HITACHI

Inspire the Next

Code Minimization Technology for SIL2LInuxMP —
Qualifying Linux® for Functional Safety

Jul/13/2016
Hitachi, Ltd.

Taku Shimosawa

Hitachi In(_jia P_/t. Ltd. B
Desal, Krishnaji

© Hitachi, Ltd. 2016. All rights reserved.

Contents

1.

2.

Functional Safety in OSS/Linux
SILZ2LinuxMP Organization & Strategy
Static and Dynamic analysis & test
Minimization Technique

Conclusion and Future Prospects

HITACHI

Inspire the Next

© Hitachi, Ltd. 2016. All rights reserved.

1

HITACHI

Inspire the Next

1. Functional Safety in OSS/Linux

© Hitachi, Ltd. 2016. All rights reserved. 2

. . . HITACHI
Quality Assurance in OSS/Linux Inspire the Next

When Linux runs in control units in cars...

"“Segmentation Fault”

In the brake system?

This should never happen !

Il rig served. 3

. . HITACHI
Safety Assurance in OSS/Linux Inspire the Next

Growing demands for OSS/Linux in Safety Critical domains.

« Automobiles
 Industrial Control Systems
« Traffic Management Systems

?

How to prove safety in OSS ?

Problem:
OSS project does not guarantee required safety level.
Insufficient development evidences for assessment.

© Hitachi, Ltd. 2016. All rights reserved. 4

. HITACHI
Functional Safety Standards Inspire the Next

“Compliance to the Standards” is becoming mandatory.
-> However, existing standards are hardly applicable to OSS.

Robotic Devices
Electrical Power Drive 1SO10218 Industrial Process
IEC61800 T IEC61511]
Ra”WayS F‘umbre"a” standard Machinery
IEC62278 L IEC61508 J IEC62061
Nuclear Power Plants 1 \ Medical Device Soft
IEC61513 [EC62304 Ware]

Automotive
1SO26262

Challenge:
Establish a general certification process for OSS/Linux.

© Hitachi, Ltd. 2016. All rights reserved. 5

HITACHI

Inspire the Next

2. SIL2LInuxMP Organization & Strategy

© Hitachi, Ltd. 2016. All rights reserved. 6

OSADL & SIL2LinuxMP Project HITACH

OSADL: Open Source Automation Development Lab

SIL2LIinuxMP Project:
Aims to establish a process to certify OSS/Linux with IEC61508.

Target scope: Minimal configuration as to ease
Linux Kernel, glibc, BusyBox. complexity in assessment

Organizer: OSADL, OpenTech certification targets

4 Full Partners: BMW Car-IT, KUKA, A&R Tech, SensorTechnik
9 Reviewing Partners: Hitachi, Renesas, etc...

Consulting body : TUV SUD
Certification authority: TUV Rheinland

Plan (Hitachi’s View):

2015/4 2015/9 2016/4 2017/7
Technical Selection & Prototype Consolidation &2017/11
| Investigation | Evaluation | __Implementation | _ Finalization | >
|

https://www.osadl.org/SIL2LinuxMP.sil2-linux-project.0.html © Hitachi, Ltd. 2016. All rights reserved. 7

https://www.osadl.org/SIL2LinuxMP.sil2-linux-project.0.html
https://www.osadl.org/SIL2LinuxMP.sil2-linux-project.0.html
https://www.osadl.org/SIL2LinuxMP.sil2-linux-project.0.html
https://www.osadl.org/SIL2LinuxMP.sil2-linux-project.0.html
https://www.osadl.org/SIL2LinuxMP.sil2-linux-project.0.html

: HITACHI
S|L2LIHUX|\/|P Strategy Inspire the Next

How to comply IEC61508 with OSS/Linux ??
IEC61508 Part3 7.4.2.12:

Route 1.: “Standard Compliant Development” ?
NO, OSS is not developed this way by itself.

Route 2.:"Proven in Use” ?
NO, too time-consuming, too expensive strategy.

Also, vulnerable to even slight changes of SW/HW.

Route 3.: "Compliant non-compliant Development” ?
YES, only this is the suitable way for OSS.
This route complies non-compliant software by
compensating missing evidences

© Hitachi, Ltd. 2016. All rights reserved. 8

. HITACHI
SIL2LInuxMP Strategy Inspire o

Route3s: Compliant non-compliant Development

Step 1.

Assess used pre-existing COTS™ component,

identify missing evidences or non-compliant process.
- Ex: missing development document, untested codes etc.

Step 2:

Plan how to compensate missing evidences & compliant processes.
- Ex: automatic testing, metrics calculation & regressions

Step 3:
Apply the planned processes, review/assess the outcome.
- Ex: make arguments by obtained coverage metrics.

* COTS: Commercial off-the-shelf

© Hitachi, Ltd. 2016. All rights reserved. 9

: HITACHI
SlL2LIﬂUX|\/|P Strategy Inspire the Next

Route3s: Compliant non-compliant Development

Step 1.

Assess used pre-existing COTS® component,

identify missing evidences or non-compliant process.
- Ex: missing development document, untested codes etc.

“‘Analysis Technique” is the Key Factor !

Step 2:

Plan how to compensate missing evidences & compliant processes.
- Ex: automatic testing, metrics calculation & regressions

Step 3:
Apply the planned processes, review/assess the outcome.
- Ex: make arguments by obtained coverage metrics.

* COTS: Commercial off-the-shelf

© Hitachi, Ltd. 2016. All rights reserved. 10

HITACHI

Inspire the Next

3. Static and Dynamic analysis & test

© Hitachi, Ltd. 2016. All rights reserved. 11

Tasks in analysis & test with V&V IT'T'JT%CI'\T'L

Tool for Test Automation ?7?

test execution _ .
(function, regression, QA Is not only about Test Execution !!

benchmark)

i © Hitachi, Ltd. 2016. All rights reserved.

HITACHI

Tasks in analysis & test with V&V Inspire the Next
: : specification
implementation)
design
test case test case
: bug management
managiement generation /
test execution
(function, regression,
benchmark)
test result : :
management > bug extraction > bug reporting
metrics Anywhere in QA ecosystem has
Meastring possibility of enhancement/automation
summary

reporting

© Hitachi, Ltd. 2016. All rights reserved. 13

Tools that help V&V and QA tasks n',"JT%,C]'\T'!f

rmTOO (requirement management

- tati specification
R design G SN (strategy defscribing)
KLEE (symbolic ®xecution) PAChecker (model checking

CSmith (random case gegeration) G ogletest test driven development)
syskaller (Fuzzing) Mimnimization (minimize search space)

test case test case
managlement generation

bug management

Coccinelle 1
(bug pattern generalization)

test execution Jenkins herodotos, prequel

(function, regression, DB4SIL2

benchmark)
(Cl automation) bugspots :
(bug-trend-analysis)
test result : :
> bug extraction > bug reporting
management _
Call Graph (function call graph)
metrics ftrace (dynamic tracing) _
meas¢ur|ng gcov/fcov (coverage measur Possible tool examples
summary perf (profiler) for each QA phase
reporting

|mbench, crashme (bench marking) © Hieachi Lid. 2016. All rights reserved. 14

Standards Table A9 Software verification

HITACHI

Inspire the Next

Technique/Measure * Ref. SIL 1 SIL 2 SIL 3 SIL 4
1 Formal proof C.5.12 -- R R HR
2 [Animation of specification and design C.5.26 R R R R
Y3 | Static analysis B.6.4 R -= HR HR)
Table B.8
4 Dynamic analysis and testing B.6.5 R HR HR HR
N Tabhle B.2)
5 | Forward traceability between the software design c.2.11 R R HR HR
specification and the software verification (including
data verification) plan
6 |Backward traceability between the software c.2.11 R R HR HR
verification (including data verification) plan and
the software design specification
i Offline numerical analysis C.2.13 3 R HR HR

Software module testing and integration

Programmable electronics integration testing

Software system testing (validation)

See Table A5

Quoted from
IEC 61508-3:2010 (Ed.2) |

© Hitachi, Ltd. 2016. All rights reserved. 15

Standards Table B.8 Static analysis

HITACHI

Inspire the Next

QA > Safety Assurance——=J4If€S > Evidence chain

Technique/Measure * Ref SIL 1 SIL2 [SIL3 | SIL4
1 Boundary value analysis C.5.4 R R HR HR
2 | Checklists . B.2.5 R R R R
3 | Control flow analysis | C.5.9 R HR HR HR
4 | Data flow analysis ITI C.5.10 R HR HR HR
o> | Error quessing M C.5.5 R R R R
6a | Formal inspections, including specific criteria é C.5.14 R R HR HR
6b | Walk-through (software) A C.5.15 R i R R
7 | Symbolic execution -:— C.3.11 R R
8 | Design review O C.5.16 HR HR HR
9 | Static analysis of run time error behaviour A g.2.2, C.24 R R R HR
10 | Worst-case execution time analysis C.5.20 Quoted from

IEC 61508-3:2010 (Ed.2)

© Hitachi, Ltd. 2016. All rights reserved. 16

Tools that help V&V and QA tasks HITACHI

Inspire the Next

- . specification rMTOO (requirement management,
IMASINNENEON design G SN (strategy delscribing)
CPAChecker (model checking

syskaller (Fuzzing)
test case

7 7 LA \S

mana%ement
e Call Graph (function call graph)
meaiuring ftrace (dynamic tracing)
summary gcov/fcov (coverage measuring)
reporting perf (profiler)

© Hitachi, Ltd. 2016. All rights reserved.
|m|r'\nnr\l*'\ I\Iff\ﬁl’\mf\ Y 4 P PR I

17

HITACHI

Inspire the Next

4. Minimization Technique

© Hitachi, Ltd. 2016. All rights reserved. 18

)] HITACHI
‘“Hifdef disasters” Inspire the Next

/drivers/dma/dmaengine.c

device_has_all_tx_types(struct

> The #ifdefs makes
the code hard to:

#ifdef CONFIG_ASYMNC_TX_DMA

. if (!dma_has_cap(DMA_INTERRUPT, device-=>cap_mask))
i ReVIGW return 7
#endif
° Debu #1f defined(CONFIG_ASYNC_MEMCPY) || defined(CONFIG_ASYNC_ MEMCPY_MODULE)
EJ if (!dma_has_cap(DMA_MEMCPY, device-=cap_mask))

return g
#endif

« Maintain

#1f defined(CONFIG_ASYNC_XOR) || defined(CONFIG_ASYNC_XOR_MODULE)
if (!dma_has_cap(DMA_XOR, dewvice-=cap_mask))

o Vel’lfy return g

#ifndef COMFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA

if (!dma_has_cap(DMA_XOR_VAL, device-=cap_mask))
return g

#endif

#endif

However #if defined (CONFIG_ASYNC_PQ) || defined(CONFIG_ASYNC_PQ_MODULE)
) if (!dma_has_cap(DMA_PQ, device-=cap_mask))
return H

#ifndef COMFIG_ASYNC_TX_DISABLE_PQ VAL_DMA

if (!dma_has_cap(DMA_PQ VAL, device-=cap_mask))
return g

Hendif

#endif

return

© Hitachi, Ltd. 2016. All rights reserved. 19

‘“fifdef disasters” HITACHI

Inspire the Next

/drivers/dma/dmaengine.c

static device_has_all_tx_types(struct

{

if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
return '

if (!dma_has_cap(DMA_PQ, device-=cap_mask))
return -

return

If code is free from #ifdef blocks then, analysis shall be more
effective.

Is there a way ?

© Hitachi, Ltd. 2016. All rights reserved. 20

Is there a way ?? HITACHI

Inspire the Next

\
=" stackoverflow

Strip Linux kernel sources according to .config

A s there any efficient way (maybe by abusing the gcc preprocessor?) to get a set of stripped kernel
sources where all code not needed according to .config is left out?

A
v

linux kernel minify c-preprocessor stripping

http://stackoverflow.com/questions/7353640/strip-linux-kernel-sources-according-to-config

@ Possible if we tweak gcc preprocessor options.

2/ How to do it for the whole source tree ??
® |

n— © Hitachi, Ltd. 2016. All rights reserved. 21

The GREP Approach for minimization

HITACHI

Inspire the Next

http://stackoverflow.com/questions/7353640/strip-linux-kernel-sources-according-to-config

Use of GREP (Approach-I)

* Requires complete build in advance.
« Text parsing has to be acquired from build log.

 Source code modification to remove redundant code.

(Dmake KBUILD VERBOSE=1 | tee build.log
@ grep 'gcc' build.log > gccbuild.log

@)sed 's/ -c -o / /g' gccbuild.log > plainbuild.lo

(@4grep -v ‘#include’ <PATH> | gcc -E -fdirectives-only -undef

grep -v ‘#°

LIMITATIONS

4)
Too much user

. Involvement!!!)

2 phases of GCC process

7

\

No integration with MakeFile

N\

S

Expanded Headers persist

<GCC Stripped Code:

B)mkdir -p ~/NewKernel/scripts/basic/ I
grep -v '#include' scripts/basic/fixdep.c| gcc -E -fdirectives-only -undef
gcc -Wp,-MD,scripts/basic/.fixdep.d -Wall -Wmissing-prototypes -Wstrict-
prototypes -02 -fomit-frame-pointer -std=gnu89 -0 scripts/basic/fixdep
\Ecripts/basic/fixdep.c - | grep -v "' > ~/NewKernel/scripts/basic/fixdep.5/

© Hitachi, Ltd. 2016. All rights reserved. 22

http://stackoverflow.com/questions/7353640/strip-linux-kernel-sources-according-to-config
http://stackoverflow.com/questions/7353640/strip-linux-kernel-sources-according-to-config
http://stackoverflow.com/questions/7353640/strip-linux-kernel-sources-according-to-config
http://stackoverflow.com/questions/7353640/strip-linux-kernel-sources-according-to-config
http://stackoverflow.com/questions/7353640/strip-linux-kernel-sources-according-to-config
http://stackoverflow.com/questions/7353640/strip-linux-kernel-sources-according-to-config
http://stackoverflow.com/questions/7353640/strip-linux-kernel-sources-according-to-config
http://stackoverflow.com/questions/7353640/strip-linux-kernel-sources-according-to-config
http://stackoverflow.com/questions/7353640/strip-linux-kernel-sources-according-to-config
http://stackoverflow.com/questions/7353640/strip-linux-kernel-sources-according-to-config
http://stackoverflow.com/questions/7353640/strip-linux-kernel-sources-according-to-config
http://stackoverflow.com/questions/7353640/strip-linux-kernel-sources-according-to-config
http://stackoverflow.com/questions/7353640/strip-linux-kernel-sources-according-to-config

The Minimization Approach

 The minimization approach tweaks integrated MakeFile options to

produce compilable stripped code.

« Signifies efficient way to get a set of stripped kernel source code based

on a .config file.

« Generate source tree where;

— Unused #ifdef, #if blocks have
been removed

— #include and #define lines are
preserved

— Only used source files exist

— Produces the same binary file as
the original tree

Target
Source Code

GCC preprocessor

HITACHI

Inspire the Next

Preprocessed
source code

’| with #ifdef and

#if-block

Configuration
File

Minimization
Process

Hard to review, debug,

maintain

Preprocessed
source code
without #ifdef
and #if-block

© Hitachi, Ltd. 2016. All rights reserved.

/

Efficient static analysis and
narrow search space

23

f
|
|
|
\

Minimization flow

Inherit MakeFile

Mnmmlzahon Process

Overridin
existing CHECK
ﬂa&feature in
akeFile

\

rReplace CHECKw

with minimization
script
(minimize.py)

7~

Remove
expanded
headers and
blank lines

-

\

o

\

-

- 7

\

Construct and
run preprocess
command

- N
Restore #include
sentences
O __J

(Compilable

minimized code

+ Easy to read,
efficient code
inspection.

Target
Source Code

Configuration
File

1
1=

HITACHI

Inspire the Next

S —— .

Preprocessed
source code
with #ifdef and
#if-block

Minimization

Hard to review, debug,

maintain

Process

Preprocessed
source code
without #ifdef
and #if-block

J

Efficient static analysis and
narrow search space

Implementation HITACHI

Inspire the Next

e« Makefile integration
— Override existing CHECK flag feature

* Minimizing procedure
— Preprocess, expanded header restoration

* Binary verification
— Compare “minimized binary” and the original

© Hitachi, Ltd. 2016. All rights reserved. 25

Makefile integration HITACHI

Inspire the Next

Override existing CHECK feature in kernel Makefile
<otarofkotaro-0OptiPlex-7020:~/Minimization/1linux-4.3.35 make help | grep CHECK
make C=1 [targets] Check all c source with § (sparse by default)

make C=2 [targets] Force check of all ¢ source with §

Makefile of the root directory:

sparse

-D__linux__ -Dlinux -D__ STDC__ -Dunix -D__unix__ \
-Wbitwise -Wno-return-void S(CF)

Minimization script(minimize.py) usage:
Replace CHECK withminimize. py so make can process minimization

S make C=1 CHECK=minimize.py CF="-mindir ../minimized-tree/"

In make process, “minimize.py” will receive the same option as
the compile flags of each source file, plus $CHECKFLAGS variable.

ON THE FLY GENERATION (no post processing)

© Hitachi, Ltd. 2016. All rights reserved. 26

Minimization procedure HITACHI

Inspire the Next

1. Preprocess the source files
gcc —E —fdirectives-only

:> #ifdef block disappears, #include gets expanded,
but #define macros are preserved.

2. ldentify & delete the expanded header contents
— Use clues(linemarkers) that exist in the preprocessed file
— Example of linemarkers: # 30 “/usr/include/sys/stsname.h” 2

3. Restore #include sentences
— Copy relevant #include lines from the original source

27

© Hitachi, Ltd. 2016. All rights reserved.

Preprocess the source files HITACHI

Inspire the Next

* preprocess() function in minimize.py
— Takes gcc options passed via Makefile
— Appends “-E —fdirectives-only” flags
— Perform preprocess for the target C file

Isers\khashimoto'\Desktophhogeriuname.c C\Users\khashimoto'\Desktop\hogeriuname.c.preprocessed

43773 #define BBUNIT ASSERT STRNOTEQ(STR1,STR2) do { if (strcmp(STR1, STRZ)
43774 # 2121 "include/libbb.h"™
S0 43775
51 //usage: #define uname trivial usage
52 //usage: " [-amnrspvio]™
53 //usage:#define uname full usage "\n\n"
54 //usage: "Print system information\n"™
55 //usage: "\n -a Print all™
56 //usage: LAY 1 -m The machine (hardware) type"
57 //u=sage: LAN /1 -n Hostname"™
58 //usage: "\n -r Kernel release"
59 //usage: "\n -2 FKernel name (default)"™
a0 //usage: LAY /1 -p Processor type" p r\epr‘oces S ()
61 //u=sage: LAN /1 -v Kernel wversion"™
62 //usage: "\n -i The hardware platform"
63 //usage: "\n -o 05 name"
a4 //usage:
65 //usage:#define uname example usage
66 //usage: S uname —ahn"
&7 //usage: "Linux debian 2.4.23 #2 Tue Dec 23 17:09:10 MST 2003 i
68 43776
69 ¥include "l1libbb.h" 43777 POP_SIL'\.TED_F'UNCTION_VISIEILITY
43778
43779 # 70 "coreutils/uname.c” 2
70 /* After libbb.h, since it needs sys/types.h on some systems */f 43780 /* bfter 1ibbb.h, since it needs sys/types.h on some systems */
71 #include <sys/utsname.h> 43781 # 1 "fusr/include/x86 €4-linux-gnu/sys/utsname.h” 1 3
43782 /* Copyright (C) 1991-2014 Free Software Foundation, Inc.
43783 Thi=s file is part of the GHNU C Library. 28
43784 -

Identify & delete the expanded headers HITACHI

Inspire the Next

 stripHeaders() function in minimize.py
— Takes preprocessed C file
— Search Preprocessor Output relevant to #include lines
— Delete included contents guided by the linemarkers

Included file name and line number information is
conveyed in the preprocessor output; linemarkers

EX.T# 30 “/usr*/include/s?(s/utsname.fT\” 2

linenum filename flags

line 30 of utsname.h, after having 1: indicates the start of the new file

It means, the following lines originated in Flags:
included another file(flag:2). 2: indicates returning to the file.

https://gcc.gnu.org/onlinedocs/cpp/Preprocessor-Output.html

© Hitachi, Ltd. 2016. All rights reserved. 29

https://gcc.gnu.org/onlinedocs/cpp/Preprocessor-Output.html
https://gcc.gnu.org/onlinedocs/cpp/Preprocessor-Output.html
https://gcc.gnu.org/onlinedocs/cpp/Preprocessor-Output.html
https://gcc.gnu.org/onlinedocs/cpp/Preprocessor-Output.html

ldentify & delete the expanded headers

HITACHI

Inspire the Next

e stripHeaders() algorithm
— Find linemarkers (starting with ‘# number “filename”’)

43768
43769
43770
43771
43772
43773
43774
43773
43776
43777
43778

— If filename is the target C file:

 copy the following lines

« And If fLag In the linemarker is

— Mark "TO BE REPLACED

2100 "include/libbb.h"

#define BBUNIT ASSERT STREQ(STR1,STR2) do { if (strcmp(STR1, STR2) !
2110 "include/libbb.h"

#define EBUNIT ASSERT STRNOTEQ (STR1,STR2) do { if (
2121 "include/libbb.h"

POP_SAVED FUNCTION VISIBILITY)

4377

70 "coreutils/uname.c" 2 I

43780
43781
43782
43783
43784
43785
43786

After libbb.h, since it needs sys/tvpes.h on some systems */
1 "/usr/include/x86 64-linux—gnu/sys/utsname.h"” 1 3
/* Copyright (C) 1991-2014 Free Software Foundation, Inc.
This file iz part of the GNO C Library.

The GNU C Library is free software; vou can redistribute it and/or

Flag 2 indicates returning to the file
(after having included another file).

” that means “there is #include line”

64 //usage:

65 //usage: #define uname example usage

66 //usage: "S uname —ain"

&7 //u=sage: "Linux debian 2.4.23 #2 Tue Dec 23 17:09:10 MST 2003 ie6

stripHeaders()

a

-~E§TO BE REPLACED: "include/libbb.h"™
70 /* After libbb.h, since it needs sys/tvpes.h on some systems */
71 TC BE REPLACED: "/usr/include/x86 &4-linux-gnu/sys/utsname.h"

modify it under the terms of the GHU Lesser General Public

30

© Hitachi, Ltd. 2016. All rights reserved.

Restore #include sentences

HITACHI

Inspire the Next

e restoreHeaderInclude()

function iInminimize.py

— Takes header-stripped preprocessed file

— Look for “TO BE REPLACED” marks
— Compare with the original C file, copy original #include lines

restoreHeaderInclude()

64 //usage:
65 //usage:#define uname example usage

66 //usage: "3 uname -a\n"
&7 / /usage: "Linux debian 2.4.23 #2 Tue Dec 23 17:09:1
68

&9 TO BE REPLACED: "include/libbb.h"™
70 /* After libbb.h, since it needs sys/types.h on some syst
71 TO BE REPLACED: "/usr/include/x86 6€4-linux-gnu/sys/utsnam

72

73 typedef struct {

T4 struct utsnams name;

75 char processor[sizeof(((struct utsname*)NULL)->machin
T6 char platform[sizecf(((struct utsname*)NULL)->machine

64 //usade:
65 //usage:fdefine uname example usage

66 //usage: "S uname —a\n"
67 //usage: "Linux debian 2.4.23 #2 Tue Dec 23 17:09:
68

69 #finclude "libbb.h"
70 /* After libbb.h, since it needs sys/types.h on some sys
71 #include <sys/utsname.h>

12

73 typedef struct {

74 struct utsnams name;

75 char processor[sizeof(((struct utsname*)NULL)->machi
16 char platform[sizeof(((struct utsnams*)NULL)->machin

31

© Hitachi, Ltd. 2016. All rights reserved.

Minimizing procedure HITACHI

Inspire the Next

 Finally, diff result is only deletions of the unused code.

Without changing #include, #define lines.
5 ety - e -

=1 File Edit View Merge Tools Plugins Window Help

D & k|] | | | |78 | |
| uname.c - uname.c preprocessed | uname.c.preprocessed - uname.c.stipped | uname.c stripped - uname.c.mi
Location Pane * |C\Users\khashimoto\Desktep\hogeriuname.c op\hogeriuname.c.minimized
]] 131 if (toprint == 0) { /* no opts => -8 (sysname) */ 126 if int == 0) { /* no opts => -8 (sysname) */
132 toprint = 1: 127 = 1
=8 } 128
134 129
135 uname (&uname info.name); /* never fails =/ 130 uname (funame_ info.name); /* never fails =/
136 131
137 #if defined(_ sparc) && defined(_ linux)
138 if (fake sparc && (fake sparc[0] | 0x20) == 'y') {
139 strcpy (uname info.name.machine, "sparc");
140 H
141 #endif
142 strcopy (uname_info.processor, unknown_str); 132 strcpy (uname_info.processor, unknown_str);
143 strcpy (uname info.platform, unknown str); 133 strcpy (uname info.platform, unknown str):
144 strcpy (uname info.os, CONFIG UNAME OSNARME) : 134 strcpy (uname info.os, CONFIG UNAME OQSHAME) ;
145 #if 0O
146 /* Fedora does something like this =/
147 strcpy (uname_info.processor, uname_info.name.machine);
148 strcpy (uname info.platform, uname info.name.machine);
145 if (uname info.platform[Q] == 'i'
150 && uname info.platform[1]
151 £& uname info.platform[2] == '&°
152 && uname info.platform[3] == '6" r
153 I |
154 uname_info.platform[l] = "3';
155 H
156 #endif s
157
158 delta = 'Jtsna_rr.e_offset,; 135 delta = 'Jtsna_rr.e_offset;
159 fmt = " 33" + 1: 136 fmt = " %3" + 1:
4| 1 3 4| 11 [
e — Ln: 87 Col:1/48 Ch:1/45 RO 932 Unix Ln: 87 Col:1/48 Ch:1/45 RO 932 Unix
b4
o
&
% a M 32| !

A Differences Found

]
1]
=1
0
<

HITACHI

Inspire the Next

4 Y5 Results & Evaluation

© Hitachi, Ltd. 2016. All rights reserved. 33

Minimization Results HITACHI

Inspire the Next

Linux Kernel Tree

« allnoconfig: 64684 unused lines were removed -2 22% LoC reduced.
 defconfig: 103144 unused lines were removed = 5% LoC reduced.

BusyBox Tree

« allnoconfig: 51 out of 112 compiled C files have been minimized 5945
lines unused lines were removed - 34% LoC reduced

« defconfig: 296 out of 505 compiled C files have been minimized. 20453
lines unused lines were removed = 11% LoC reduced

ARCTIC Core source code

« Statistics shows approximately 5.5 times higher chances of
eliminating unused #ifdef switches compared to Linux Kernel.

© Hitachi, Ltd. 2016. All rights reserved. 34

Minimization Evaluation 15;!1%&:1'\:!)!%

Disassembled code(“objdump —d”)

Complexity Statistics reduced

matches
» To analyze the complexity of “C” » Between the binaries built from
program function. minimized source and original one.
 Linux with PREEMPT _RT patch, » Confirmed configuration & target:
Linux Kernel source, BusyBox tree « BusyBox-1.24.1: defconfig,
as shown in table below. allnoconfig
« Complexity (a GNU utility) tool has * busybox (executable)
been used. e Linux kernel 4.4.1: allnoconfig

 vmlinux.o

Minimized code is compilable and produces same binary

Complexity Linux Kernel BusyBox Tree PREEMFPT_RT
Metrics Original Source | Minimizedix86_defconfig) | Minimized(allnoconfig) § Original Source | Minimized(x86_defconfiz) | Minimizediallnoconfig) § Original | Minimized
Average Line Scome 23 7 5) 21 19 10 7
50%-ile score 4 > 3 > 2 9 > 9 > 5 4 > 3
Highest Scom 1846 194 158 283 283 283 530 194]

Measured complexity in terms of average line score, 50%-ile score and highest score.

“Complexity” reduced after Minimization !!

© Hitachi, Ltd. 2016. All rights reserved. 35

Benefits n',"JT%]C]'\T'!f

« Verification time and cost improvement
— Static analysis through Coccinelle

— Executed a semantic patch for detecting functions have different
return type values

— Statistics
« Comparison of execution time and minimization was faster.
« 12[s] and 2.24[s] for original and minimized kernel respectively.
» False positive reduction
— Wrong Coccinelle indication about presence of particular condition.
— Statistics
* Original kernel source: 126
* Minimized kernel source: 82
* Pruning function call graph

— Analysis requires every possible call path to establish and trace
relationship between program and subroutines.

— Call graph is a directed graph that represents this relationship.

© Hitachi, Ltd. 2016. All rights reserved. 36

HITACHI
Inspire the Next

Benefits

ion

t

nimiza

Mi

i

A mﬁ @nwm M4M“
L@_n@l.“ «KDM%WMLWWW

No. of nodes: 85
No. of edges: 123

No. of nodes: 94
No. of edges: 140

37

© Hitachi, Ltd. 2016. All rights reserved.

Benefits HITACHI

Inspire the Next

Extracting Minimal Subtarget Sources

$ cd busybox-1.24.1

$ C=2 CHECK=minimize.py CF=“-mindir ../min-init”

If subtarget is specified in the minimized command,
Only the used source files will be extracted.

—_

min-init/

e ets.c o Depended *.c files in minimized form.

include Actually included *.h files

applet_metadata.h
autoconf.h
busybox.h

grp_.h

libbb.h

pLatrern.h) Easy to identify which files are used

(«) Helps efficient software walk-through

pwd_.h
shadow_.h
xatonum.h

bootchartd.c
halt.c
init.c
mesg.c
reboot.h

© Hitachi, Ltd. 2016. All rights reserved. 38

HITACHI

Inspire the Next

5. Conclusion and Future prospects

© Hitachi, Ltd. 2016. All rights reserved. 39

Conclusion HITACHI

Inspire the Next

* To get Linux certified with the functional safety
standard, code analysis tools are mandatory to be
applied to OSS/Linux

« Minimization widens possibility of products with
OSS/Linux certified to functional safety standard
making the code analysis and review on them more
applicable.

— Minimized code also have minimized search spaces
In which such tools explore.

© Hitachi, Ltd. 2016. All rights reserved. 40

Future work HITACHI

Inspire the Next

« Extend the Minimization technique to support other source
codes that do not use Kbuild-like build system.

— Linux kernel and busybox both use Kbuild.
— libc should be addressed

— Automake, Cmake support will broaden the supported
applications.

« Evaluate the technique in the practical tools to be used for
real certification in SIL2LInuxMP.

© Hitachi, Ltd. 2016. All rights reserved. 41

Open challenges HITACHI

Inspire the Next

» To prove minimized tree is “equal” to original one

How to formally verify equivalence ??

« To find out more application targets for Minimization ??

Something that enhances existing tools / techniques

Minimization tool available in:
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization

© Hitachi, Ltd. 2016. All rights reserved. 42

https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization

Try it out! el ve e

https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization %,
[
o This repository Search Pull requests Issues Gist g' +~- %C‘;
%
%
Hitachi-India-Pvt-Ltd-RD / minimization @ Watch~ 2 Star 0 Y Fork 2
<» Code Issues 0 Pull requests 0 Wiki Pulse Graphs
Strip out unused #ifdef blocks from the source tree, making it simpler and even compilable
lf 15 commits ¥ 1 branch -y 0 releases 2 contributors

Branch: master » Newfile Findfile HTTPS~ https://github.com/Hitach [F& (@1 = Download ZIP

][hitachi-India-rd Merge pull request #6 from KotaroHashimoto/master = --- Latest commit 133415e an hour ago
E] LICENSE Initial commit 13 days ago
E) README ja.md Let the minimized source tree contain the used included files selecti a day ago
[E] README md Let the minimized source tree contain the used included files selecti a day ago
E] minimize.py Refined redundant code. an hour ago

Please suggest useful applications !

© Hitachi, Ltd. 2016. All rights reserved. 43

Legal Information HITACHI

Inspire the Next

* Linux Is a registered trademark of Linus Torvalds.

 All other trademarks and registered trademarks are
the property of their respective holders.

© Hitachi, Ltd. 2016. All rights reserved. 44

HITACHI

Inspire the Next

END

Code Minimization Technology for SIL2LInuxMP —
Qualifying Linux for Functional Safety

Jul/13/2016

Taku Shimosawa
Krishnaji Desal

© Hitachi, Ltd. 2016. All rights reserved. 45

HITACHI

Inspire the Next

