"Really" useful solutions in embedded Linux/OSS-based IVI system development

NTT DATA MSE CORPORATION
July 13th, 2016

- NameHiroto Imamura
- Occupation
 NTT DATA MSE CORPORATION
 Platform Strategy Office
- Career LINUX system development
 - Architecture design
 - Performance optimization
 - Security
 - System debugging

Changes in Automotive field

Vehicles become part of IoT devices
Software volume grows explosively to realize services

Necessity of using Linux in automotive field

Shift to High-value added development

Resources to High-value development

High-value Area

Commoditization Area

Platform

Development from scratch

High-value Area

Commoditization Area

Platform

Common development

Less cost of commoditization area development

Base platform for High-value area (Networks, Graphics,...)

Make good use of Linux

Tools and Framework

Speed of evolution

Connected vehicle systems

Telematics Service

Big data utilization

Traffic information

Intelligent Transport System

Smartphone Link

Hands Free

Navigation

Multimedia Service

ECU Information

Engine/Gear/Brake

Steering wheel/Mirror/Battery

By the way...

Solutions

From RTOS to Linux

Automotive field

Solutions

for Mobile

- Solution A
- Solution B
- Solution C
- Solution D

Solutions

for Automotive

- Solution A Usable
- Solution B Usable
- Solution C' Not C but C'
 - Customization required
- Solution D Not usable
- Solution E Automotive-specific

Suggestion to automotive field

Theme	Description
Architectural design	Approach from evaluation viewpoint to solve memory related issues, which are not be solved from design viewpoint.
Efficient debug method	Approach to taking effective logs for analysis when an issue occurs
Boot time optimization	The case example for boot time analysis using "Bootchart"
Security	Method to realize secure system to protect resources using embedded Linux system, "Mandatory Access Control"
Extend the life of a flash memory	Design / Countermeasure to extend a flash memory's life

Architectural design

functional design

architectural design

functional evaluation

performance evaluation

memory evaluation

system evaluation

Priority

Priority Design

- Thread division and priority by response time of procedure
- Design evaluation using prototype

Memory

Memory Usage Design

- Memory layout
- Lifecycle of memory block

Dynamic Memory Solutions

- Memory Leak
 Detection
- Memory usage measurement tool

Quality of architectural design and evaluation leads to product satisfaction.

Memory evaluation

The major issues of memory handling

#	Туре	Problems that can occur	Approach
1	Memory Leak		Measurement a memory usageTools e.g. Valgrind, memwatch
2	Memory corruption	Program runawayTerminating a process by Segmentation Fault	Tools e.g. Valgrind, memwatchConsole log, debug messageDebugger
3	Invalid memory reference	- Terminating a process by Segmentation Fault	
	Invalid memory free	 Unintended terminating a process 	Tools e.g. Valgrind, memwatchConsole log, debug message

#2-4: Difficult to analyze problem without dedicated debug environment in most of the cases

#1 : Possible to analyze problem without dedicated debug environment

Proposal: "Method to measure a memory usage"

Memory evaluation

#	Method	Measurable me	emory		
		Kind P:Physical/V:Virtual	System total	By area	By process
1	free or vmstat	Р	X approximation		
2	/proc/meminfo	V/P	X detail	X detail	
3	/proc/[pid]/status	V/P			X approximation
4	ps	V			X approximation
5	top	V	X detail		X approximation
6	pmap	Р		X detail	X detail
7	/proc/[pid]/smaps	V/P		X detail	X detail
8	/proc/zoneinfo	Р		X	
9	/proc/buddyinfo	Р		X	

Possible to know rough memory usage using meminfo and pmap

Memory evaluation

Memory leak analysis case using pmap

- Trace a memory usage of each area
- Identify specific point of increased memory
- Investigate the cause

Address 00008000 00010000	Kbytes 4 4	PSS 4	Dirty O 1	0	r-xp	Mapping /malloc_test /malloc_test
00011000	388	28	28	0	-	[heap]
total	1972	93	76	0		
	area					
725: {no	- such proce	ess} ma	lloc_test	64		Manning
725: {no:	- such proce	ess} ma		64	Mc e	Mapping /malloc_test
725: {no: Address 00008000	- - such proce Kbytes	ess} mal	lloc_test	64 Swap 0	Mc e	
725: {no : Address 00008000	- - such proce Kbytes	ess} mal PSS 4	lloc_test Dirty O	64 Swap 0	Mc e	/malloc_test
	- such proce Kbytes 4	ess} mal PSS 4 4	lloc_test Dirty O 4	64 Swap 0	Mc e	/malloc_test _/malloc_test

892: {no Address 00008000	– such proce Kbytes 4 4					Mapping /malloc_test /malloc_test	
b6da9000	520	8	8	0	rw-p	anon]	
total	2104	 73	 56	 0			
[anon] area -	is ir	ncreas	sing.			
	such proce						
Address 00008000 00010000	Kbytes 4 4	PSS 4 4	Dirty O 1	Swap 0 0	Mα e r ρ	Mapping /malloc_test /malloc_test	
b6d68000	780	12	12	0	rw-p	[anon]	
							Т

Doubt "malloc()" size is 128KB or under

Doubt "malloc()" size is over 128KB

Efficient debugging method

Logging design

The reason of hard to reproduce bugs in automotive field

- Bug depends on a timing
- Bug depends on a place
- Bug depends on **an environment** e.g.
 - A bug of a music player occurs only in a specific region
 - A bug of a navigation occurs only in a real vehicle environment

It is important to design a logging system

Point

- Taking logs should be easy
- Generated logs should be accurate
- Generated logs should have enough information e.g.
 - Generation environment : peripheral device, external signal
 - Procedure for reproducing: user operation

Record enough information when bug occurs at the first time

Boot time optimization

Method for specifying the bottle-neck using Bootchart

Boot time optimization using bootchart

Case 1: Reducing I/O Wait Times

Boot time optimization using bootchart

Case 2: changing the processing order

Security

Security control by normal access control of Linux (Discretionary Access Control)

- Owner set Read/Write/Execute permission to files
- Owners' access control is not applied to administrator
- Administrator can access to any resource to guard

Importance of security is growing as automotive is connected to open network

Security

Security control by Mandatory Access Control

- Define access policy
- Access policy is judged at each access request
- Administrator's access is under control of MAC

MAC is effective for security control of resources

Copyright © 2016 NTT DATA MSE Corporation

Extension the life of a flash memory

Design and measures considering long-life of a flash memory

Extension the life of a flash memory

Investigation use cases

Investigation Characteristics

Flash memory, File system

Simulating the writing quantity of data each use cases

Flash memory selection

Reducing the writing quantity of data

- Optimization of the writing
 - Omitting useless writing

Flash memory determination

Evaluation the durability of a flash memory

-Writing test -Heat test -Stress test

Accurate simulation of use cases and Optimization of the number of writing times

Conclusion

Linux is suitable platform for creating service

Copyright © 2016 NTT DATA MSE Corporation

NTT Data Global IT Innovator