
Justin Dickow, Product Manager

Agenda

• Features

• Components

• Tools

• Resources

An enabler of features

• SDL itself is not a ‘feature’ for your customers

• SDL enables features in the vehicle related to
brought-in device connectivity

• Every OEM doesn’t have to integrate every feature

App Connectivity
• Apps can connect to the vehicle with icons displayed

to the user for selection

• Apps can display text and artwork in Templates while
in full screen

• Register for callbacks for spoken voice commands

• Take advantage of the vehicle’s TTS and Nav engine

• Read and subscribe to vehicle data with driver and
OEM permission

Owner-App
• OEMs can use SDL for owner app integration

• Independent of user interaction

• Take advantage of reading DTCs and DIDs for
vehicle health reports

• Read data from the vehicle when the driver’s
device is connected

• More data = better future driver experiences

Video Streaming Services

• Base case is streaming moving maps

• Have seen integrations into other technologies
most notably by Abalta

• SDL enabled Abalta to display their own
applications on SDL implementations in vehicle
(with OEM permission of course)

OEM Experiences

• A template based approach means the opportunity
for highly integrated connected experiences

• No requirement for a rectangle screen displaying
apps

• Freely distribute information from apps across
clusters and secondary screens

Enabling the enabler
• First, permissions based architecture managed by

the OEM

• OEM decides which apps can connect, and
which apps have permissions for each API

• Second, open source with a permissive license

• github.com/smartdevicelink

http://github.com/smartdevicelink

SDL Components

Android

• github.com/smartdevicelink/sdl_android

• Download from source into eclipse or from jcenter
for a gradle build with Android Studio

http://github.com/smartdevicelink/sdl_android

iOS

• github.com/smartdevicelink/sdl_ios

• Distributed via cocoapods and carthage

• Objective-C

• Swift supported with bridging header

http://github.com/smartdevicelink/sdl_ios

App Developer Workflow

• Defining in-vehicle use cases and user stories

• Connecting an app and experimentation

Example Use Case

• A coffee shop has an application where users
purchase their coffee and can have it ready for pick
up when they arrive

• How can we improve this experience?

Assumption
Order coffee in-

app Get in car Drive to coffee
shop

Pick up coffee

The experience we want

Order coffee in-
carGet in car Drive to coffee

shop

Pick up coffee

in app vs in car
1. Get phone out

2. Unlock phone

3. Find coffee app

4. Navigate to order
screen

5. Confirm order

1. Phone connects
automatically

2. App connects
automatically

3. App recognizes you’re in
the car at a time when
you normally get coffee

4. Alert asks if you’d like to
place your usual order

5. You say yes

Experimenting with SDL
• This user experience can go beyond the simple

user flow we’ve described

• Relevant APIs

• SendLocation to navigate user to coffee shop

• Alert to ask user if they’d like to order

• SoftButtons to allow user to choose from favorites

Core

• github.com/smartdevicelink/sdl_core

• This is the component embedded in the vehicle

• It is the middleware between your HMI and the
connected application

http://github.com/smartdevicelink/sdl_core

Core Configuration
• https://github.com/smartdevicelink/sdl_core/blob/master/

CMakeLists.txt

• EXTENDED_MEDIA_MODE: support for video streaming
capabilities

• BUILD_BT_SUPPORT: include the default bluetooth transport

• BUILD_USB_SUPPORT: include the default AOA transport

• ENABLE_LOG: view logs in console

• BUILD_TESTS: enable unit tests with `make test`

https://github.com/smartdevicelink/sdl_core/blob/master/CMakeLists.txt

Other Configurable Options

• https://github.com/smartdevicelink/sdl_core/blob/
master/src/appMain/smartDeviceLink.ini

• A host of runtime configurations for SDL

• Enable/Disable policies

• Video Streaming configuration

• Request rate limiting and timeout parameters

https://github.com/smartdevicelink/sdl_core/blob/master/src/appMain/smartDeviceLink.ini

Transport Adapters
• The first major responsibility of an OEM integrating

SDL Core

• The abstraction between your vehicle’s hardware
transport (USB, BT, iAP) and SDL Core

• SDL ships with BT and USB transports but your
drivers may be different on your hardware

• https://smartdevicelink.com/guides/core/transport-
manager-programming/

SDL HMI
• The second major OEM responsibility

• This is how the driver interacts with SDL applications
connected to your vehicle

• SDL uses templates to display information coming from
applications

• The HMI implementing a request/response/notification
communication with SDL over WebSocket to send and
receive information about the current state of the
application and to notify SDL of user interaction with the
HMI in the vehicle

Connecting with WebSocket

let url = “ws://localhost:8087”

var socket = new WebSocket(url)

socket.onopen = function (evt) {

 registerComponents(socket)

}

ws://localhost:8087

Registering Components
registerComponents() {

 var JSONMessage = {

 “jsonrpc”: “2.0”,

 “id”: -1,

 “method”: “MB.registerComponent”,

 “params”: {

 “componentName”: “UI”

 }

 }

 …

}

Simple Messaging Format
// SDL takes care of registration of apps entirely, all you need to
know is that there are apps (and handle RPCs in general)

handleRpc(rpc) {

 let methodName = rpc.method.split(“.”)[1]

 switch(methodName) {

 case “UpdateAppList”:

 updateAppList(rpc.params.applications)

 }

}

Communicate User Actions
to SDL

// user selects an app we just send..

static OnAppActivatedNotification(appID) {

 return ({

 “jsonrpc”: “2.0”,

 “method”: “BasicCommunication.OnAppActivated”,

 “params”: {“appID”: appID}

 })

}

Templates
• Suggest to OEMs to support a variety of templates

under the predefinedLayouts enum set by the app
using SetDisplayLayout

• Templates include text fields, graphics, soft
buttons, and subscribe able buttons

• Templates enable additional use cases for app
developers

Use Case - Contacts App

• An application would like to allow a user to

• Search for favorite contacts

• Display info about a contact

• Call the contact

Template 1
TEXT_AND_SOFTBUTTONS_WITH_GRAPHIC

Displaying the contacts

• Some apps might use the menu and addCommand
so the user can press menu to view contacts in a
list view

• Another way is to use another template!

Template 2
TILES_ONLY

Templates don’t have to be
static

• Consider: a media application being used

• Corner Case: Artwork is not available

• Bad: Have an empty square where an image
should be

• Option: Dynamic templates - accommodate what’s
available

Server

• Enable cloud management of Policies

• Third major OEM responsibility

• Simple JSON format, optional encryption

• Livio Reference Implementation
(policies.smartdevicelink.com)

http://policies.smartdevicelink.com

How Policies Work
• Applications receive an AppId

• OEM Server is configured to associate the AppId with RPC and
data permissions

• Head Unit triggers a policy table update for unknown AppIds, after
x ignition cycles, etc.

• Every RPC is checked against the latest policy table for permission

• AppIds can be revoked and reissued

• You ship SDL with a preloaded policy table build/src/appMain/
sdl_preloaded_pt.json which is loaded on first run

Policy Table Sections
• Module Config - Runtime config for policies

• Functional Grouping - Related Groups of RPCs to
be referenced in permissions

• Consumer Friendly Messages - Text strings
localized for SDL

• App Policies - Permissions definitions for
applications

Policies Example
"app_policies": { // The section

 "default": { // Default permissions for all apps

 "keep_context": false, // Apps cannot persist alerts

 "steal_focus": false, // Apps cannot force full screen

 "priority": “NONE", // Apps have no priority

 "default_hmi": “NONE", // Apps default to no HMI status

 "groups": [// union of groups create policies

 “Base-4" // The group of RPCs allowed by default

]

 }

}

Policies Example Cont.
"Base-4": { // The Base-4 functional group

 "rpcs": { // Base-4 consists of the following rpcs

 "AddCommand": { // Apps with Base-4 permission can use AddCommand

 "hmi_levels": [// In the following HMI states

 "BACKGROUND",

 "FULL",

 "LIMITED"

]

 },

 "AddSubMenu": { // Apps with Base-4 permission can use AddSubMenu

 "hmi_levels": [// In the following HMI states

 "BACKGROUND",

 "FULL",

 "LIMITED"

Tools

• RPC Builder - iOS app to build messages manually
to send to core, great for testing

• sdl_hmi - sample SDL hmi that we use for testing
but you can use for experimenting as well

• Relay App iOS

The problem

• Getting logs in Xcode console requires a usb
connection to the debugger

• Connecting to AppLink with an iOS app requires a
usb connection to SYNC

• Therefore - you can’t log and connect at the same
time

Relay App (Solution)

• https://github.com/smartdevicelink/relay_app_ios

• Connect relay app to SYNC over usb

• Connect your app to Xcode over usb

• Connect relay app to SDL via tcp with provided IP
address on relay app screen

https://github.com/smartdevicelink/relay_app_ios

Resources

• There’s a lot of information, SDL is a whole
ecosystem

• This document is a good overview but..

smartdevicelink.com

http://smartdevicelink.com

Global Search

API Reference

Guides and Tutorials

Open Source
Documentation!

https://github.com/smartdevicelink/sdl_hmi_integration_guidelines
https://github.com/smartdevicelink/sdl_ios_guides

https://github.com/smartdevicelink/sdl_core_guides

https://github.com/smartdevicelink/sdl_hmi_integration_guidelines
https://github.com/smartdevicelink/sdl_ios_guides
https://github.com/smartdevicelink/sdl_core_guides

SDL Slack Channel

Thank you

