
Secure boot
Secure software update

Yannick Gicquel
SW Engineer

yannick.gicquel@iot.bzh

2016 Tokyo

July-2016Secure boot - Secure software updates 2

Iot.bzh

● Specialized on Embedded & IoT
● Contributing to AGL Project

for Renesas
● Expertise domains:

– System architecture

– Security

– Application Framework

– Graphics & Multimedia

– Middleware

– Linux Kernel

● Located in Brittany, France

July-2016Secure boot - Secure software updates 3

Agenda

1. Overall context of updates for cars
● Updates characteristics,
● Security requirements,

2. Secure boot
● Concept,
● U-Boot signature,

3. Enforcement solution
● Trusted Execution Environment
● OP-TEE

July-2016Secure boot - Secure software updates 4

What are updates?

● In software engineering:
● Deploy another revision of an application or service,
● New features activation or enhancements,
● Zero-day security fixes,

● In automotive:
● Multiples programmable sub-systems,
● Local updates (usb-stick, dvd) or remotes updates,
● IVI systems as a update gateway for other components,

July-2016Secure boot - Secure software updates 5

Updates infrastructure

Generate
updates

Deploy through an
unknown environment

Verify then apply
updates

Connected cars needs a secured infrastructure,

Security should tight each stages to a whole process,

July-2016Secure boot - Secure software updates 6

Requirements for secure update

● Reliable update agent
● Resilient to some technicals failures,
● Ensure the update process won't break the car systems,
● Otherwise, safety issues can occurs,

● Trusted infrastructure
● Deployed updates should be authenticated,
● Updates integrity should be checked before being applied,
● Confidentiality should be ensured,

July-2016Secure boot - Secure software updates 7

1. Overall context of updates for cars
● Requirements,
● Nature of updates

2. Secure boot
● Concept,
● U-Boot signature,

3. Enforcement solution
● Trusted Execution Environment
● OP-TEE

July-2016Secure boot - Secure software updates 8

Secure boot

● Feature
● Establish a root of trust to ensure the integrity of the whole software

stack,

● How?
● Using cryptography and signatures of digital contents,
● At generation: Signing software,
● At runtime: Verify all signatures,

● Scope
● From hardware power-on to kernel startup,
● Following secure boot: RootFS integrity, (dm-verity, dm-integrity, linux

ima/evm)

July-2016Secure boot - Secure software updates 9

Secure boot: signing

Bootloader

signature

Software are signed after build using private key,

compute
hash

 priv-key

+
encrypt

July-2016Secure boot - Secure software updates 10

Secure boot: verification

Linux Kernel

BootROM

Bootloader

 pub-key

signature

decrypted
hash+ hash matches =

boot continue
computed

hash

Principles
● Each software stage ensures integrity of next one,
● Rely on HW security features to store the key in read-only mode,

Read-only: fused at fabric

SW

HW

July-2016Secure boot - Secure software updates 11

Secure boot policy

● When integrity checks failed
● A boot policy should be defined,
● This can differs from vendors, products requirements,
● Tight to the whole system design,

?

July-2016Secure boot - Secure software updates 12

U-Boot signature

● Seals Linux Kernel & U-Boot after their builds,

● Requirements
● U-Boot release v2013.07,
● Linux kernel should be embedded in a fitImage,
● An RSA key-pair (RSA-2048) is required for the signing process,

● Default boot policy:
● Boot stopped if check failed,

● Software signing
● mkimage tool is used in 2 passes

July-2016Secure boot - Secure software updates 13

U-Boot signature

July-2016Secure boot - Secure software updates 14

Signing with Open-Embedded

How to sign the fitImage in OpenEmbedded build system?

UBOOT_SIGN_KEYDIR = "/keys/directory"

UBOOT_SIGN_KEYNAME = "dev" # keys name in keydir (eg. "dev.crt", "dev.key")

UBOOT_MKIMAGE_DTCOPTS = "-I dts -O dtb -p 2000"

UBOOT_SIGN_ENABLE = "1"

2013.07

U-Boot fitImage
+ signature support

2015.11 2016.11

Yocto 2.0 introduce
fitImage support

Yocto 2.2 will support
signed fitImage

Yocto 2.1
released

2016.04

July-2016Secure boot - Secure software updates 15

1. Overall context of updates for cars
● Requirements,
● Nature of updates

2. Secure boot
● Concept,
● U-Boot signature,

3. Enforcement solution
● Trusted Execution Environment
● OP-TEE

July-2016Secure boot - Secure software updates 16

Trusted Execution Environment

● Objectives
● It adds another bastion in case of Linux kernel security

breach,
● OS Virtualisation approach for security purpose,
● Leverage HW capabilities to introduce privileges

separations,

● Implementations
● ARM: TrustZone,
● Intel: Trusted Execution Technology

July-2016Secure boot - Secure software updates 17

TrustZone

● Two executions contexts: normal world & secure world,
● Peripherals visibility can be configured for each world,
● Integrated into the system on chip,

Credit: http://genode.org/documentation/articles/trustzone

http://genode.org/documentation/articles/trustzone

July-2016Secure boot - Secure software updates 18

OP-TEE

● Open-source Portable TEE,
● Initiated by ST in 2007, then handled by Linaro,
● Implements Global Platform API on top of ARM TrustZone,

https://github.com/OP-TEE/

● Features
● Protected storage,
● SW isolation,
● Device integrity.

● TEE Core API specify
● Trusted Storage API for Data and Keys,
● Cryptographic Operation API,
● Time API,

https://github.com/OP-TEE/

July-2016Secure boot - Secure software updates 19

OP-TEE Software architecture

July-2016Secure boot - Secure software updates 20

OP-TEE

● OP-TEE OS Characteristics
● Trusted OS – Requires ~256KiB of RAM, ~320KiB of ROM
● 22000 tests on the API,
● Strong isolation of TA with stack canary protections,
● Use Secure-RAM HW capability,

● Secured Applications
● Two binaries blobs:

– User space program (Normal world),
– TA: Trusted Application (Secure world).

● TA are signed, and identified by a UUID,
● TA integrity are checked by the trusted OS before execution.

July-2016Secure boot - Secure software updates 21

Boot sequence

Linux

BootROM

1st stage Bootloader

Secure mode

: Load, Verify integrity

OP-TEE OS

Secure Monitor / ARM TF

1

2

3

4

: Execute

Normal mode

HW

SW

U-Boot

4

5

July-2016Secure boot - Secure software updates 22

Protected storage

eMMC

Flash SPI

BootROM

OP-TEE OS
Bootloader
Linux Kernel

Flash SPI

BootROM

eMMC

Linux RootFS

RAM

Secure World Normal World

eMMC

SPI

RPMB RPMB

● HW isolation to protect sensitive binaries & data:

Privates keys

July-2016Secure boot - Secure software updates 23

OP-TEE in Open-embedded

● Layer for AGL
● Enable a QEmu machine with OP-TEE OS + samples

applications:

https://github.com/iotbzh/meta-optee

● Following steps
● Propose for staging for AGL to get an easier access to an

“op-tee ready” environment.
● Linaro on the way to publish upstream recipes they aim to

maintain,
● Protected storage for OTA client,

https://github.com/iotbzh/meta-optee

July-2016Secure boot - Secure software updates 24

To summarize

● Securing updates
● Not just a set of tools but a whole process,
● Secure boot & boot policy are important to fulfill security

requirements,
● Virtualisation enhance the whole system security,

● AGL distribution
● Balance between generic implementation & specific

design,
● Consolidation of tools in the build system,

July-2016Secure boot - Secure software updates 25

Thanks

Upcoming discussions about SOTA:

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25

