
High Computing ARMv8 Platforms to
Support Centralized ECU functions

Automotive Linux Summit 2016
2016-07-13, Tokyo, Japan

Kevin CHAPPUIS
k.chappuis@virtualopenSystems.com

mailto:k.chappuis@virtualopen

Virtual Open Systems Confidential & Proprietary 2

Autorship and sponsorship

Kevin CHAPPUIS, software engineer at Virtual Open Systems (VOSYS).
Skilled in ARMv7 and ARMv8 architecture, he is experienced in low level
software development (e.g., boot loader, secure monitor, RTOS) on ARM
multi-core heterogeneous platforms.

Virtual Open Systems is a high-tech software company active in open
source virtualization solutions and custom services for complex mixed-
criticality automotive, NFV networking infrastructures, consumer
electronics, mobile devices and in general for embedded heterogeneous
multicore systems around new generation processor architectures.

This work is done in the context of the H2020 Trusted APPs for CPS
(TAPPS) project (www.tapps-project.eu).

Virtual Open Systems Proprietary

Virtual Open Systems Confidential & Proprietary 3

➢ ARMv8-A architecture introduction

➢ Centralized ECUs integration

➢ ARMv8 monitor for automotive mixed-criticality systems

➢ Status of the work and benchmark

➢ Other solutions (Hypervisor, ARMv8-R)

➢ Conclusion

Virtual Open Systems Proprietary

Virtual Open Systems Confidential & Proprietary 4

 Cortex-A57,
Cortex-A53...

ARM architecture evolution

Renesas RCAR H3

Virtual Open Systems Proprietary

(Source: ARMv8 Technology Preview – ARM)

Virtual Open Systems Confidential & Proprietary 5

 31 General Purpose (GP) registers
 64-bit GP registers X0-X30 (32 bit access W0-W30)
 No banking of GP register
 Stack pointer is a specific register (one by Exception Level)
 Program counter is not a GP registers

 Support for Floating Point and Advanced SMID (32 registers 128-bits)
 PSTATE register (e.g., ALU flags, exception masks)
 System register access

– MRS x2, sp_el3

ARMv8 overall description

 Architecture profiles:

 ARMv8 - AARCH64 Execution state:

 A – application / R – real-time / M - microcontroller

Virtual Open Systems Proprietary

Virtual Open Systems Confidential & Proprietary 6

 Exception level changing through specific instructions SMC, SVC, HVC, ERET

 Secure world is
completely isolated

(memory, devices, etc)
from the Normal world by
ARM TrustZone security

extensions. Since
TrustZone is implemented
in hardware, it reduces the

security vulnerabilities.
The secure world could be
used to run a secure OS to
provide secure services to

the OS running in the
Normal world.

 ARM Virtualization
extensions address the needs of
devices for the partitioning and

management of complex
software environments into

virtual machines.

 Normal world to run concurrently
another OS (e.g Linux) without
impacting the secure OS.

 Monitor layer is the highest priority level which
provides a bridge between each world to allow
some interactions.

ARMv8 exception level

Virtual Open Systems Proprietary

Virtual Open Systems Confidential & Proprietary 7

ARM TrustZone security extension

Normal world Secure world

Shared
memory

Secure monitor firmware

Safety/Secure OS

Hardware

Rich OS

Secure applications

Normal HW resources
and peripherals

Secure HW resources
and peripherals

Rich OS applications

 TrustZone splits core into two compartments
(e.g., Normal world / Secure world)

 Secure monitor firmware (EL3) is needed to
support context switching between worlds

 Each compartment has access
to its own MMU allowing the
isolation of Secure and Normal
translation tables.

 Cache has tag bits to discern
content cached by either
secure or normal world.

 Security information is
propagated on AXI/AHB bus

 Memory/Peripheral can also be
made secured

 Provide security interrupts

Virtual Open Systems Proprietary

Virtual Open Systems Confidential & Proprietary 8

ARM virtualization extension

Virtual Machines

Hypervisor (EL2)

 ARMv8-A architecture includes hardware virtualization extension and
Large Physical Address Extension (LPAE) to support the efficient
implementation of vitual machine hypervisors:

 Some hypervisors compliant with the ARM architecture

• Linux-KVM

• XEN

 Dedicated exception level (EL2) for hypervisor.

 Full virtualization capacity to run an OS in a
virtual machine without any modification.

 Combination of hardware features to minimize
the need of hypervisor intervention.

Virtual Open Systems Proprietary

Virtual Open Systems Confidential & Proprietary 9

Interrupt Distributor

Interrupt Controller

CPU Interface CPU Interface

CPU 0 CPU 1

External sources

IRQ FIQ FIQIRQ

 ARM provides a Generic Interrupt Controller (GIC) which supports routing of
software generated, private and shared peripheral interrupts between cores. It is
composed by:

• Distributor: All interrupt sources are connected. It controls the type of the
interrupt, priority, state, core targeted through the CPU interface.

• CPU interface: Through this a core receives an interrupt. The CPU interface
provides the abilities to mask, identify and control the state of interrupts.

 ARM processors include two types
of interrupts:

– Fast Interrupt (FIQ) is the
highest priority. Some banked
registers are allocated to the
FIQ handler. FIQ could be used
for secure applications.

– General Interrupt Request (IRQ)

ARM interrupt management

Virtual Open Systems Proprietary

Virtual Open Systems Confidential & Proprietary 10

GIC V3

 Support more than 8 cores

 Support messages based
interrupt

 System register access

 Enhanced security model

 Introduce redistributor

 Legacy with previous GIC

 Expanded ID interrupt space

 GIC V3 adds a new interrupt type (Locality specific Peripheral Interrupt), which
can be sent by peripheral to GIC via Interrupt Translation Service.

 ITS translates the interrupt message (Event ID / Device ID) received to forward
the interrupt to the correct redistributor.

Virtual Open Systems Proprietary

(Source: ARMv8-A: A Tour of the New GICv3 Architecture - ARM)

Virtual Open Systems Confidential & Proprietary 11

Next GIC generation: GIC V4

Redistributor

Virtual CPU
interface

Virtual core

 GIC V4 supports the direct injection of virtual interrupts, which reduces
the hypervisor mediation overhead.

HypervisorPhysical CPU
interface

Translation
tables

Virtual
PE

tables

ITS

Hypervisor executes ITS command to map interrupts

1

1

2

2

3a

3b

3a

3b

ITS uses event ID to retrieve translation then routes the interrupt

Virtual core scheduled: Redistributor forwards to the virtual CPU interface

Virtual core not scheduled: Redistributor forwards to the physical CPU interface

Virtual Open Systems Proprietary

Virtual Open Systems Confidential & Proprietary 12

TLBs
Page
tables

ARM
core Caches

MMU

Memory

 MMU handles translation of virtual
 addresses to physical addresses.

 The address translation is performed
 through the TLB or a table walk.

*Translation Look-aside Buffers

AARCH64 Memory Management Unit

TTBR1
Kernel space

TTBR0
User space

Virtual address

Not Mapped
(MMU fault)

 AARCH64 supports up to 48-bits of Virtual Address

 All ELs (excepted EL1) have independent MMU configuration
 registers (TTBR - TCR)

 The page table supports different translation granules
 (e.g., 4KByte, 64KByte) configurable for each TTBR.

 Each page table requires different attributes

– Access permissions (Read/Write - User/Privileged modes)

– Memory types (Caching/Buffering rules, Shareable,
Executable, Secure)

Virtual Open Systems Proprietary

Virtual Open Systems Confidential & Proprietary 13

➢ ARMv8-A architecture introduction

➢ Centralized ECUs integration

➢ ARMv8 monitor for automotive mixed-criticality systems

➢ Status of the work and benchmark

➢ Other solutions (Hypervisor, ARMv8-R)

➢ Conclusion

Virtual Open Systems Proprietary

Virtual Open Systems Confidential & Proprietary 14

Towards the full autonomous driving

Cars are getting smarter and always connected, mixing systems with
different levels of criticality.

2015 2017 2025 2035

Driving assistance
with driver control
requested.

Park assist remote-
controlled.

(e.g., BMW Serie 7)

Highway autonomous
driving.

HMI optimized to
ensure a better
driving/entertainment
transition

(e.g., Next Audi A8)

Autonomous driving
with a minimum driver
control requested.

New car design to
isolate driving and
entertainment.

(e.g., Mercedes F 015)

Full autonomous
driving.

Accidents should be
minimized and safety
rules could be
evolved.

(e.g., GoogleCar)

Virtual Open Systems Proprietary

Virtual Open Systems Confidential & Proprietary 15

Growth Areas – System Types
(by Strategic Analytics)

➢ Although, the number of functionalities are growing up, the main
challenge is to decrease the number of ECUs for cost, space,

weight and power consumption reasons.

Growing Areas of Automotive Electronics

Virtual Open Systems Proprietary

2014 2020

Nb of
ECU

Virtual Open Systems Confidential & Proprietary 16

Multi-
core ECU

Low-power and High-performance
Computing for centralized ECUs

Last multi-core architectures are bringing new functionalities to
the automotive platforms :

➢ Computing performance is increasing

➢ Power consumption is decreasing

➢ Hardware virtualization support

The main interest is to use the
computing performance and
hardware capabilities to
embed more functionalities,
having different levels of
criticality, in the same ECU in
order to decrease the number
of hardware platforms needed
in the car.

Virtual Open Systems Proprietary

Virtual Open Systems Confidential & Proprietary 17

Source: http://www.toyota.com.jo/

Connected-cars: Vehicle Gateway
Platform

➢ The main challenge connected cars is the integration of
information (e.g., IVI, V2X, connected devices,etc) with critical
data flows:

Cloud serversV2X

Connected
devices

Critical
applications

Vehicle Platform Gateway (VGP)

➢ VGP must support interconnection with external applications while
ensuring in-vehicle buses secure access to ECUs, which contains
critical applications

Virtual Open Systems Proprietary

Virtual Open Systems Confidential & Proprietary 18

Source: http://www.toyota.com.jo/

Connected cars: From Gateway to
Backbone Arch

ECU

ECUECU ECU

ECU

Gateway

ECU

ECU

Today

ECU

ECUECU ECU

ECU

GW/switch

ECU

ECU

Switch

Long term

CAN (1 Mb/s)

FlexRay (10 Mb/s) Ethernet / AVB (100Mb/s)

MOST (24 Mb/s)

➢ New Connected cars' functionalities add an amount of streaming
 data and control signals, which cannot be handled by the current
 infrastructure.

➢ The future car will become an Ethernet networking based platform.

(Source: Automotive Gateways – Bridge & Gateway from FlexRay/CAN/LIN to AVB Networks - BOSH)

Virtual Open Systems Proprietary

Virtual Open Systems Confidential & Proprietary 19

Centralized ECUs integration:
challenges

Such a concept of the future car, brings new and unprecedented
challenges to the automotive industry:

➢ Multi-OS support and integration: As functions are served by
different operating systems (e.g., AUTOSAR for safety-critical
functions, GenIVI Linux for automotive infotainment, Android for
user apps), the multi-core system needs to be able to run
multiple operating systems at the same time.

➢ Efficient shared use of SoC resources: Different functions
 make use of the same dedicated system resources. Examples for
 this include accelerated graphics from different integrated
 functions, or the shared use of communication channels.

➢Separation of functions and mixed-criticality support:
Safety critical functions need to be able to run alongside non-
safety-critical functions without compromising their safety
characteristics.

Virtual Open Systems Proprietary

20 Virtual Open Systems Confidential & Proprietary

VOSYSautmost SW application:
Connected cars

 Non-critical applications Safety Critical system
Virtual Machines

Shared
memory

Secure monitor firmware

ARMv8 hardware
Trusted boot loader

Linux/KVM Hypervisor

vECU1 (IVIs) vECU2 (V2X) vECU3 (C)

Virtual switch
TEE Internal API

SC-ECU1 (Cluster)

Physical Centralized ECU

WiFI LTE

Bluetooth

GPU CAN
bus

Cluster
Display

Sensors
Safety critical

legacy OS

Safety OS dispatcher

Virtual Open Systems Proprietary

Virtual Open Systems Confidential & Proprietary 21

➢ ARMv8-A architecture introduction

➢ Centralized ECUs integration

➢ ARMv8 monitor for automotive mixed-criticality systems

➢ Status of the work and benchmark

➢ Other solutions (Hypervisor, ARMv8-R)

➢ Conclusion

Virtual Open Systems Proprietary

Virtual Open Systems Confidential & Proprietary 22

➢ The Secure Monitor Firmware is a key central component, which
enables the co-execution of virtualized systems along with safety
critical applications on the same platform and/or core.

➢ Safety critical OS isolation
 using ARM Trustzone

➢ GPOS virtualization
 extensions (KVM) enabled

➢ Ability to safely exchange
 data between RTOS / GPOS
 / Vms

➢ High priority to the critical
 applications to meet timing
 constraints

➢ Tiny footprint to ease
 certification

Secure Monitor Firmware description

Virtual Open Systems Proprietary

Secure monitor firmware

Virtual Open Systems Confidential & Proprietary 23

Secure Monitor Firmware interaction

➢ Normal world only executes upon a request by the secure world (SMC)

➢ FIQ are directly handled in S-EL1 (ensuring low latency)

➢ IRQ vector is used to handle potential Secure world failures

Secure world execution:

Virtual Open Systems Proprietary

Virtual Open Systems Confidential & Proprietary 24

Secure Monitor Firmware interaction
(cntd)

➢ Normal interrupts (IRQ) are directly handled in NS-EL1

➢ Secure interrupts (FIQ) are trapped in the Secure monitor firmware to
 forward it to the Safety critical OS (Normal world preemption)

➢ Normal world can call secure services through SMC

Normal world execution:

Virtual Open Systems Proprietary

25 Virtual Open Systems Confidential & Proprietary

Secure Monitor Firmware architecture

The software architecture is split into four parts to ease:

EL3 Monitor Layer

Platform API

Interrupt
controller UARTWatchdog

Secure OS
dispatcher

Drivers

➢ The support of new hardware platforms and/or Trusted OS
➢ Software components re-used

 Interface between the
Secure OS and the
monitor layer, running
in EL3, to dispatch
SMC secure services
as well as to handle
interrupts forwarding.

 Drivers to
access

peripherals
requested by
Monitor Layer

runtime

 Platform API functions to
 abstract driver function calls
 from Monitor Layer

 Monitor layer implemented for ARMv8
 architecture, which handles context
 switching operation and routes trapped
 exceptions to the right handler

Secure Monitor Firmware

Virtual Open Systems Proprietary

26 Virtual Open Systems Confidential & Proprietary

Secure Monitor Firmware compliance

This firmware should be fully compliant with ARM conventions/protocols :

➢ SMC Calling convention (SMCCC)

✔ Define a convention for SMC in ARM v7/v8 (e.g., register use
 for parameters and returns values, SMC type, etc)

✔ Specify a partitioning of service providers to allow the vendors
 coexistence in the secure firmware (e.g., ARM, OEM, SIP,
 Trusted OS)

➢ Power State Coordination Interface (PSCI)

✔ Define a standard interface to handle
 power management requests.

✔ Define a protocol to allow secure firmware
 to arbitrate power management requests

✔ Power control method in Linux AArch64
 kernel

Virtual Open Systems Proprietary

27 Virtual Open Systems Confidential & Proprietary

➢ ARMv8-A architecture introduction

➢ Centralized ECUs integration

➢ ARMv8 monitor for automotive mixed-criticality systems

➢ Status of the work and benchmark

➢ Other solutions (Hypervisor, ARMv8-R)

➢ Conclusion

Virtual Open Systems Proprietary

28 Virtual Open Systems Confidential & Proprietary

From proof of concept to VOSYSmonitor

Following the functional prototype, based on ARM Trusted Firmware*,
shown during the Tokyo ALS2015, Virtual Open Systems has decided to
implement from scratch its monitor layer for several reasons:

 ➢ Certify EL3 monitor layer ISO-26262
 compliant (ASIL-B) to run on top
 safety critical applications

➢ Apply MISRA C:2012 code standard

➢ Reduce code footprint for security
 and certification

➢ Improve monitor critical paths
 performance (e.g., FIQ latency)

➢ Add world failures detection features

➢ Use an ISO 26262 compliant compiler

VOSYSmonitor

Linux/KVM Hypervisor

Safety critical OS

RT AppIVI system

ARMv8 Hardware

VMs

TEE Client vAPI

TEE Client API

TEE Internal API

vTPM

Shared
memory

Certified

Certifiable

*ATF: https://github.com/virtualopensystems-kchappuis/arm-trusted-firmware
 FreeRTOS: http://interactive.freertos.org/entries/83649935-FreeRTOS-v8-2-2-port-AARCH32-for-ARMv8-
platform-ARM-FastModel-virtual-platform-and-ARM-JUNO-Developm)

Virtual Open Systems Proprietary

https://github.com/virtualopensystems-kchappuis/arm-trusted-firmware

29 Virtual Open Systems Confidential & Proprietary

VOSYSmonitor design has been focused to meet the following
requirements:

1. Enable concurrent execution on the same hardware of an
 RTOS (critical applications) and a GPOS (KVM virtualization)

2. Support complete RTOS resources (Memory, Peripherals, etc)
 isolation from GPOS illegal access

3. Complete RTOS boot in less than 60ms (VOSYSmonitor boot
 impact target is 1%)

4. Minimize the interrupt latency impact – RTOS interrupt
 forwarding time must be lower than 1us.

5. Tiny footprint to ease certification effort

VOSYSmonitor requirements

Virtual Open Systems Proprietary

30 Virtual Open Systems Confidential & Proprietary

VOSYSmonitor environment

➢ This software is compiled with ARM Compiler 6

✔ ARM compiler 6 is specially designed to optimize
 software running on ARMv8 processors. (Reduce
 footprint up to 30% compared to other compilers)

✔ ARM compiler 6 will be ISO-26262 compliant in
 2017 to enable users to apply this compiler for
 safety-related development without qualification
 activities.

➢ It supports several ARMv8 development platforms:

✔ ARM Fast Models AEMv8A (Virtual Platform)

✔ ARM JUNO Development board (2 x A57 + 4 x A53)
✔ Renesas R-CAR H3 board (4 x A57 + 4 x A53)

 Compliant with ISO-26262 (ASIL-B)

Virtual Open Systems Proprietary

Virtual Open Systems Confidential & Proprietary 31

A VOSYSmonitor demonstration, running on the Renesas RCAR H3
board (ARMv8 architecture), can be seen in the booth area of the
Tokyo ALS 2016 :

VOSYSmonitor status

➢ RTOS/Linux-KVM co-execution on the same
 processor

➢ Safety critical OS isolation using Trustzone

➢ PSCI service

➢ Hardware exception mechanisms to
 induce context switch

➢ Secure OS monitoring to recover failures

➢ SMC Framework

(Quad Cortex-A57@1,5GHz +
 Quad Cortex-A53@1,2GHz)

Virtual Open Systems Proprietary

mailto:Cortex-A53@1

Virtual Open Systems Confidential & Proprietary 32

VOSYSmonitor performance
measurements

Different performance measurements have been performed
on the VOSYSmonitor demonstration presented at the
ALS2016

➢ VOSYSmonitor Setup time test

➢ Interrupt latency tests, which aim to measure the
 interrupt latency overhead added by VOSYSmonitor

➢ SMC service latency to measure the response time to
 forward a secure service request

Virtual Open Systems Proprietary

Note: All performance tests have been performed on the ARM
JUNO Development board (CPU Frequency 700MHz).

Virtual Open Systems Confidential & Proprietary 33

VOSYSmonitor setup time

Requirement: Complete RTOS boot in less than 60ms - VOSYSmonitor
boot impact target is less than 1% (e.g.,< 600us)

Test case: Use the Performance Monitoring Unit (PMU) to have a very
detailed view of latency in terms of clock cycles counter. Start the PMU at
the VOSYSmonitor entrypoint and stop it just before jumping to the
Secure OS entrypoint.

VOSYSmonitor setup includes:

➢ ARM EL3 initialization

➢ Platform peripheral initialization
(e.g., Interrupt controller, etc)

➢ VOSYSmonitor initialization (e.g.,
SMC service, Secure Timer, etc)

Virtual Open Systems Proprietary

VOSYSmonitor
setup

PMU Clock cycles 7762

Time (us)
JUNO board

Frequency 700MHz
11,09 us

Time (us)
RCAR-H3 board

Frequency 1,5GHz
(Expected)

5,17 us

Virtual Open Systems Confidential & Proprietary 34

Requirement: Minimize the interrupt latency impact – RTOS interrupt
forwarding time must be lower than 1us.

Test case: Set a timer (free-running mode) interrupt in FreeRTOS. When
the FreeRTOS fiq handler is reached, the timer value is compared with
the trigger value in order to measure the time consumed before handling
the interrupt in FreeRTOS.

JUNO board Frequency 700MHz RCAR-H3 board
Frequency 1,5GHz

(Expected)

FreeRTOS
standalone mode

VOSYSmonitor +
FreeRTOS

VOSYSmonitor +
FreeRTOS

Average 228 ns 780 ns 488 ns

Min 160 ns 720 ns 423 ns

Max 320 ns 1060 ns 668 ns

VOSYSmonitor interrupt latency

Virtual Open Systems Proprietary

Virtual Open Systems Confidential & Proprietary 35

VOSYSmonitor SMC service latency

Test case: Use the Performance Monitoring Unit (PMU) to have a
very detailed view of latency in terms of clock cycles counter. Start
the PMU when an SMC service is triggered in VOSYSmonitor and
stop it just before jumping to the Secure OS service handler.

Virtual Open Systems Proprietary

SMC service unknown SMC service supported

PMU Clock cycles 46 545

Time (ns)
JUNO board

Frequency 700MHz
66 ns 778 ns

Time (ns)
RCAR-H3 board

Frequency 1,5GHz
(Expected)

30 ns 363 ns

VOSYSmonitor proposes a feature to monitor potential Secure world
failure based on the ARM Secure timer which adds, if used, an
overhead of 160 cycles.

Virtual Open Systems Confidential & Proprietary 36

➢ ARMv8-A architecture introduction

➢ Centralized ECUs integration

➢ ARMv8 monitor for automotive mixed-criticality systems

➢ Status of the work and benchmark

➢ Other solutions (Hypervisor, ARMv8-R)

➢ Conclusion

Virtual Open Systems Proprietary

Virtual Open Systems Confidential & Proprietary 37

ARMv8-M / ARMv8-R architecture

ARMv8-MARMv8-R

➢Hypervisor level to handle events
with real time determinism

➢Two stage of memory protection

➢Rich OS guest support along with
RTOS guest, while ensuring real-
time responsiveness.

➢ 32-bit real time
 processor

➢ GIC registers
 support

➢ VMSA support for
 guest OS running
 at EL1/EL0

➢ 32-bit processor optimized for
 microcontroller applications

➢ ARM Trustzone
technology support

➢ Code isolation with
 Memory Protection
 Unit

➢ Support only Thumb
 instruction for code
 density optimization

➢ Deterministic real
 time interrupt
 response

Virtual Open Systems Proprietary

38 Virtual Open Systems Confidential & Proprietary

Hypervisor solution

Other approaches, which aim to integrate a safety critical OS
with non-critical systems, use virtualization to enable support
for mixed criticality. Virtualization benefits are:

➢ Hardware isolation of virtual machines

➢ Supports for the execution of many OSes concurrently

➢ Virtualization is a well-known and mature technology

➢ Examples: XEN Automotive Hypervisor and QNX
 hypervisor

➢ But..

Virtual Open Systems Proprietary

39 Virtual Open Systems Confidential & Proprietary

RTOS isolation: TrustZone benefit

Virtualization is cheap and provides nice features for
automotive, but it could have important security problems:

➢ XEN vulnerability: CVE-2016-5242, allows guest OS
 users to cause a denial of service (host OS crash).

➢ KVM vulnerability: CVE-2016-4440, allows guest OS
 users to obtain direct access to the host OS and possibly
 execute code on the host.

Virtual Open Systems Proprietary

Virtual Open Systems Confidential & Proprietary 40

➢ ARMv8-A architecture introduction

➢ Centralized ECUs integration

➢ ARMv8 monitor for automotive mixed-criticality systems

➢ Status of the work and benchmark

➢ Other solutions comparison (Hypervisor, ARMv8-R)

➢ Conclusion

Virtual Open Systems Proprietary

41 Virtual Open Systems Confidential & Proprietary

VOSYSmonitor Roadmap to VOSYSAutmost

Virtual Open Systems Proprietary

Virtual Open Systems Confidential & Proprietary 42

Conclusion

VOSYSmonitor is a low level software layer for mixed-
criticality automotive systems on ARMv8 platforms:

➢ Supports the execution of multiple IVI guests concurrently

➢ Executes a safety critical OS in a protected environment
 with full control of the system

➢ Tiny foot print to ease certification process

➢ High priority to the critical applications to meet timing
 constraints

Virtual Open Systems Proprietary

Virtual Open Systems Confidential & Proprietary 43

VOSYSmonitor: a flexible automotive
software layer

VOSYSmonitor can be adapted to all automotive systems mixing
different levels of criticality in order to centralize software
functionalities on a common ECU.

 ADAS application example

VOSYSmonitor

ARMv8 hardware

Shared
memory

Automotive control

Driving
(Powertrain)

Braking

Steering

Autonomous Driving

Sensors

V2X

Camera

Radar

Radar
Auto-Pilot
Computing

Sensor data fusion

Autonomous
Control Decision

Control Command

VOSYSmonitor allows
to run concurrently
the Control decision
system as well as the
Automotive control
system on the same
hardware platform

Safety OS dispatcher

Virtual Open Systems Proprietary

Virtual Open Systems Confidential & Proprietary 44

Thank You

contact@virtualopensystems.com

Virtual Open Systems Proprietary

➢ Demo showcased at ALS 2016 Virtual Open Systems booth in Tokyo

➢ A video of the demo is available on our website:
 - http://www.virtualopensystems.com/en/solutions/demos/vosysmonitor-als2016

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

