
© Hitachi, Ltd. 2016. All rights reserved. Please rewrite the copyright notice on your company's own responsibility. ⇒

Hitachi, Ltd.

Hitachi India Pvt. Ltd.

Jul/13/2016

Taku Shimosawa

Desai, Krishnaji

Code Minimization Technology for SIL2LinuxMP –

Qualifying Linux® for Functional Safety

© Hitachi, Ltd. 2016. All rights reserved.

1. Functional Safety in OSS/Linux

2. SIL2LinuxMP Organization & Strategy

3. Static and Dynamic analysis & test

4. Minimization Technique

5. Conclusion and Future Prospects

Contents

1

© Hitachi, Ltd. 2016. All rights reserved.

1. Functional Safety in OSS/Linux

2

© Hitachi, Ltd. 2016. All rights reserved.

When Linux runs in control units in cars…

This should never happen !

Quality Assurance in OSS/Linux

3

“Segmentation Fault”

in the brake system?

© Hitachi, Ltd. 2016. All rights reserved.

Safety Assurance in OSS/Linux

 Growing demands for OSS/Linux in Safety Critical domains.

 Problem:

 OSS project does not guarantee required safety level.

 Insufficient development evidences for assessment.
4

How to prove safety in OSS ?

?

• Automobiles

• Industrial Control Systems

• Traffic Management Systems

• …

© Hitachi, Ltd. 2016. All rights reserved.

“Compliance to the Standards” is becoming mandatory.

 -> However, existing standards are hardly applicable to OSS.

Challenge:

 Establish a general certification process for OSS/Linux.

Functional Safety Standards

5

Electrical Power Drive

 IEC61800

Nuclear Power Plants

 IEC61513
Medical Device Software

 IEC62304

Railways

 IEC62278

Industrial Process

 IEC61511

Robotic Devices

 ISO10218

Machinery

 IEC62061

Automotive

 ISO26262

“umbrella” standard

IEC61508

© Hitachi, Ltd. 2016. All rights reserved.

2. SIL2LinuxMP Organization & Strategy

6

© Hitachi, Ltd. 2016. All rights reserved.

OSADL & SIL2LinuxMP Project

7

SIL2LinuxMP Project:
 Aims to establish a process to certify OSS/Linux with IEC61508.

Target scope:
 Linux Kernel, glibc, BusyBox.

Minimal configuration as to ease

complexity in assessment

Participants:
 Organizer: OSADL, OpenTech

 4 Full Partners: BMW Car-IT, KUKA, A&R Tech, SensorTechnik

 9 Reviewing Partners: Hitachi, Renesas, etc…

 Consulting body : TÜV SÜD

 Certification authority: TÜV Rheinland

Provides usecases as

certification targets

Plan (Hitachi’s View):

 2015/4 2015/9 2016/4 2017/7 2017/11
Technical

Investigation

Selection &

Evaluation

Prototype

Implementation
Consolidation &

Finalization

https://www.osadl.org/SIL2LinuxMP.sil2-linux-project.0.html

OSADL: Open Source Automation Development Lab

https://www.osadl.org/SIL2LinuxMP.sil2-linux-project.0.html
https://www.osadl.org/SIL2LinuxMP.sil2-linux-project.0.html
https://www.osadl.org/SIL2LinuxMP.sil2-linux-project.0.html
https://www.osadl.org/SIL2LinuxMP.sil2-linux-project.0.html
https://www.osadl.org/SIL2LinuxMP.sil2-linux-project.0.html

© Hitachi, Ltd. 2016. All rights reserved. 8

SIL2LinuxMP Strategy

How to comply IEC61508 with OSS/Linux ??

 IEC61508 Part3 7.4.2.12:

Route 1S: “Standard Compliant Development” ?
NO, OSS is not developed this way by itself.

Route 2S:“Proven in Use” ?
NO, too time-consuming, too expensive strategy.

 Also, vulnerable to even slight changes of SW/HW.

Route 3S: “Compliant non-compliant Development” ?

YES, only this is the suitable way for OSS.

This route complies non-compliant software by

compensating missing evidences

© Hitachi, Ltd. 2016. All rights reserved. 9

SIL2LinuxMP Strategy

Route3S: Compliant non-compliant Development

Step 1:

 Assess used pre-existing COTS* component,

 identify missing evidences or non-compliant process.
 - Ex: missing development document, untested codes etc.

Step 2:

 Plan how to compensate missing evidences & compliant processes.
 - Ex: automatic testing, metrics calculation & regressions

Step 3:
 Apply the planned processes, review/assess the outcome.
 - Ex: make arguments by obtained coverage metrics.

* COTS: Commercial off-the-shelf

© Hitachi, Ltd. 2016. All rights reserved. 10

SIL2LinuxMP Strategy

Route3S: Compliant non-compliant Development

Step 1:

 Assess used pre-existing COTS* component,

 identify missing evidences or non-compliant process.
 - Ex: missing development document, untested codes etc.

Step 2:

 Plan how to compensate missing evidences & compliant processes.
 - Ex: automatic testing, metrics calculation & regressions

Step 3:
 Apply the planned processes, review/assess the outcome.
 - Ex: make arguments by obtained coverage metrics.

* COTS: Commercial off-the-shelf

“Analysis Technique” is the Key Factor !

© Hitachi, Ltd. 2016. All rights reserved.

3. Static and Dynamic analysis & test

11

© Hitachi, Ltd. 2016. All rights reserved.

test execution
(function, regression,

benchmark)

Tool for Test Automation ??

QA is not only about Test Execution !!

Tasks in analysis & test with V&V

© Hitachi, Ltd. 2016. All rights reserved. 13

test case

generation

implementation

metrics

measuring

test result

management
bug extraction

test case

management

test execution
(function, regression,

benchmark)

summary

reporting

bug reporting

specification

design

bug management

Tasks in analysis & test with V&V

Anywhere in QA ecosystem has

possibility of enhancement/automation

© Hitachi, Ltd. 2016. All rights reserved. 14

test case

generation

implementation

metrics

measuring

test result

management
bug extraction

test case

management

summary

reporting

bug reporting

specification

design

bug management

Tools that help V&V and QA tasks

KLEE（symbolic execution）

CSmith（random case generation）

syskaller（Fuzzing）

Coccinelle
（bug pattern generalization）

CPAChecker（model checking）

Googletest（test driven development）

Minimization（minimize search space）

Jenkins

DB4SIL2
(CI automation)

Call Graph（function call graph）

ftrace（dynamic tracing）

gcov/fcov（coverage measuring）

perf（profiler）

lmbench, crashme (bench marking)

rmToo（requirement management）

GSN（strategy describing）

herodotos, prequel

bugspots
（bug trend analysis）

test execution
(function, regression,

benchmark)

Possible tool examples

for each QA phase

© Hitachi, Ltd. 2016. All rights reserved.

Standards Table A9 Software verification

15

Quoted from

IEC 61508-3:2010 (Ed.2)

© Hitachi, Ltd. 2016. All rights reserved. 16

Standards Table B.8 Static analysis

QA  Safety Assurance Evidence chain

Quoted from

IEC 61508-3:2010 (Ed.2)

M

I

N

I

M

I

Z

A

T

I

O

N

requires

© Hitachi, Ltd. 2016. All rights reserved. 17

test case

generation

implementation

metrics

measuring

test result

management
bug extraction

test case

management

summary

reporting

bug reporting

specification

design

bug management

KLEE（symbolic execution）

CSmith（random case generation）

syskaller（Fuzzing）

Coccinelle
（bug pattern generalization）

CPAChecker（model checking）

Googletest（test driven development）

Minimization（minimize search space）

Jenkins

DB4SIL2
(CI automation)

Call Graph（function call graph）

ftrace（dynamic tracing）

gcov/fcov（coverage measuring）

perf（profiler）

lmbench, crashme (bench marking)

rmToo（requirement management）

GSN（strategy describing）

herodotos, prequel

bugspots
（bug trend analysis）

test execution
(function, regression,

benchmark)

Minimization（minimize search space）

Hitachi developed a new technique !

Tools that help V&V and QA tasks

© Hitachi, Ltd. 2016. All rights reserved.

4. Minimization Technique

18

© Hitachi, Ltd. 2016. All rights reserved.

“#ifdef disasters”

19

/drivers/dma/dmaengine.c

 The #ifdefs makes

the code hard to:

• Review

• Debug

• Maintain

• Verify

However,

© Hitachi, Ltd. 2016. All rights reserved. 20

/drivers/dma/dmaengine.c

If code is free from #ifdef blocks then, analysis shall be more

effective.

Is there a way ?

“#ifdef disasters”

© Hitachi, Ltd. 2016. All rights reserved. 21

• Possible if we tweak gcc preprocessor options.

http://stackoverflow.com/questions/7353640/strip-linux-kernel-sources-according-to-config

• How to do it for the whole source tree ??

Is there a way ??

© Hitachi, Ltd. 2016. All rights reserved. 22 22

Note that we don’t mean

“minimal configuration” here.

The GREP Approach for minimization

Use of GREP (Approach-I)

• Requires complete build in advance.

• Text parsing has to be acquired from build log.

• Source code modification to remove redundant code.

Too much user

Involvement!!!

http://stackoverflow.com/questions/7353640/strip-linux-kernel-sources-according-to-config

LIMITATIONS

2 phases of GCC process

No integration with MakeFile

Expanded Headers persist

mkdir -p ~/NewKernel/scripts/basic/
grep -v '#include' scripts/basic/fixdep.c| gcc -E -fdirectives-only -undef
gcc -Wp,-MD,scripts/basic/.fixdep.d -Wall -Wmissing-prototypes -Wstrict-
prototypes -O2 -fomit-frame-pointer -std=gnu89 -o scripts/basic/fixdep
scripts/basic/fixdep.c - | grep -v '^#' > ~/NewKernel/scripts/basic/fixdep.c

make KBUILD_VERBOSE=1 | tee build.log

grep 'gcc' build.log > gccbuild.log

sed 's/ -c -o / /g' gccbuild.log > plainbuild.log

grep –v ‘#include’ <PATH> | gcc –E –fdirectives-only –undef <GCC Stripped Code> - |
grep –v ‘^#’

1

2

3

4

5

http://stackoverflow.com/questions/7353640/strip-linux-kernel-sources-according-to-config
http://stackoverflow.com/questions/7353640/strip-linux-kernel-sources-according-to-config
http://stackoverflow.com/questions/7353640/strip-linux-kernel-sources-according-to-config
http://stackoverflow.com/questions/7353640/strip-linux-kernel-sources-according-to-config
http://stackoverflow.com/questions/7353640/strip-linux-kernel-sources-according-to-config
http://stackoverflow.com/questions/7353640/strip-linux-kernel-sources-according-to-config
http://stackoverflow.com/questions/7353640/strip-linux-kernel-sources-according-to-config
http://stackoverflow.com/questions/7353640/strip-linux-kernel-sources-according-to-config
http://stackoverflow.com/questions/7353640/strip-linux-kernel-sources-according-to-config
http://stackoverflow.com/questions/7353640/strip-linux-kernel-sources-according-to-config
http://stackoverflow.com/questions/7353640/strip-linux-kernel-sources-according-to-config
http://stackoverflow.com/questions/7353640/strip-linux-kernel-sources-according-to-config
http://stackoverflow.com/questions/7353640/strip-linux-kernel-sources-according-to-config

© Hitachi, Ltd. 2016. All rights reserved.

The Minimization Approach

23

http://stackoverflow.com/questions/7353640/strip-linux-kernel-sources-according-to-config

• The minimization approach tweaks integrated MakeFile options to

produce compilable stripped code.

• Signifies efficient way to get a set of stripped kernel source code based

on a .config file.

• Generate source tree where;

– Unused #ifdef, #if blocks have

been removed

– #include and #define lines are

preserved

– Only used source files exist

– Produces the same binary file as

the original tree

© Hitachi, Ltd. 2016. All rights reserved. 24

Minimization flow

© Hitachi, Ltd. 2016. All rights reserved.

• Makefile integration

– Override existing CHECK flag feature

• Minimizing procedure

– Preprocess, expanded header restoration

• Binary verification

– Compare “minimized binary” and the original

Implementation

25

© Hitachi, Ltd. 2016. All rights reserved.

Makefile integration

• Override existing CHECK feature in kernel Makefile

• Minimization script(minimize.py) usage:

Replace CHECK with minimize.py so make can process minimization

Makefile of the root directory:

In make process, “minimize.py” will receive the same option as

the compile flags of each source file, plus $CHECKFLAGS variable.

ON THE FLY GENERATION (no post processing)
26

© Hitachi, Ltd. 2016. All rights reserved.

1. Preprocess the source files

gcc –E –fdirectives-only

2. Identify & delete the expanded header contents

– Use clues(linemarkers) that exist in the preprocessed file

– Example of linemarkers: # 30 “/usr/include/sys/stsname.h” 2

3. Restore #include sentences

– Copy relevant #include lines from the original source

#ifdef block disappears, #include gets expanded,

but #define macros are preserved.

27

Minimization procedure

© Hitachi, Ltd. 2016. All rights reserved.

Preprocess the source files

• preprocess() function in minimize.py

– Takes gcc options passed via Makefile

– Appends “-E –fdirectives-only” flags

– Perform preprocess for the target C file

preprocess()

28

© Hitachi, Ltd. 2016. All rights reserved.

• stripHeaders() function in minimize.py

– Takes preprocessed C file

– Search Preprocessor Output relevant to #include lines

– Delete included contents guided by the linemarkers

https://gcc.gnu.org/onlinedocs/cpp/Preprocessor-Output.html

Included file name and line number information is

conveyed in the preprocessor output; linemarkers

Ex. # 30 “/usr/include/sys/utsname.h” 2

linenum filename flags

Flags:

 1: indicates the start of the new file

 2: indicates returning to the file.

It means, the following lines originated in

line 30 of utsname.h, after having

included another file(flag:2).

29

Identify & delete the expanded headers

https://gcc.gnu.org/onlinedocs/cpp/Preprocessor-Output.html
https://gcc.gnu.org/onlinedocs/cpp/Preprocessor-Output.html
https://gcc.gnu.org/onlinedocs/cpp/Preprocessor-Output.html
https://gcc.gnu.org/onlinedocs/cpp/Preprocessor-Output.html

© Hitachi, Ltd. 2016. All rights reserved.

• stripHeaders() algorithm

– Find linemarkers (starting with ‘# number “filename”’)

– If filename is the target C file:

• copy the following lines

• And if flag in the linemarker is 2:

– Mark ”TO BE REPLACED” that means “there is #include line”

stripHeaders()

Flag 2 indicates returning to the file

(after having included another file).

Identify & delete the expanded headers

30

© Hitachi, Ltd. 2016. All rights reserved.

Restore #include sentences

• restoreHeaderInclude() function in minimize.py

– Takes header-stripped preprocessed file

– Look for “TO BE REPLACED” marks

– Compare with the original C file, copy original #include lines

restoreHeaderInclude()

31

© Hitachi, Ltd. 2016. All rights reserved.

Minimizing procedure

• Finally, diff result is only deletions of the unused code.
– Without changing #include, #define lines.

minimize

32

© Hitachi, Ltd. 2016. All rights reserved.

 4 ½ Results & Evaluation

33

© Hitachi, Ltd. 2016. All rights reserved.

Minimization Results

34

• allnoconfig: 64684 unused lines were removed  22% LoC reduced.

• defconfig: 103144 unused lines were removed  5% LoC reduced.

Linux Kernel Tree

• allnoconfig: 51 out of 112 compiled C files have been minimized 5945
lines unused lines were removed  34% LoC reduced

• defconfig: 296 out of 505 compiled C files have been minimized. 20453
lines unused lines were removed  11% LoC reduced

BusyBox Tree

• Statistics shows approximately 5.5 times higher chances of
eliminating unused #ifdef switches compared to Linux Kernel.

ARCTIC Core source code

• Likewise, quantification of ARCTIC Core source code was

quantified
─ Statistics shows approximately 5.5 times higher chances of

eliminating unused #ifdef switches.

© Hitachi, Ltd. 2016. All rights reserved.

Minimization Evaluation

35

• Complexity Statistics
• To analyze the complexity of “C” program function.

• Linux with PREEMPT_RT patch, Linux Kernel source, BusyBox

tree as shown in table below.

• Complexity (a GNU utility) tool has been used.

• Disassembled code(“objdump –d”) matches

– Between the binaries built from minimized source and original one.

– Confirmed configuration & target:

• BusyBox-1.24.1: defconfig, allnoconfig

– busybox (executable)

• Linux kernel 4.4.1: allnoconfig

– vmlinux.o

Minimized code is compilable and produces same binary

Measured complexity in terms of average line score, 50%-ile score and highest score.

Complexity Statistics reduced

• To analyze the complexity of “C”
program function.

• Linux with PREEMPT_RT patch,
Linux Kernel source, BusyBox tree
as shown in table below.

• Complexity (a GNU utility) tool has
been used.

Disassembled code(“objdump –d”)
matches

• Between the binaries built from
minimized source and original one.

• Confirmed configuration & target:

• BusyBox-1.24.1: defconfig,
allnoconfig

• busybox (executable)

• Linux kernel 4.4.1: allnoconfig

• vmlinux.o

> > > > >

“Complexity” reduced after Minimization !!

© Hitachi, Ltd. 2016. All rights reserved.

Benefits

36

• Verification time and cost improvement
– Static analysis through Coccinelle

– Executed a semantic patch for detecting functions have different
return type values

– Statistics

• Comparison of execution time and minimization was faster.

• 12[s] and 2.24[s] for original and minimized kernel respectively.

• False positive reduction
– Wrong Coccinelle indication about presence of particular condition.

– Statistics

• Original kernel source: 126

• Minimized kernel source: 82

• Pruning function call graph
– Analysis requires every possible call path to establish and trace

relationship between program and subroutines.

– Call graph is a directed graph that represents this relationship.

© Hitachi, Ltd. 2016. All rights reserved. 37

No. of nodes: 85

No. of edges: 123

No. of nodes: 94

No. of edges: 140

Minimization

Benefits

Simpler !

© Hitachi, Ltd. 2016. All rights reserved. 38

Extracting Minimal Subtarget Sources

$ cd busybox-1.24.1
$ make init C=2 CHECK=minimize.py CF=“-mindir ../min-init”

If subtarget is specified in the minimized command,

Only the used source files will be extracted.

Depended *.c files in minimized form.

Actually included *.h files

• Easy to identify which files are used

• Helps efficient software walk-through

Benefits

© Hitachi, Ltd. 2016. All rights reserved.

5. Conclusion and Future prospects

39

© Hitachi, Ltd. 2016. All rights reserved.

Conclusion

40

• To get Linux certified with the functional safety

standard, code analysis tools are mandatory to be

applied to OSS/Linux

• Minimization widens possibility of products with

OSS/Linux certified to functional safety standard

making the code analysis and review on them more

applicable.

– Minimized code also have minimized search spaces

in which such tools explore.

© Hitachi, Ltd. 2016. All rights reserved.

Future work

41

• Extend the Minimization technique to support other source

codes that do not use Kbuild-like build system.

– Linux kernel and busybox both use Kbuild.

– libc should be addressed

– Automake, Cmake support will broaden the supported

applications.

• Evaluate the technique in the practical tools to be used for

real certification in SIL2LinuxMP.

© Hitachi, Ltd. 2016. All rights reserved.

Open challenges

42

• To prove minimized tree is “equal” to original one

How to formally verify equivalence ??

• To find out more application targets for Minimization ??

Something that enhances existing tools / techniques

Minimization tool available in:

https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization

https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization

© Hitachi, Ltd. 2016. All rights reserved. 43

Please suggest useful applications !

Try it out !

https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization

© Hitachi, Ltd. 2016. All rights reserved.

Legal Information

44

• Linux is a registered trademark of Linus Torvalds.

• All other trademarks and registered trademarks are

the property of their respective holders.

© Hitachi, Ltd. 2016. All rights reserved.

Jul/13/2016

Taku Shimosawa

 Krishnaji Desai

END

45

Code Minimization Technology for SIL2LinuxMP –

Qualifying Linux for Functional Safety

