
SMACK Architectures
Building data processing platforms with

Spark, Mesos, Akka, Cassandra and Kafka

Anton Kirillov Big Data AW Meetup
Sep 2015

Who is this guy?

● Scala programmer
● Focused on distributed systems
● Building data platforms with SMACK/Hadoop
● Ph.D. in Computer Science

● Big Data engineer/consultant at Big Data AB
● Currently at Ooyala Stockholm (Videoplaza AB)
● Working with startups

2

Roadmap

● SMACK stack overview

● Storage layer layout

● Fixing NoSQL limitations

● Cluster resource management

● Reliable scheduling and execution

● Data ingestion options

● Preparing for failures
3

SMACK Stack
● Spark - fast and general engine for distributed, large-scale data

processing

● Mesos - cluster resource management system that provides efficient
resource isolation and sharing across distributed applications

● Akka - a toolkit and runtime for building highly concurrent, distributed,
and resilient message-driven applications on the JVM

● Cassandra - distributed, highly available database designed to handle
large amounts of data across multiple datacenters

● Kafka - a high-throughput, low-latency distributed messaging system
designed for handling real-time data feeds

4

Storage Layer: Cassandra

● optimized for heavy write
loads

● configurable CA (CAP)

● linearly scalable

● XDCR support

● easy cluster resizing and
inter-DC data migration

5

Cassandra Data Model

● nested sorted map

● should be optimized for

read queries

● data is distributed across

nodes by partition key

CREATE TABLE campaign(
 id uuid,
 year int,
 month int,
 day int,
 views bigint,
 clicks bigint,
 PRIMARY KEY (id, year, month, day)
);

INSERT INTO campaign(id, year, month, day, views, clicks)
VALUES(40b08953-a…,2015, 9, 10, 1000, 42);

SELECT views, clicks FROM campaign
WHERE id=40b08953-a… and year=2015 and month>8; 6

Spark/Cassandra Example

● calculate total views per

campaign for given month

for all campaigns

CREATE TABLE event(
 id uuid,
 ad_id uuid,
 campaign uuid,
 ts bigint,
 type text,
 PRIMARY KEY(id)
);

val sc = new SparkContext(conf)

case class Event(id: UUID, ad_id: UUID, campaign: UUID, ts: Long, `type`: String)

sc.cassandraTable[Event]("keyspace", "event")
 .filter(e => e.`type` == "view" && checkMonth(e.ts))
 .map(e => (e.campaign, 1))
 .reduceByKey(_ + _)
 .collect() 7

Naive Lambda example with Spark SQL
case class CampaignReport(id: String, views: Long, clicks: Long)

sql("""SELECT campaign.id as id, campaign.views as views,
 campaign.clicks as clicks, event.type as type

 FROM campaign
 JOIN event ON campaign.id = event.campaign
 """).rdd
.groupBy(row => row.getAs[String]("id"))
.map{ case (id, rows) =>
 val views = rows.head.getAs[Long]("views")
 val clicks = rows.head.getAs[Long]("clicks")

 val res = rows.groupBy(row => row.getAs[String]("type")).mapValues(_.size)
 CampaignReport(id, views = views + res("view"), clicks = clicks + res("click"))

}.saveToCassandra(“keyspace”, “campaign_report”)
8

Let’s take a step back: Spark Basics

● RDD operations(transformations and actions) form DAG
● DAG is split into stages of tasks which are then submitted to cluster manager
● stages combine tasks which don’t require shuffling/repartitioning
● tasks run on workers and results then return to client 9

Architecture of Spark/Cassandra Clusters

Separate Write & Analytics:

● clusters can be scaled
independently

● data is replicated by
Cassandra asynchronously

● Analytics has different
Read/Write load patterns

● Analytics contains additional
data and processing results

● Spark resource impact
limited to only one DC

To fully facilitate Spark-C* connector data locality awareness,
Spark workers should be collocated with Cassandra nodes 10

Spark Applications Deployment Revisited

Cluster Manager:

● Spark Standalone

● YARN

● Mesos

11

Managing Cluster Resources: Mesos

● heterogenous workloads

● full cluster utilization

● static vs. dynamic resource
allocation

● fault tolerance and disaster
recovery

● single resource view at
datacenter levelimage source: http://www.slideshare.net/caniszczyk/apache-mesos-at-twitter-texas-linuxfest-2014

12

http://www.slideshare.net/caniszczyk/apache-mesos-at-twitter-texas-linuxfest-2014

Mesos Architecture Overview

● leader election and
service discovery via
ZooKeeper

● slaves publish available
resources to master

● master sends resource
offers to frameworks

● scheduler replies with
tasks and resources
needed per task

● master sends tasks to
slaves

13

Bringing Spark, Mesos and Cassandra Together
Deployment example

● Mesos Masters and
ZooKeepers collocated

● Mesos Slaves and Cassandra
nodes collocated to enforce
better data locality for Spark

● Spark binaries deployed to all
worker nodes and spark-env is
configured

● Spark Executor JAR uploaded
to S3

Invocation example

spark-submit --class io.datastrophic.SparkJob /etc/jobs/spark-jobs.jar
14

Marathon
● long running tasks

execution

● HA mode with ZooKeeper

● Docker executor

● REST API

15

Chronos

● distributed cron

● HA mode with ZooKeeper

● supports graphs of jobs

● sensitive to network failures
16

More Mesos frameworks

● Hadoop

● Cassandra

● Kafka

● Myriad: YARN on Mesos

● Storm

● Samza

17

Data ingestion: endpoints to consume the data

Endpoint requirements:
● high throughput
● resiliency
● easy scalability
● back pressure 18

Akka features

class JsonParserActor extends Actor {
 def receive = {
 case s: String => Try(Json.parse(s).as[Event]) match {
 case Failure(ex) => log.error(ex)
 case Success(event) => sender ! event
 }
 }
}

class HttpActor extends Actor {
 def receive = {
 case req: HttpRequest =>
 system.actorOf(Props[JsonParserActor]) ! req.body
 case e: Event =>
 system.actorOf(Props[CassandraWriterActor]) ! e
 }
}

● actor model
implementation for JVM

● message-based and
asynchronous

● no shared mutable state
● easy scalability from one

process to cluster of
machines

● actor hierarchies with
parental supervision

● not only concurrency
framework:
○ akka-http
○ akka-streams
○ akka-persistence

19

Writing to Cassandra with Akka
class CassandraWriterActor extends Actor with ActorLogging {

 //for demo purposes, session initialized here
 val session = Cluster.builder()
 .addContactPoint("cassandra.host")
 .build()
 .connect()

 override def receive: Receive = {
 case event: Event =>
 val statement = new SimpleStatement(event.createQuery)
 .setConsistencyLevel(ConsistencyLevel.QUORUM)

 Try(session.execute(statement)) match {
 case Failure(ex) => //error handling code
 case Success => sender ! WriteSuccessfull
 }
 }
} 20

Cassandra meets Batch Processing

● writing raw data (events) to Cassandra with Akka is easy

● but computation time of aggregations/rollups will grow with

amount of data

● Cassandra is still designed for fast serving but not batch

processing, so pre-aggregation of incoming data is needed

● actors are not suitable for performing aggregation due to

stateless design model

● micro-batches partially solve the problem

● reliable storage for raw data is still needed
21

Kafka: distributed commit log

● pre-aggregation of incoming data
● consumers read data in batches
● available as Kinesis on AWS

22

Publishing to Kafka with Akka Http
val config = new ProducerConfig(KafkaConfig())
lazy val producer = new KafkaProducer[A, A](config)
val topic = “raw_events”

val routes: Route = {
 post{
 decodeRequest{
 entity(as[String]){ str =>
 JsonParser.parse(str).validate[Event] match {
 case s: JsSuccess[String] => producer.send(new KeyedMessage(topic, str))
 case e: JsError => BadRequest -> JsError.toFlatJson(e).toString()
 }
 }
 }
 }
}

object AkkaHttpMicroservice extends App with Service {
 Http().bindAndHandle(routes, config.getString("http.interface"), config.getInt("http.
port"))
}

23

Spark Streaming

24

● variety of data sources

● at-least-once semantics

● exactly-once semantics

available with Kafka Direct

and idempotent storage

Spark Streaming: Kinesis example

val ssc = new StreamingContext(conf, Seconds(10))

val kinesisStream = KinesisUtils.createStream(ssc,appName,streamName,
 endpointURL,regionName, InitialPositionInStream.LATEST,
 Duration(checkpointInterval), StorageLevel.MEMORY_ONLY)
}

//transforming given stream to Event and saving to C*
kinesisStream.map(JsonUtils.byteArrayToEvent)

.saveToCassandra(keyspace, table)

ssc.start()
ssc.awaitTermination()

25

Designing for Failure: Backups and Patching

● be prepared for failures and broken data
● design backup and patching strategies upfront
● idempotece should be enforced 26

Restoring backup from S3

val sc = new SparkContext(conf)

sc.textFile(s"s3n://bucket/2015/*/*.gz")
 .map(s => Try(JsonUtils.stringToEvent(s)))
 .filter(_.isSuccess).map(_.get)
 .saveToCassandra(config.keyspace, config.table)

27

The big picture

28

So what SMACK is

● concise toolbox for wide variety of data processing scenarios

● battle-tested and widely used software with large communities

● easy scalability and replication of data while preserving low latencies

● unified cluster management for heterogeneous loads

● single platform for any kind of applications

● implementation platform for different architecture designs

● really short time-to-market (e.g. for MVP verification)
29

Questions

@antonkirillov datastrophic.io
30

https://twitter.com/antonkirillov
http://datastrophic.io
https://twitter.com/antonkirillov

