too simple

 Most of the time this will be supplied by the SoC vendor with little

chance of customization

 Being from the SoC vendor this is expected to be fully optimized but it is

not the case most of the time

 Can consider single step boot loader

8

Boot Loader Optimization

 Tasks

 Basic setup of CPU like setting up clock, memory

 Preparing and handing over device trees

 Clean up like flushing the cache

 Relocate Linux Kernel from Flash to RAM (most time consuming)

 Handover some parameter and switch to Linux Kernel

 Optimization Possibilities

 Remove unwanted/unimportant features/tasks

 Reduce the size of Linux Kernel

9

Kernel Optimization

 Lots of optimization scope

 We can select the configuration

 We can select the compression type

 Adjust boot parameters

 Initialization

 Waiting for device driver initialization is most time consuming

 Can differ

 Make it parallel where ever possible

10

File System Optimization

 Mounting file system is time consuming

 UbiFS is recommended to achieve faster boot if using flash devices

 Take the transition table and write it to the flash

 InitRAMFS

 Customize services

11

Application Optimization

 Loading from storage device is time consuming task

 Lots of optimization scope

 Combine init scripts

 Remove sanity checks (if confident)

 Move unnecessary items to a script and start it later

12

Live Example

 Target = Reaching user space in < 2.5 seconds
 Constraints = No hardware and Boot ROM modifications
 Simple application rendering 2D images on a HDMI monitor

Boot
ROM

Boot
Loader

Kernel
File

system
User

Space
HW Reset

Component Version / Type

U- Boot 2013.1

Kernel 3.10.31 LTSI

File system EXT4 (AGL)

Platform R-Car M2 (Koelsch)

Build Environment Yocto Project 1.7 (Dizzy)

13

U-Boot Optimization

No Change Time reduction

1 Bug fixes 20ms

2 Boot appended DTB image 50ms

3 Remove CRC Verification 30ms

4 Disable MEMTEST 50ms

5 MMC and SD pre-initialization 40ms

6 Reorganize MMC and SDHI initialization 40ms

7 Move eth pins initialization to board_eth_init() 50ms

8 Add DMA driver and QSPI DMA support 350ms

9 Load time reduction based on kernel size 140ms

10 Disable some of the prints 100ms

Total time reduction 870ms

14

Kernel Optimization

No Change Time reduction

1 Remove unnecessary modules 3100ms

2 Disable initilaization of serial port1, SDHI1,
SDHI2 & SATA

200ms

3 Adjust bootargs 300ms

4 Disable console output 1000ms

5 Initialize DMA early 40ms

6 Disable SDIO/MMC scan 30ms

7 Initialize high memory in separate thread 150ms

8 Reduce mount delay 80ms

9 Remove Trace support 30ms

Total time reduction 4930 ms

15

Filesystem Optimization

No Change Time reduction

1 With ext2/ext3/squashfs No Gain

2 Auto login 1000ms

3 Disable services 3300ms

4 Disable console output 1000ms

5 Disable ext4 journaling 100ms

6 use fbdev-backend instead of drm and disable pvr 170ms

7 Optimize udev rules 100ms

Total time reduction 5670 ms

16

Conclusion

Achieved the target by bring down the boot time from 13.6 sec to 2.13 sec

Boot
ROM

Boot
Loader

Kernel
File

system
User

Space
HW Reset

70 msec200 msec

17

18

Thank you

ITPB Road, Whitefield

Bangalore, India 560 048

Tel +91 80 22979123

Fax +91 80 28411474

e-mail info@tataelxsi.com

www.tataelxsi.com

