

From Sensor to Cloud Automotive Architecture

Fulup Ar Foll Lead Architect fulup@iot.bzh

Who Are We?

- 2nd contributor to AGL (Automotive Grade Linux)
- Work in Open http://github.com/iotbzh
- Based in South Brittany

Fulup Ar Foll Lead Architect

Stéphane Desneux Release Engineer

Manuel Bachmann Graphic/Multimedia

Yannick Gicquel Kernel & QA

José Bollo Security

A Fast Moving Target

Fast Moving Market

- 100% of cars connected by 2025
- 75% of cars autonomous by 2035

Fast Moving Technologies

- Today 60-80 ECU is not uncommon
- Grouping by function already started

Opening to the outside world

- Connection with the cloud
- Connection with smart city
- Connection with near by vehicles

Lot money on the table

- 20 million of connected cars by 2020
- Prevision added \$152B to car market in 2020

Customer Perceptions

Widely Unaware

- 86% have no or very little idea about what a connected car could be.

Very Conventional Desires

- 1st Streaming music and Internet access
- 2nd Traffic info
- 3rd Security helpers (collision warning, night vision, Fatigue warning,...)

Nevertheless:

- 28% of new cars buyers prioritize car connectivity features over other features such as engine power or fuel efficiency.
- 13% would not even buy a car, if is was not connected.

Customer Fears

What could make then renounce to connected cars

% of new-car buyers that (strongly) agree with the statement

I am reluctant to use car-related connected services because I want to keep my privacy

I am afraid that people can hack into my car and manipulate it (eg, the braking system) if the car is connected to the Internet

Source: McKinsey's Connected Car Consumer Survey, 2014

Many Open Challenges

- Mostly an Unknown World
 - New Technologies
 - New End-User Behaviours
 - New Surface of Attacks
- Electronic move much faster than Mechanic
 - How to deal with very long term maintenance
 - How to comply with 3/5 years car design cycles
- Business Model still to be invented
 - Any revolution has winner and looser

Key Building Blocks

- Entertainment
 - Streaming Music
 - News services
 - Games
- Mobility management
 - Traffic info
 - Parking assistance
- Vehicle Management
 - Remote operations
 - Data usage
 - Usage supervision

- Driver assistance
 - Autopilot in traffic
 - Parking
 - Full efficiency
- Safety
 - Collision prevention
 - Hazard warning
 - Emergency functions
- Communication
 - Hands-Free Calling
 - Text to Speech
 - WLAN, Wifi HotSpot

Typical Today Car Network

Not Complex enough Let's add Internet Connectivity

Management Top Challenges

Security

- Reduction of surface of attack
- Isolation by class of services
- On line update

Privacy

- Who collects/owns the user data
- How to control the personal data

Business Model

- Who pays for maintenance
- How new services are funded
- Which "non automotive" services will really provide value to end-users

Top Technical Challenges

- Win Developer Community
 - Reduce the initial cost of adoption
 - Provide stable APIs & adequate documentation
 - Provide ready-to-go BSP with cheap development boards
- Reduce the overall complexity
 - Agree on a common AGL apps model
 - Agree on a set of core "mandatory" services & APIs
 - Limit the number of ECUs with hypervision
 - Leverage Internet existing technologies (oAuth2, OpenAPI, ...)
- Mitigate fast moving and long term maintenance
- Interface smartly with cloud services
- Reduce Cost

Developing a CAR application should not be more complex than developing for a Mobile Phone.

SDK for AGL & Applications

AGL Application Generic Model

Natively Distributed Architecture

Multi ECU & Cloud Aware Architecture

Virtualized Secure Architecture

Less Privileges

Trusted Store

Integrety control

Linearety control

Zone

Ressources
Alloc/Porxy
Alloc/Porxy
Services
Diagnistics

AGL Linux Supervisor DomU Entertainment

| Container | Codd | Cod

AGL Core
Plateform Services

AGL Linux Kernel Guest Operating

DomU Cluster

App-1 App-2

AGL Mini
Plateform Services

Linux-RT/Microkernel
Guest Operating

Virt | Virt | Audio

Virt GPU Virt Audio

Hypervisor

Hardware

Virtualized Secure Architecture

More Privileges

Trusted Boot

On the Air Update

- Mandatory to secure the system
- Should imply trusted zone for integrity
- Should support partial update as well as factory reset
- Might run from Guest-OS, Dom0 or may be from trusted zone
- Should be fully integrated with Yocto
- Should separate platform services from applications

A Long To Do List

Lack of Standardisation

- Common Automotive Application/Service APIs
- Standardize Vehicle to Vehicle protocols
- Interface with the rest of the IoT world (smart city, smart home, ...)

Security

- Fail safe architecture
- Interface with the external world
- Dealing with 3rd party providers
- Long term update and maintenance

Contractual

- Existing and new to come legal constraints
- Business model and revenue sharing
- New customers behaviour as car sharing
- End user data control/ownership

Last but not least: be ready for "Autonomous Cars"

Further Information

- http://iot.bzh/publications
- http://github.com/iotbzh
- https://www.automotivelinux.org/

