SMACK Architectures

Building data processing platforms with
Spark, Mesos, Akka, Cassandra and Kafka

Anton Kirillov Big Data AW Meetup
Sep 2015

Who is this guy?

Scala programmer

Focused on distributed systems

Building data platforms with SMACK/Hadoop
Ph.D. in Computer Science

Big Data engineer/consultant at Big Data AB
e Currently at Ooyala Stockholm (Videoplaza AB)
e Working with startups

Roadmap

e SMACK stack overview

e Storage layer layout

e Fixing NoSQL limitations

e Cluster resource management

e Reliable scheduling and execution
e Data ingestion options

e Preparing for failures

SMACK Stack

SpcmﬁgZ

AVAVA
AVAVAVA
VAVAVAY

VAVAY

MESOS

A akka

Cassandra

§g kafka

Spark - fast and general engine for distributed, large-scale data
processing

Mesos - cluster resource management system that provides efficient
resource isolation and sharing across distributed applications

Akka - a toolkit and runtime for building highly concurrent, distributed,
and resilient message-driven applications on the JVM

Cassandra - distributed, highly available database designed to handle
large amounts of data across multiple datacenters

Kafka - a high-throughput, low-latency distributed messaging system
designed for handling real-time data feeds

Storage Layer: Cassandra

optimized for heavy write
loads

configurable CA (CAP)
linearly scalable
XDCR support

easy cluster resizing and
inter-DC data migration

Cassandra Data Model

CREATE TABLE campaign(
id uuid,
year int,
month int,
day int,
views bigint,
clicks bigint,
PRIMARY KEY (id, year, month, day)

);

nested sorted map
should be optimized for
read queries

data is distributed across

nodes by partition key

INSERT INTO campaign(id, year, month, day, views, clicks)

VALUES(40b08953-a..,2015, 9, 10, 1000, 42);

SELECT views, clicks FROM campaign

WHERE id=40b68953-a.. and year=2015 and month>8;

Spark/Cassandra Example

CREATE TABLE event(e calculate total views per
id uuid,
ad_id uuid,
campaign uuid,
ts bigint,
type text,
PRIMARY KEY(id)

campaign for given month

for all campaigns

val sc = new SparkContext(conf)
case class Event(id: UUID, ad_id: UUID, campaign: UUID, ts: Long, “type : String)

sc.cassandraTable[Event]("keyspace", "event")
.filter(e => e. type == "view" && checkMonth(e.ts))
.map(e => (e.campaign, 1))
.reduceByKey(_ + _)
.collect()

Naive Lambda example with Spark SQL

case class CampaignReport(id: String, views: Long, clicks: Long)

sql("""SELECT campaign.id as id, campaign.views as views,
campaign.clicks as clicks, event.type as type
FROM campaign
JOIN event ON campaign.id = event.campaign
""").rdd
.groupBy(row => row.getAs[String]("id"))
.map{ case (id, rows) =>
val views = rows.head.getAs[Long]("views"
val clicks = rows.head.getAs[Long]("clicks")

val res = rows.groupBy(row => row.getAs[String]("type")).mapValues(_.size)
CampaignReport(id, views = views + res("view"), clicks = clicks + res("click"))

} .saveToCassandra(“keyspace”, “campaign_report”)

Let's take a step back: Spark Basics

RDD objects Spark Client Task Scheduler Worker
‘ rdd1 ’ ‘ rdd2 ‘
’ Threads
I — Cluster —
474’ Tasks Manager Task Block Manager
>
<
rdd1.join(rdd?2)
.groupBy(...)
filter(...)
e RDD operations(transformations and actions) form DAG | U; % |
e DAG is split into stages of tasks which are then submitted to cluster manager ' " = “oowe 5
e stages combine tasks which don’t require shuffling/repartitioning L > f - -
e tasks run on workers and results then return to client ‘ sty | !

Architecture of Spark/Cassandra Clusters

? Separate Write & Analytics:

e clusters can be scaled
independently

e datais replicated by
Cassandra asynchronously

% % e Analytics has different

cassandra — A cassandra Read/Write load patterns

Write-Heavy (5 | () Analytics

e Analytics contains additional
data and processing results

e Spark resource impact
limited to only one DC

To fully facilitate Spark-C* connector data locality awareness,
Spark workers should be collocated with Cassandra nodes 10

Spark Applications Deployment Revisited

Driver Program

SparkContext

_—

Cluster Manager

Worker Node

Executor

Cache

Task

Task

\

[\]

—¥| | Task

Worker Node

A 4

Executor

Cache

Task

Cluster Manager:
e Spark Standalone
e YARN

e Mesos

11

Managing Cluster Resources: Mesos

33% 100%

22% 66.667%

11%
0%

EEREE Y

33%
22%
11%

0%

0%
33%
22%

t 11%

0%

image source: http://www.slideshare.net/caniszczyk/apache-mesos-at-twitter-texas-linuxfest-2014

heterogenous workloads
full cluster utilization

static vs. dynamic resource
allocation

fault tolerance and disaster
recovery

single resource view at
datacenter level

http://www.slideshare.net/caniszczyk/apache-mesos-at-twitter-texas-linuxfest-2014

Mesos Architecture Overview

A

ZooKeeper

E quorum
Framework
Scheduler
v v
-« PTS
25 % Master %54 Master
55 LEADER hsﬁsr NDBY
—a —a —a
<k P L 4) 1"4)
I:U:I Slave I:U:I Slave I:u:: Slave
A A A
N\ N\ N\
Executor Executor Executor
'Task | Task | 'Task | Task | 'Task | Task |
=) (A=) (A= =)

leader election and
service discovery via
ZooKeeper

slaves publish available
resources to master

master sends resource
offers to frameworks

scheduler replies with
tasks and resources
needed per task

master sends tasks to
slaves

13

Bringing Spark, Mesos and Cassandra Together

Deployment example

ax
|]
P
as Slave

e Mesos Masters and
ZooKeepers collocated

e Mesos Slaves and Cassandra
nodes collocated to enforce
better data locality for Spark

I
I
I
I
I
Spark Executor |
i
I
I
|
|

g

|
i .
I

| @‘ Node]
\

cassandra

'
.

e Spark binaries deployed to all
worker nodes and spark-env is
configured

Master Master
STANDBY STANDBY

o
e Spark Executor JAR uploaded %5 Slave

to S3

Spark Executor

|
|
|
|
!
|
(ras) (rasi] | |l
|
|
|
A

Invocation example

__cassandra

I

I

|

It @g
spark-submit -class io.datastrophic.SparkJob /etc/jobs/spark-jobs.jar |\ Node]

Marathon

©) MARATHON Apps Deployments

Apps » /spark-log-uploader

/spark-log-uploader s

Tasks Configuration

Current Version

Command

Constraints
Container
CPUs
Environment
Executor
Instances
Memory

Disk Space
Ports

Backoff Factor
Backoff

Max Launch Delay
URIs

Version

About Docs #

Restart App || Dty A

U Refresh

spark-submit --class io.datastrophic.S3Cassandral.oaderJob --executor-memory 4G —
driver-memory 1G /datastrophic/jars/spark-uploader.jar --bucket events —prefix 2015/*/*.gz --host

172.31.0.0 --keyspace events —table raw_events

Unspecified
Unspecified

1

Unspecified
Unspecified

: |

512 MB

omMB

10002

1.15

1 seconds
3600 seconds
Unspecified
2015-09-08T20:13:09.370Z

long running tasks
execution

HA mode with ZooKeeper
Docker executor

REST API

Chronos

e distributed cron

e HA mode with ZooKeeper
e supports graphs of jobs

e sensitive to network failures

NAME
Nightly Event Log Compaction

DESCRIPTION
Job for compaction of previous day' Kinesis logs into one big file (S3)

COMMAND

/datastrophic/scripts/s3-log-compactor.sh kinesis.log merged.events
/mnt/datadir/s3_tmp

OWNER(S) LAST SUCCESS # SUCCESS

anton@bigdata.se none 0

OWNER NAME LAST ERROR # ERROR
none 0

SCHEDULE

R/2015-09-09T@0: 15: 88Z/PT24H

JOB RUNTIME (PERCENTILES)
50th 3.83 minutes 75th 3.983 minutes 95th 3.93 minutes
oath 3.93 minutes

More Mesos frameworks

e Hadoop

e (assandra

o Kafka

e Myriad: YARN on Mesos
e Storm

e Samza

Data ingestion: endpoints to consume the data

e o)

Endpoint requirements:
e high throughput
e resiliency
e easy scalability
e back pressure

18

Akka features

class JsonParserActor extends Actor {
def receive = {
case s: String => Try(Json.parse(s).as[Event]) match {
case Failure(ex) => log.error(ex)
case Success(event) => sender ! event
}
}
}

class HttpActor extends Actor {
def receive = {
case req: HttpRequest =>
system.actorOf (Props[JsonParserActor]) ! req.body
case e: Event =>
system.actorOf(Props[CassandraWriterActor]) ! e

actor model
implementation for JVM
message-based and
asynchronous
no shared mutable state
easy scalability from one
process to cluster of
NEIES
actor hierarchies with
parental supervision
not only concurrency
framework:

o akka-http

o akka-streams

o akka-persistence

Writing to Cassandra with Akka

class CassandraWriterActor extends Actor with ActorLogging {

//for demo purposes, session initialized here
val session = Cluster.builder()
.addContactPoint("cassandra.host")
.build()
.connect()

override def receive: Receive = {

case event: Event =>
val statement = new SimpleStatement(event.createQuery)

.setConsistencylLevel(ConsistencylLevel.QUORUM)

Try(session.execute(statement)) match {
case Failure(ex) => //error handling code
case Success => sender ! WriteSuccessfull

}

Cassandra meets Batch Processing

e writing raw data (events) to Cassandra with Akka is easy

e but computation time of aggregations/rollups will grow with
amount of data

e Cassandra is still designed for fast serving but not batch
processing, so pre-aggregation of incoming data is needed

e actors are not suitable for performing aggregation due to
stateless design model

e micro-batches partially solve the problem

e reliable storage for raw data is still needed

Kafka: distributed commit log

Akka —>/Kafka Cluster

—i 9
—1 |
o=}

e pre-aggregation of incoming data
e consumers read data in batches
e available as Kinesis on AWS

Publishing to Kafka with Akka Http

val config = new ProducerConfig(KafkaConfig())
lazy val producer = new KafkaProducer[A, A](config)
val topic = “raw_events”

val routes: Route = {
post{
decodeRequest{
entity(as[String]){ str =>
JsonParser.parse(str).validate[Event] match {
case s: JsSuccess[String] => producer.send(new KeyedMessage(topic, str))
case e: JsError => BadRequest -> JsError.toFlatJson(e).toString()

object AkkaHttpMicroservice extends App with Service {
Http().bindAndHandle(routes, config.getString("http.interface"), config.getInt("http.

port"))
}

Spark Streaming

Kafka e variety of data sources

Flume J\Z | HDFs | |
HDFS Spark . >[omabmes | ® Atleastonce semantics
ZeroMQ Streaming

Twitter

(Dashboards | e exactly-once semantics

available with Kafka Direct

and idempotent storage

input data batches of batches of
stream Spark input data Spark processed data

Streaming Engine

24

Spark Streaming: Kinesis example

val ssc = new StreamingContext(conf, Seconds(10))

val kinesisStream = KinesisUtils.createStream(ssc, appName, streamName,
endpointURL, regionName, InitialPositionInStream.LATEST,
Duration(checkpointInterval), StoragelLevel.MEMORY_ONLY)

}

//transforming given stream to Event and saving to C*
kinesisStream.map(JsonUtils.byteArrayToEvent)
.saveToCassandra(keyspace, table)

ssc.start()
ssc.awaitTermination()

Designing for Failure: Backups and Patching

Akka
broker

QQ Backup W Restore

}—)KKafka Cluster

> Spc:r'l2Z N

Aka —> - Streaming
s (o)

be prepared for failures and broken data
design backup and patching strategies upfront
idempotece should be enforced

26

Restoring backup from S3

val sc = new SparkContext(conf)

sc.textFile(s"s3n://bucket/2015/*/*.gz")
.map(s => Try(JsonUtils.stringToEvent(s)))
.filter(_.isSuccess).map(_.get)
.saveToCassandra(config.keyspace, config.table)

The big picture

s

Marathon

Long-running Apps/Jobs

Spoﬁzz

Streaming

A

aggregation and
reporting jobs, periodic
compaction etc.

Al

/ Chronos scheduled \)

=

/

~

HDFS/S3

4

28

So what SMACK is

e concise toolbox for wide variety of data processing scenarios

e Dbattle-tested and widely used software with large communities

e easy scalability and replication of data while preserving low latencies
e unified cluster management for heterogeneous loads

e single platform for any kind of applications

e implementation platform for different architecture designs

e really short time-to-market (e.g. for MVP verification)

Questions

https://twitter.com/antonkirillov
http://datastrophic.io
https://twitter.com/antonkirillov

