
Improvement of Start-up Time
on Linux-Based IVI System

2016/7/13
Panasonic Corporation

Kazuomi KATO

1

AGENDA

2

1. Background and Issue
2. Methods of optimizing startup time
3. How to analyze
4. Analysis of start-up time
5. Improvements
6. Summary
7. Future plan

Background

3

• Due to the functionality such as smart phone link function, more and more
functions and large-scale software are being required.

• Data size is being increased due to the expansion of the display resolution and the
realization of multi-screen being equipped.

• At the same time, start-up time and quick response of the system are required by
the driver much more.

• Mobile devices equipping a lot of functions as much as IVI system can quickly start
up, therefore quick start-up time of IVI system is required as well.

Increasing the amount of IVI system software.

Year
1996 2006 2016

DRAM

30MHzCPU

Radio / CD / DVD

Navigation

4MB 256MB 3GB

400MHz 1.5GHz

RSE

QVGA

Voice
Recognition

WVGAResolution

Carplay, Android Auto

1920x720

Issue

4

1. Realization of quick start-up time suitable for users who are used
to smart phone.

2. In order to put the functions of music player, car navigation into
operation as soon as the engine being started, high speed of start-
up time of IVI system is necessary.

3. To improve the UX and display resolution, the amount size of data
are increased. As a results, reading the data from storage costs
much longer.

4. With the change of platform from RTOS to Linux, the start-up time
is increased.

5. In the application of vehicle, although large battery is equipped,
the issues of dark current has to be considered, when the car not
being used for several weeks.

Start-up time issues of IVI system:

Methods of optimizing startup time

5

We adopted the approach to analyze and eliminate the bottleneck.

Approach Typical method Pros Cons

1. Eliminate the
bottleneck and
improve
processing

Profiling and Analysis
Improving method based on the
profiling and analysis.

Fundamentally
improvable.

Know-how is
required to specify
the bottleneck and
improve.

2. Startup is
quickly shown as a
user's view

CAN wakeup
Method of starting the system in
advance by CAN signal such as
unlocking the door.

It seems to start
up fast when
getting into a car.

It depends on OEM
requirements.

3. Fast return
without completely
stopping the
system

Suspend / Resume
Method of saving the current state
to DRAM, turning peripheral device
power off, waiting and restarting
from the state saved at that time.

Fast resume is
possible at
turning power
ON.

The electric power
for maintaining
DRAM data is
consumed.

4. Carry out power
OFF adding to
No.3 approach

Snapshot boot
Method of saving the kernel image
of a certain point into the storage
and booting up from that point
when resuming the system.

Electric power is
not consumed as
compared with
No.3.

If boot image size
becomes large, the
load time from
storage will become
a neck.

How to analyze

6

• Divide the system into several phase from power ON to start of the application.
• Since the reasons which cause the bottleneck in different phases are different,

therefore, considering the approach to those respectively is necessary.

Bootloader Kernel System init IVI Service

Startup flow

- Loading binary image
- Display opening picture

Minimum preparation for user
space processes
- Make /dev files
- Execute system manager process

Starting Linux kernel
- MMU, page, … initializing
- Device driver initializing

Activate service processes
from manager process
according to their priority

Application

Overview of each phase during the system start-up

Bottleneck mainly caused by I/O Bottleneck mainly caused by CPU

Hardware Block Diagram of IVI system

7

System
control
CPU

Vehicle LAN

USB-memory

BT/WiFi

Audio/
Radio
DSP

PMIC

AMP

eMMC
（HS200)

Main Soc

GPU

I/O

ARM
A15xn

DTV
12seg

Radio
tuner

IPC

RESET

Control

DTV
DVD-V

WDT
<Video In>

WXGA LCD

Camera

Video stream
Audio stream

DDR3DDR3
DCDC

converter
1.8V

1.1V
+B

Self
refresh

200MHz
(SD UHS-I)

<Audio In>
Radio
DTV

TEL
BT-A
USB-A Touch panel

I/F

In order to realize the fast boot, use the following as hardware
• DRAM Self-refresh in part of DDR3
• Connect the high speed eMMC to the SD UHS-I(200MHz) port.

（because of SoC restriction, eMMC I/F speed is less than device speed ）

Analysis of start-up time in each phase

8

Bootloader Kernel System init Service
5.9 sec

App
1.1 sec 0.7 sec 6.0 sec

Start-up time in each phase at the beginning (@Cortex A15 1.5GHz x2 SoC)

1. Bootloader
• Program loading time from eMMC device occupies.

2. Kernel
• Waiting for device driver initialization occurs.

3. System init
• The CPU usage rate has only been about average 60%.

4. Service
1. Waiting for the process of mounting file system occurs.
2. Low speed of loading from storage device (eMMC) when starting service.
3. CPU load increases due to the interruption of eMMC when system

started up (2-6secs).

Issue of start-up time in each phase

Consider the solution of specific bottleneck based on analysis.

Analyze the method to
solve the bottleneck
caused by I/O.

Analyze the method to solve the
bottleneck caused by CPU.

Improvements for bootloader(1)

9

The bottleneck is loading time from eMMC to DRAM.

Bootloader Kernel System init Service

Processing Time
eMMC -> DRAM transferring
procedure (100Mbyte)

5,000msec

eMMC initilizing procedure 200msec
Debug log output 200msec
ROM integrity checking 65msec
Primary loader process 40msec
…

eMMC DRAM

Connecting eMMC to SD UHS-1 line

20MB/sec

5.9 sec
(before improving)

Before

After 80MB/sec

However eMMC bottleneck remains.

DRAM

Backuped
data

eMMC Backuped
data
on DRAM
is available

For more improvement

Improvements for bootloader (2)

10

Partial DRAM backup system is necessary.

What program should be backuped?
• Root file system: Executable binaries required on start-up are chosen.

DRAM backup
• The backup data on DRAM is reused when turning ignition ON.

Issue:
• Not allowed to back up whole DRAM area because of the large dark

current.

Approach:
1. Scope for backup is limited to program code.
2. Program for backup is gathered to the specific memory area.
3. Only that area is the target area for DRAM backup.

Improvements for bootloader (3)

11

File system available for DRAM backup system should be chosen.

Requirements of DRAM backup for root file system
1. It is operable on RAM.
2. It is not lost by reboot of Linux.
3. No matter happens by reusing backup image of initial state.
4. Not allowed to consume extra RAM.
5. As a security requirement, it is available for dividing the privileges

associated with super user into distinct units.

DAX (for direct access) system was experimental and not adopted at
that time.

We adopted PRAMFS (Protected and Persistent RAM Filesystem)

The tmpfs, romfs and cramfs as a candidate don’t meet those requirements.

Improvements for bootloader (4)

12

Result: The startup time of bootloader was improved from 5.9 sec to 0.15 sec
by using DRAM backup system.

Bootloader Kernel System init Service

Processing Time
eMMC -> DRAM transferring
procedure (100Mbyte)

5,000msec

eMMC initilizing procedure 200msec
Debug log output 200msec
ROM integrity checking 65msec
Primary loader process 40msec
…

The log output process for
debug is also deleted.

eMMC acesses was eliminated.

0.15 sec
DRAM

Backuped
data

Reused.
eMMC

Improvement for kernel

13

Result:
The startup time of kernel was improved from 1.1 sec to 0.8 sec by
parallel execution for device driver initialization.

Bootloader Kernel System init Service

1.1 sec
(before improving)

SDHI initialize

Touch screen

290msec 320msec

SDHI initialize

Touch screen

Create a thread
for SDHI

Before

After

320msec
290ms

shortening

0.8 sec

Improvements for system init (1)

14

We developed original simple init called “system init”.
(Not System V init)

Originally developed “system init” for running service process and
making device environment for user land.

• Making device files and symbolic links
• Mount filesystem
• Setting resource parameter
• Setting network parameter
• Activating a service process

Why originally developed?
• Need the minimum init functionality.
• Standard init process like systemd is not necessary for our

product requirements.

Bootloader Kernel System init Service

3.0 sec
(before improving)

Improvements for system init (2)

15

1. Low CPU usage part
1-1. Modified code from shell script to native C code -2.3 sec
1-2. Changed serial execution to parallel execution -0.1sec

2. High CPU usage part -0.3 sec
- Optimized the udev event control

0

20

40

60

80

100

120

140

160

180

200

7

7.
2

7.
4

7.
6

7.
8 8

8.
2

8.
4

8.
6

8.
8 9

9.
2

9.
4

9.
6

9.
8 10

10
.2

10
.4

10
.6

10
.8 11

CPU0

CPU1

CPU0+CPU1

CPU(%)

time (sec)

1. Low CPU usage part

2. High CPU usage part

System init processing

2.6sec

Improvements for system init (3)

16

 rcpvr: initilize GPU driver
 init_fs: mount process
 init_insmod: loading modules
 init_dir: chown/chmod
 init-iptables: firewall settings
 init_command: some commands
 init_udev: udev process

init-iptables init_commandinit_insmod

init

init_dir
(rcpvr) init_udev

init_fsrcpvr

init_dir
(mntfs)

init_dir

init_dir
(udev)

1.2 Parallel execution -0.13 sec
Process groups based on each dependencies are parallel
executed as the threads.

Improvements for system init (4)

17

2. Optimize the udev event control -0.3 msec
Devices to be excepted from “udev” should be clarified and
processing of "udev" occupied in start-up should be optimized.

Issue:
1. Thread processing for handling an udev event spends time from

20 msec to 40 msec. About 400 msec occurs.

2. However, the udev operation is necessary for plug and play device
in our system.

Approach:
1. The udev which can specify the exceptional events such as

the system fixed devices is originally developed.

2. The original udev has only the ability to register the event
for controlling.

Improvements for system init (5)

18

Result :
The startup time of “system init” was improved from 3.0 sec to 0.3 sec

Bootloader Kernel System init Service

0.3 sec

Improved “system init” phase through the approach as bellow
1. Change to the native C code
2. Parallel execution
3. Optimization for udev event control

Improvement for service processing (1)

19

Issue:
CPU load increases when accessing to eMMC during activating
service processes.

Analysis:
1. eMMC access after Linux starting is almost loading to not

contiguous DRAM area.
2. It was found that since DMA transfer completion interruption was

occurring frequently, CPU load is increasing.

Bootloader Kernel System init Service

6.0 sec
(before improving)

DRAMeMMC
4KB

Interruption on
each page

4KB

20

Improvement for service processing (2)
Approach:

The DMA for eMMC to non-contiguous areas can be transferred by
using the function of the hardware as if they were a contiguous area.

DRAMeMMC

Interruption on each
transfer(ex 4KB)

H/W
desc

Item before after

DRAM

Descriptor off on
BounceBuf Used Unused

CPU Usage mmcqd
DMA driver

26.6 % 9.0 %

Interruptions
(times/sec)

SDHI
DMAC 11,029 2,221

Read (MB/sec) 57.1 MB/s 71.5 MB/s

After improvement

Improvement for service processing (cont.)

As a result of the CPU load decrease of eMMC access, it was shortened
from 6.0 sec to 5.2 sec.

Bootloader Kernel System init Service

5.2 sec

21

Summary

22

1. We have achieved 9.6 seconds reduce for the startup time.

2. Service phase still now occupies 5.2 seconds during startup time.

3. Improvement for each service is still on the way, and
other system boot optimization method will be required
to meet user’s requests.

Bootloader Kernel System init Service
5.9 sec

App
1.1 sec 3.0 sec 6.0 sec

1. Before (original code)

2. After the improvements

Boot Kernel init Service
0.15 sec

App
0.8 sec 0.3 sec 5.2 sec

-9.6sec

Future plan

23

1. The methods, which are independent of tuning application,
as bellow need to be considered to the next IVI system.

- CAN Wakeup : Startup is quickly shown as a user's view
- Suspend and Resume :

Since the performance of DRAM and the dark current will be
improved, the availability of backup of the whole DRAM increases.

- Snapshot Boot :
Because of the speedup of eMMC loading, cold boot from snapshot
will become quick.

Current Next Generation
DRAM I/F DDR3 1.6GHz LP-DDR4 3.2GHz x2
Dark current (12V)
4GB 18.0 mA 2.2mA 1/8

eMMC read perf. 80MB/s 300MB/s
(expected) x3.75

Device trend for IVI system

Thank you!

24

