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Who is this guy?

● Scala programmer
● Focused on distributed systems
● Building data platforms with SMACK/Hadoop
● Ph.D. in Computer Science

● Big Data engineer/consultant at Big Data AB
● Currently at Ooyala Stockholm (Videoplaza AB)
● Working with startups
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Roadmap

● SMACK stack overview

● Storage layer layout

● Fixing NoSQL limitations

● Cluster resource management

● Reliable scheduling and execution

● Data ingestion options  

● Preparing for failures
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SMACK Stack
● Spark - fast and general engine for distributed, large-scale data 

processing

● Mesos - cluster resource management system that provides efficient 
resource isolation and sharing across distributed applications

● Akka - a toolkit and runtime for building highly concurrent, distributed, 
and resilient message-driven applications on the JVM

● Cassandra - distributed, highly available database designed to handle 
large amounts of data across multiple datacenters

● Kafka - a high-throughput, low-latency distributed messaging system 
designed for handling real-time data feeds
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Storage Layer: Cassandra

● optimized for heavy write 
loads

● configurable CA (CAP)

● linearly scalable

● XDCR support

● easy cluster resizing and 
inter-DC data migration
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Cassandra Data Model

● nested sorted map

● should be optimized for 

read queries

● data is distributed across 

nodes by partition key

CREATE TABLE campaign(
  id uuid,
  year int,
  month int,
  day int,
  views bigint,
  clicks bigint,
  PRIMARY KEY (id, year, month, day)
);

INSERT INTO campaign(id, year, month, day, views, clicks)
VALUES(40b08953-a…,2015, 9, 10, 1000, 42);

SELECT views, clicks FROM campaign
WHERE id=40b08953-a… and year=2015 and month>8; 6



Spark/Cassandra Example

● calculate total views per 

campaign for given month 

for all campaigns

CREATE TABLE event(
  id uuid,
  ad_id uuid,
  campaign uuid,
  ts bigint,
  type text,
  PRIMARY KEY(id)
);

val sc = new SparkContext(conf)

case class Event(id: UUID, ad_id: UUID, campaign: UUID, ts: Long, `type`: String)

sc.cassandraTable[Event]("keyspace", "event")
  .filter(e => e.`type` == "view" && checkMonth(e.ts))
  .map(e => (e.campaign, 1))
  .reduceByKey(_ + _)
  .collect() 7



Naive Lambda example with Spark SQL
case class CampaignReport(id: String, views: Long, clicks: Long)

sql("""SELECT campaign.id as id, campaign.views as views, 
   campaign.clicks as clicks, event.type as type

        FROM campaign
        JOIN event ON campaign.id = event.campaign
    """).rdd
.groupBy(row => row.getAs[String]("id"))
.map{ case (id, rows) =>
   val views = rows.head.getAs[Long]("views")
   val clicks = rows.head.getAs[Long]("clicks")

   val res = rows.groupBy(row => row.getAs[String]("type")).mapValues(_.size)
   CampaignReport(id, views = views + res("view"), clicks = clicks + res("click"))

}.saveToCassandra(“keyspace”, “campaign_report”)
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Let’s take a step back: Spark Basics

● RDD operations(transformations and actions) form DAG
● DAG is split into stages of tasks which are then submitted to cluster manager
● stages combine tasks which don’t require shuffling/repartitioning
● tasks run on workers and results then return to client 9



Architecture of Spark/Cassandra Clusters

Separate Write & Analytics:

● clusters can be scaled 
independently

● data is replicated by 
Cassandra asynchronously

● Analytics has different 
Read/Write load patterns 

● Analytics contains additional 
data and processing results

● Spark resource impact 
limited to only one DC

To fully facilitate Spark-C* connector data locality awareness, 
Spark workers should be collocated with Cassandra nodes 10



Spark Applications Deployment Revisited

Cluster Manager:

● Spark Standalone

● YARN

● Mesos
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Managing Cluster Resources: Mesos

● heterogenous workloads

● full cluster utilization

● static vs. dynamic resource 
allocation

● fault tolerance and disaster 
recovery

● single resource view at 
datacenter levelimage source: http://www.slideshare.net/caniszczyk/apache-mesos-at-twitter-texas-linuxfest-2014
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Mesos Architecture Overview

● leader election and 
service discovery via 
ZooKeeper

● slaves publish available 
resources to master

● master sends resource 
offers to frameworks

● scheduler replies with 
tasks and resources 
needed per task

● master sends tasks to 
slaves
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Bringing Spark, Mesos and Cassandra Together
Deployment example

● Mesos Masters and 
ZooKeepers collocated

● Mesos Slaves and Cassandra 
nodes collocated to enforce 
better data locality for Spark

● Spark binaries deployed to all 
worker nodes and spark-env is 
configured

● Spark Executor JAR uploaded 
to S3

Invocation example

spark-submit --class io.datastrophic.SparkJob /etc/jobs/spark-jobs.jar
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Marathon
● long running tasks 

execution

● HA mode with ZooKeeper

● Docker executor

● REST API
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Chronos

● distributed cron

● HA mode with ZooKeeper

● supports graphs of jobs

● sensitive to network failures
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More Mesos frameworks

● Hadoop

● Cassandra

● Kafka

● Myriad: YARN on Mesos

● Storm

● Samza
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Data ingestion: endpoints to consume the data

Endpoint requirements:
● high throughput
● resiliency
● easy scalability
● back pressure 18



Akka features

class JsonParserActor extends Actor {
  def receive = {
    case s: String => Try(Json.parse(s).as[Event]) match {
      case Failure(ex) => log.error(ex)
      case Success(event) => sender ! event
    }
  }
}

class HttpActor extends Actor {
  def receive = {
    case req: HttpRequest => 
      system.actorOf(Props[JsonParserActor]) ! req.body
    case e: Event =>
      system.actorOf(Props[CassandraWriterActor]) ! e
  }
}

● actor model 
implementation for JVM

● message-based and 
asynchronous

● no shared mutable state
● easy scalability from one 

process to cluster of 
machines

● actor hierarchies with 
parental supervision

● not only concurrency 
framework:
○ akka-http
○ akka-streams
○ akka-persistence
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Writing to Cassandra with Akka
class CassandraWriterActor extends Actor with ActorLogging {
  
  //for demo purposes, session initialized here
  val session = Cluster.builder()
    .addContactPoint("cassandra.host")
    .build()
    .connect()

  override def receive: Receive = {
    case event: Event =>
      val statement = new SimpleStatement(event.createQuery)
        .setConsistencyLevel(ConsistencyLevel.QUORUM)

      Try(session.execute(statement)) match {
        case Failure(ex) => //error handling code
        case Success => sender ! WriteSuccessfull
      }
  }
} 20



Cassandra meets Batch Processing

● writing raw data (events) to Cassandra with Akka is easy

● but computation time of aggregations/rollups will grow with 

amount of data

● Cassandra is still designed for fast serving but not batch 

processing, so pre-aggregation of incoming data is needed

● actors are not suitable for performing aggregation due to 

stateless design model

● micro-batches partially solve the problem

● reliable storage for raw data is still needed
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Kafka: distributed commit log

● pre-aggregation of incoming data
● consumers read data in batches
● available as Kinesis on AWS
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Publishing to Kafka with Akka Http
val config = new ProducerConfig(KafkaConfig())
lazy val producer = new KafkaProducer[A, A](config)
val topic = “raw_events”

val routes: Route = {
  post{
    decodeRequest{
      entity(as[String]){ str =>
        JsonParser.parse(str).validate[Event] match {
          case s: JsSuccess[String] => producer.send(new KeyedMessage(topic, str))
          case e: JsError => BadRequest -> JsError.toFlatJson(e).toString()
        }
      }
    }
  }    
}

object AkkaHttpMicroservice extends App with Service {
  Http().bindAndHandle(routes, config.getString("http.interface"), config.getInt("http.
port"))
}
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Spark Streaming
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● variety of data sources

● at-least-once semantics

● exactly-once semantics 

available with Kafka Direct 

and idempotent storage



Spark Streaming: Kinesis example

val ssc = new StreamingContext(conf, Seconds(10))

val kinesisStream = KinesisUtils.createStream(ssc,appName,streamName,
   endpointURL,regionName, InitialPositionInStream.LATEST,     
   Duration(checkpointInterval), StorageLevel.MEMORY_ONLY)
}

//transforming given stream to Event and saving to C*
kinesisStream.map(JsonUtils.byteArrayToEvent)

.saveToCassandra(keyspace, table)

ssc.start()
ssc.awaitTermination()
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Designing for Failure: Backups and Patching

● be prepared for failures and broken data 
● design backup and patching strategies upfront
● idempotece should be enforced 26



Restoring backup from S3

val sc = new SparkContext(conf)

sc.textFile(s"s3n://bucket/2015/*/*.gz")
  .map(s => Try(JsonUtils.stringToEvent(s)))
  .filter(_.isSuccess).map(_.get)
  .saveToCassandra(config.keyspace, config.table)
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The big picture
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So what SMACK is

● concise toolbox for wide variety of data processing scenarios

● battle-tested and widely used software with large communities

● easy scalability and replication of data while preserving low latencies

● unified cluster management for heterogeneous loads

● single platform for any kind of applications

● implementation platform for different architecture designs 

● really short time-to-market (e.g. for MVP verification)
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Questions

@antonkirillov                              datastrophic.io
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