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Iot.bzh

● Specialized on Embedded & IoT
● Contributing to AGL Project

for Renesas
● Expertise domains:

– System architecture

– Security

– Application Framework

– Graphics & Multimedia

– Middleware

– Linux Kernel

● Located in Brittany, France
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Agenda

1. Overall context of updates for cars
● Updates characteristics,
● Security requirements,

2. Secure boot
● Concept,
● U-Boot signature,

3. Enforcement solution
● Trusted Execution Environment
● OP-TEE
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What are updates?

● In software engineering:
● Deploy another revision of an application or service,
● New features activation or enhancements,
● Zero-day security fixes,

● In automotive:
● Multiples programmable sub-systems,
● Local updates (usb-stick, dvd) or remotes updates,
● IVI systems as a update gateway for other components,
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Updates infrastructure

Generate
updates

Deploy through an
unknown environment

Verify then apply
updates

Connected cars needs a secured infrastructure,

Security should tight each stages to a whole process,
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Requirements for secure update

● Reliable update agent
● Resilient to some technicals failures,
● Ensure the update process won't break the car systems,
● Otherwise, safety issues can occurs,

● Trusted infrastructure
● Deployed updates should be authenticated,
● Updates integrity should be checked before being applied,
● Confidentiality should be ensured,
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1.  Overall context of updates for cars
● Requirements,
● Nature of updates

2. Secure boot
● Concept,
● U-Boot signature,

3. Enforcement solution
● Trusted Execution Environment
● OP-TEE
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Secure boot

● Feature
● Establish a root of trust to ensure the integrity of the whole software 

stack,

● How?
● Using cryptography and signatures of digital contents,
● At generation: Signing software,
● At runtime: Verify all signatures,

● Scope
● From hardware power-on to kernel startup,
● Following secure boot: RootFS integrity, (dm-verity, dm-integrity, linux 

ima/evm)
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Secure boot: signing

Bootloader

signature

Software are signed after build using private key,

compute
hash

     priv-key

+
encrypt
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Secure boot: verification

Linux Kernel

BootROM

Bootloader

     pub-key

signature

decrypted
hash+ hash matches = 

boot continue
computed

hash

Principles
● Each software stage ensures integrity of next one,
● Rely on HW security features to store the key in read-only mode,

Read-only: fused at fabric

SW

HW
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Secure boot policy

● When integrity checks failed
● A boot policy should be defined,
● This can differs from vendors, products requirements,
● Tight to the whole system design,

?
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U-Boot signature

● Seals Linux Kernel & U-Boot after their builds,

● Requirements
● U-Boot release v2013.07,
● Linux kernel should be embedded in a fitImage,
● An RSA key-pair (RSA-2048) is required for the signing process,

● Default boot policy:
● Boot stopped if check failed,

● Software signing
● mkimage tool is used in 2 passes
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U-Boot signature
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Signing with Open-Embedded

How to sign the fitImage in OpenEmbedded build system?

UBOOT_SIGN_KEYDIR = "/keys/directory"

UBOOT_SIGN_KEYNAME = "dev" # keys name in keydir (eg. "dev.crt", "dev.key")

UBOOT_MKIMAGE_DTCOPTS = "-I dts -O dtb -p 2000"

UBOOT_SIGN_ENABLE = "1"

2013.07

U-Boot fitImage
+ signature support

2015.11 2016.11

Yocto 2.0 introduce 
fitImage support

Yocto 2.2 will support 
signed fitImage

Yocto 2.1
released

2016.04
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1.  Overall context of updates for cars
● Requirements,
● Nature of updates

2. Secure boot
● Concept,
● U-Boot signature,

3. Enforcement solution
● Trusted Execution Environment
● OP-TEE
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Trusted Execution Environment

● Objectives
● It adds another bastion in case of Linux kernel security 

breach,
● OS Virtualisation approach for security purpose,
● Leverage HW capabilities to introduce privileges 

separations,

● Implementations
● ARM: TrustZone,
● Intel: Trusted Execution Technology
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TrustZone

● Two executions contexts: normal world & secure world,
● Peripherals visibility can be configured for each world,
● Integrated into the system on chip,

Credit: http://genode.org/documentation/articles/trustzone

http://genode.org/documentation/articles/trustzone
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OP-TEE

● Open-source Portable TEE,
● Initiated by ST in 2007, then handled by Linaro,
● Implements Global Platform API on top of ARM TrustZone,

https://github.com/OP-TEE/

● Features
● Protected storage,
● SW isolation,
● Device integrity.

● TEE Core API specify
● Trusted Storage API for Data and Keys,
● Cryptographic Operation API,
● Time API, 

https://github.com/OP-TEE/
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OP-TEE Software architecture
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OP-TEE

● OP-TEE OS Characteristics
● Trusted OS – Requires ~256KiB of RAM, ~320KiB of ROM
● 22000 tests on the API,
● Strong isolation of TA with stack canary protections,
● Use Secure-RAM HW capability,

● Secured Applications
● Two binaries blobs:

– User space program (Normal world),
– TA: Trusted Application (Secure world).

● TA are signed, and identified by a UUID,
● TA integrity are checked by the trusted OS before execution.
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Boot sequence

Linux

BootROM

1st stage Bootloader

Secure mode

: Load, Verify integrity

OP-TEE OS

Secure Monitor / ARM TF

1

2

3

4

: Execute

Normal mode

HW

SW

U-Boot

4

5
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Protected storage

eMMC

Flash SPI

BootROM

OP-TEE OS
Bootloader
Linux Kernel

Flash SPI

BootROM

eMMC

Linux RootFS

RAM

Secure World Normal World

eMMC

SPI

RPMB RPMB

● HW isolation to protect sensitive binaries & data:

Privates keys
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OP-TEE in Open-embedded

● Layer for AGL
● Enable a QEmu machine with OP-TEE OS + samples 

applications:

https://github.com/iotbzh/meta-optee

● Following steps
● Propose for staging for AGL to get an easier access to an 

“op-tee ready” environment.
● Linaro on the way to publish upstream recipes they aim to 

maintain,
● Protected storage for OTA client,

https://github.com/iotbzh/meta-optee
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To summarize

● Securing updates
● Not just a set of tools but a whole process,
● Secure boot & boot policy are important to fulfill security 

requirements,
● Virtualisation enhance the whole system security,

● AGL distribution
● Balance between generic implementation & specific 

design,
● Consolidation of tools in the build system,
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Thanks

Upcoming discussions about SOTA:
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