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CHAPTER1
Introduction

Until recently, big data systems have been batch oriented, where data
is captured in distributed filesystems or databases and then pro-
cessed in batches or studied interactively, as in data warehousing
scenarios. Now, exclusive reliance on batch-mode processing, where
data arrives without immediate extraction of valuable information,
is a competitive disadvantage.

Hence, big data systems are evolving to be more stream oriented,
where data is processed as it arrives, leading to so-called fast data
systems that ingest and process continuous, potentially infinite data
streams.

Ideally, such systems still support batch-mode and interactive pro-
cessing, because traditional uses, such as data warehousing, haven’t
gone away. In many cases, we can rework batch-mode analytics to
use the same streaming infrastructure, where the streams are finite
instead of infinite.

In this report I'll begin with a quick review of the history of big data
and batch processing, then discuss how the changing landscape has
fueled the emergence of stream-oriented fast data architectures.
Next, I'll discuss hallmarks of these architectures and some specific
tools available now, focusing on open source options. I'll finish with
a look at an example IoT (Internet of Things) application.




A Brief History of Big Data

The emergence of the Internet in the mid-1990s induced the cre-
ation of data sets of unprecedented size. Existing tools were neither
scalable enough for these data sets nor cost effective, forcing the cre-
ation of new tools and techniques. The “always on” nature of the
Internet also raised the bar for availability and reliability. The big
data ecosystem emerged in response to these pressures.

At its core, a big data architecture requires three components:

1. A scalable and available storage mechanism, such as a dis-
tributed filesystem or database

2. A distributed compute engine, for processing and querying the
data at scale

3. Tools to manage the resources and services used to implement
these systems

Other components layer on top of this core. Big data systems come
in two general forms: so-called NoSQL databases that integrate these
components into a database system, and more general environments
like Hadoop.

In 2007, the now-famous Dynamo paper accelerated interest in
NoSQL databases, leading to a “Cambrian explosion” of databases
that offered a wide variety of persistence models, such as document
storage (XML or JSON), key/value storage, and others, plus a variety
of consistency guarantees. The CAP theorem emerged as a way of
understanding the trade-offs between consistency and availability of
service in distributed systems when a network partition occurs. For
the always-on Internet, it often made sense to accept eventual con-
sistency in exchange for greater availability. As in the original evolu-
tionary Cambrian explosion, many of these NoSQL databases have
fallen by the wayside, leaving behind a small number of databases in
widespread use.

In recent years, SQL as a query language has made a comeback as
people have reacquainted themselves with its benefits, including
conciseness, widespread familiarity, and the performance of mature
query optimization techniques.

But SQL can’t do everything. For many tasks, such as data cleansing
during ETL (extract, transform, and load) processes and complex
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event processing, a more flexible model was needed. Hadoop
emerged as the most popular open source suite of tools for general-
purpose data processing at scale.

Why did we start with batch-mode systems instead of streaming sys-
tems? I think you’ll see as we go that streaming systems are much
harder to build. When the Internet’s pioneers were struggling to
gain control of their ballooning data sets, building batch-mode
architectures was the easiest problem to solve, and it served us well
for a long time.

Batch-Mode Architecture

Figure 1-1 illustrates the “classic” Hadoop architecture for batch-
mode analytics and data warehousing, focusing on the aspects that
are important for our discussion.
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Figure 1-1. Classic Hadoop architecture

In this figure, logical subsystem boundaries are indicated by dashed
rectangles. They are clusters that span physical machines, although
HDFS and YARN (Yet Another Resource Negotiator) services share
the same machines to benefit from data locality when jobs run.
Functional areas, such as persistence, are indicated by the rounded
dotted rectangles.

Data is ingested into the persistence tier, into one or more of the fol-
lowing: HDFS (Hadoop Distributed File System), AWS S3, SQL and
NoSQL databases, and search engines like Elasticsearch. Usually this
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is done using special-purpose services such as Flume for log aggre-
gation and Sqoop for interoperating with databases.

Later, analysis jobs written in Hadoop MapReduce, Spark, or other
tools are submitted to the Resource Manager for YARN, which
decomposes each job into tasks that are run on the worker nodes,
managed by Node Managers. Even for interactive tools like Hive
and Spark SQL, the same job submission process is used when the
actual queries are executed as jobs.

Table 1-1 gives an idea of the capabilities of such batch-mode
systems.

Table 1-1. Batch-mode systems

Metric Sizes and units

Data sizes per job TB to PB
Time between data arrival and processing  Many minutes to hours
Job execution times Minutes to hours

So, the newly arrived data waits in the persistence tier until the next
batch job starts to process it.
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CHAPTER 2
The Emergence of Streaming

Fast-forward to the last few years. Now imagine a scenario where
Google still relies on batch processing to update its search index.
Web crawlers constantly provide data on web page content, but the
search index is only updated every hour.

Now suppose a major news story breaks and someone does a Google
search for information about it, assuming they will find the latest
updates on a news website. They will find nothing if it takes up to an
hour for the next update to the index that reflects these changes.
Meanwhile, Microsoft Bing does incremental updates to its search
index as changes arrive, so Bing can serve results for breaking news
searches. Obviously, Google is at a big disadvantage.

I like this example because indexing a corpus of documents can be
implemented very efficiently and effectively with batch-mode pro-
cessing, but a streaming approach offers the competitive advantage
of timeliness. Couple this scenario with problems that are more
obviously “real time,” like detecting fraudulent financial activity as it
happens, and you can see why streaming is so hot right now.

However, streaming imposes new challenges that go far beyond just
making batch systems run faster or more frequently. Streaming
introduces new semantics for analytics. It also raises new opera-
tional challenges.

For example, suppose I'm analyzing customer activity as a function
of location, using zip codes. I might write a classic GROUP BY query
to count the number of purchases, like the following:




SELECT zip_code, COUNT(*) FROM purchases GROUP BY zip_code;

This query assumes I have all the data, but in an infinite stream, I
never will. Of course, I could always add a WHERE clause that looks at
yesterday’s numbers, for example, but when can I be sure that I've
received all of the data for yesterday, or for any time window I care
about? What about that network outage that lasted a few hours?

Hence, one of the challenges of streaming is knowing when we can
reasonably assume we have all the data for a given context, espe-
cially when we want to extract insights as quickly as possible. If data
arrives late, we need a way to account for it. Can we get the best of
both options, by computing preliminary results now but updating
them later if additional data arrives?

Streaming Architecture

Because there are so many streaming systems and ways of doing
streaming, and everything is evolving quickly, we have to narrow
our focus to a representative sample of systems and a reference
architecture that covers most of the essential features.

Figure 2-1 shows such a fast data architecture.
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Figure 2-1. Fast data (streaming) architecture
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There are more parts in Figure 2-1 than in Figure 1-1, so I've num-
bered elements of the figure to aid in the discussion that follows. I've
also suppressed some of the details shown in the previous figure,
like the YARN box (see number 11). As before, I still omit specific
management and monitoring tools and other possible microservi-

ces.

Let’s walk through the architecture. Subsequent sections will dive

into some of the details:

1. Streams of data arrive into the system over sockets from other

servers within the environment or from outside, such as teleme-
try feeds from IoT devices in the field, social network feeds like
the Twitter “firehose,” etc. These streams are ingested into a dis-
tributed Kafka cluster for scalable, durable, temporary storage.
Kafka is the backbone of the architecture. A Kafka cluster will
usually have dedicated hardware, which provides maximum
load scalability and minimizes the risk of compromised perfor-
mance due to other services misbehaving on the same
machines. On the other hand, strategic colocation of some other
services can eliminate network overhead. In fact, this is how
Kafka Streams works,' as a library on top of Kafka, which also
makes it a good first choice for many stream processing chores
(see number 6).

. REST (Representational State Transfer) requests are usually syn-
chronous, meaning a completed response is expected “now;” but
they can also be asynchronous, where a minimal acknowledg-
ment is returned now and the completed response is returned
later, using WebSockets or another mechanism. The overhead of
REST means it is less common as a high-bandwidth channel for
data ingress. Normally it will be used for administration
requests, such as for management and monitoring consoles
(e.g., Grafana and Kibana). However, REST for data ingress is
still supported using custom microservices or through Kafka
Connect’s REST interface to ingest data into Kafka directly.

. A real environment will need a family of microservices for man-
agement and monitoring tasks, where REST is often used. They
can be implemented with a wide variety of tools. Shown here

1 See also Jay Kreps’s blog post “Introducing Kafka Streams: Stream Processing Made
Simple”.

Streaming Architecture
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are the Lightbend Reactive Platform (RP), which includes Akka,
Play, Lagom, and other tools, and the Go and Node.js ecosys-
tems, as examples of popular, modern tools for implementing
custom microservices. They might stream state updates to and
from Kafka and have their own database instances (not shown).

. Kafka is a distributed system and it uses ZooKeeper (ZK) for

tasks requiring consensus, such as leader election, and for stor-
age of some state information. Other components in the envi-
ronment might also use ZooKeeper for similar purposes.
ZooKeeper is deployed as a cluster with its own dedicated hard-
ware, because its demands for system resources, such as disk
I/0O, would conflict with the demands of other services, such as
Kafka’s. Using dedicated hardware also protects the ZooKeeper
services from being compromised by problems that might occur
in other services if they were running on the same machines.

. Using Kafka Connect, raw data can be persisted directly to

longer-term, persistent storage. If some processing is required
first, such as filtering and reformatting, then Kafka Streams (see
number 6) is an ideal choice. The arrow is two-way because data
from long-term storage can be ingested into Kafka to provide a
uniform way to feed downstream analytics with data. When
choosing between a database or a filesystem, a database is best
when row-level access (e.g., CRUD operations) is required.
NoSQL provides more flexible storage and query options, con-
sistency vs. availability (CAP) trade-offs, better scalability, and
generally lower operating costs, while SQL databases provide
richer query semantics, especially for data warehousing scenar-
ios, and stronger consistency. A distributed filesystem or object
store, such as HDFS or AWS S3, offers lower cost per GB stor-
age compared to databases and more flexibility for data formats,
but they are best used when scans are the dominant access pat-
tern, rather than CRUD operations. Search appliances, like Elas-
ticsearch, are often used to index logs for fast queries.

. For low-latency stream processing, the most robust mechanism

is to ingest data from Kafka into the stream processing engine.
There are many engines currently vying for attention, most of
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which I won't mention here.? Flink and Gearpump provide sim-
ilar rich stream analytics, and both can function as “runners”
for dataflows defined with Apache Beam. Akka Streams and
Kafka Streams provide the lowest latency and the lowest over-
head, but they are oriented less toward building analytics serv-
ices and more toward building general microservices over
streaming data. Hence, they aren’t designed to be as full featured
as Beam-compatible systems. All these tools support distribu-
tion in one way or another across a cluster (not shown), usually
in collaboration with the underlying clustering system, (e.g.,
Mesos or YARN; see number 11). No environment would need
or want all of these streaming engines. We'll discuss later how to
select an appropriate subset. Results from any of these tools can
be written back to new Kafka topics or to persistent storage.
While it’s possible to ingest data directly from input sources into
these tools, the durability and reliability of Kafka ingestion, the
benefits of a uniform access method, etc. make it the best
default choice despite the modest extra overhead. For example,
if a process fails, the data can be reread from Kafka by a restar-
ted process. It is often not an option to requery an incoming
data source directly.

7. Stream processing results can also be written to persistent stor-
age, and data can be ingested from storage, although this impo-
ses longer latency than streaming through Kafka. However, this
configuration enables analytics that mix long-term data and
stream data, as in the so-called Lambda Architecture (discussed
in the next section). Another example is accessing reference
data from storage.

8. The mini-batch model of Spark is ideal when longer latencies
can be tolerated and the extra window of time is valuable for
more expensive calculations, such as training machine learning
models using Spark’s MLIib or ML libraries or third-party libra-
ries. As before, data can be moved to and from Kafka. Spark
Streaming is evolving away from being limited only to mini-
batch processing, and will eventually support low-latency
streaming too, although this transition will take some time.

2 For a comprehensive list of Apache-based streaming projects, see Ian Hellstrom’s article
“An Overview of Apache Streaming Technologies”.
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Efforts are also underway to implement Spark Streaming sup-
port for running Beam dataflows.

9. Similarly, data can be moved between Spark and persistent
storage.

10. If you have Spark and a persistent store, like HDFS and/or a
database, you can still do batch-mode processing and interactive
analytics. Hence, the architecture is flexible enough to support
traditional analysis scenarios too. Batch jobs are less likely to
use Kafka as a source or sink for data, so this pathway is not
shown.

11. All of the above can be deployed to Mesos or Hadoop/YARN
clusters, as well as to cloud environments like AWS, Google
Cloud Environment, or Microsoft Azure. These environments
handle resource management, job scheduling, and more. They
offer various trade-offs in terms of flexibility, maturity, addi-
tional ecosystem tools, etc., which I won’t explore further here.

Let’s see where the sweet spots are for streaming jobs as compared to
batch jobs (Table 2-1).

Table 2-1. Streaming numbers for batch-mode systems
Metric Sizes and units: Batch  Sizes and units: Streaming
Data sizes per job TB to PB MB to TB (in flight)
Time between data arrival and processing Many minutes to hours Microseconds to minutes

Job execution times Minutes to hours Microseconds to minutes

While the fast data architecture can store the same PB data sets, a
streaming job will typically operate on MB to TB at any one time. A
TB per minute, for example, would be a huge volume of data! The
low-latency engines in Figure 2-1 operate at subsecond latencies, in
some cases down to microseconds.

What About the Lambda Architecture?

In 2011, Nathan Marz introduced the Lambda Architecture, a
hybrid model that uses a batch layer for large-scale analytics over all
historical data, a speed layer for low-latency processing of newly
arrived data (often with approximate results) and a serving layer to
provide a query/view capability that unifies the batch and speed
layers.
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The fast data architecture we looked at here can support the lambda
model, but there are reasons to consider the latter a transitional
model.* First, without a tool like Spark that can be used to imple-
ment batch and streaming jobs, you find yourself implementing
logic twice: once using the tools for the batch layer and again using
the tools for the speed layer. The serving layer typically requires cus-
tom tools as well, to integrate the two sources of data.

However, if everything is considered a “stream”—either finite (as in
batch processing) or unbounded—then the same infrastructure
doesn’t just unify the batch and speed layers, but batch processing
becomes a subset of stream processing. Furthermore, we now know
how to achieve the precision we want in streaming calculations, as
we'll discuss shortly. Hence, I see the Lambda Architecture as an
important transitional step toward fast data architectures like the
one discussed here.

Now that we've completed our high-level overview, let’s explore the
core principles required for a fast data architecture.

3 See Jay Kreps’s Radar post, “Questioning the Lambda Architecture”.
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CHAPTER 3
Event Logs and Message Queues

“Everything is a file” is the core, unifying abstraction at the heart of
*nix systems. It’s proved surprisingly flexible and effective as a meta-
phor for over 40 years. In a similar way, “everything is an event log”
is the powerful, core abstraction for streaming architectures.

Message queues provide ideal semantics for managing producers
writing messages and consumers reading them, thereby joining sub-
systems together. Implementations can provide durable storage of
messages with tunable persistence characteristics and other benefits.

Let’s explore these two concepts.

The Event Log Is the Core Abstraction

Logs have been used for a long time as a mechanism for services to
output information about what they are doing, including problems
they encounter. Log entries usually include a timestamp, a notion of
“urgency” (e.g., error, warning, or informational), information about
the process and/or machine, and an ad hoc text message with more
details. Well-structured log messages at appropriate execution points
are proxies for significant events.

The metaphor of a log generalizes to a wide class of data streams,
such as these examples:

Database CRUD transactions
Each insert, update, and delete that changes state is an event.
Many databases use a WAL (write-ahead log) internally to

13



append such events durably and quickly to a file before
acknowledging the change to clients, after which in-memory
data structures and other files with the actual records can be
updated with less urgency. That way, if the database crashes
after the WAL write completes, the WAL can be used to recon-
struct and complete any in-flight transactions once the database
is running again.

Telemetry from IoT devices

Almost all widely deployed devices, including cars, phones, net-
work routers, computers, airplane engines, home automation
devices, medical devices, kitchen appliances, etc., are now capa-
ble of sending telemetry back to the manufacturer for analysis.
Some of these devices also use remote services to implement
their functionality, like Apple’s Siri for voice recognition. Manu-
facturers use the telemetry to better understand how their prod-
ucts are used; to ensure compliance with licenses, laws, and
regulations (e.g., obeying road speed limits); and to detect
anomalous behavior that may indicate incipient failures, so that
proactive action can prevent service disruption.

Clickstreams
How do users interact with a website? Are there sections that
are confusing or slow? Is the process of purchasing goods and
services as streamlined as possible? Which website version leads
to more purchases, “A” or “B”? Logging user activity allows for
clickstream analysis.

State transitions in a process
Automated processes, such as manufacturing, chemical process-
ing, etc., are examples of systems that routinely transition from
one state to another. Logs are a popular way to capture and
propagate these state transitions so that downstream consumers
can process them as they see fit.

Logs also enable two general architecture patterns: ES (event sourc-
ing), and CQRS (command-query responsibility segregation).

The database WAL is an example of event sourcing. It is a record of
all changes (events) that have occurred. The WAL can be replayed
(“sourced”) to reconstruct the state of the database at any point in
time, even though the only state visible to queries in most databases
is the latest snapshot in time. Hence, an event source provides the

14 | Chapter3: Event Logs and Message Queues



ability to replay history and can be used to reconstruct a lost data-
base or replicate one to additional copies.

This approach to replication supports CQRS. Having a separate data
store for writes (“‘commands”) vs. reads (“queries”) enables each one
to be tuned and scaled independently, according to its unique char-
acteristics. For example, I might have few high-volume writers, but a
large number of occasional readers. Also, if the write database goes
down, reading can continue, at least for a while. Similarly, if reading
becomes unavailable, writes can continue. The trade-off is accepting
eventually consistency, as the read data stores will lag the write data
stores.!

Hence, an architecture with event logs at the core is a flexible archi-
tecture for a wide spectrum of applications.

Message Queues Are the Core Integration Tool

Message queues are first-in, first-out (FIFO) data structures, which
is also the natural way to process logs. Message queues organize data
into user-defined topics, where each topic has its own queue. This
promotes scalability through parallelism, and it also allows produc-
ers (sometimes called writers) and consumers (readers) to focus on
the topics of interest. Most implementations allow more than one
producer to insert messages and more than one consumer to extract
them.

Reading semantics vary with the message queue implementation. In
most implementations, when a message is read, it is also deleted
from the queue. The queue waits for acknowledgment from the con-
sumer before deleting the message, but this means that policies and
enforcement mechanisms are required to handle concurrency cases
such as a second consumer polling the queue before the acknowl-
edgment is received. Should the same message be given to the sec-
ond consumer, effectively implementing at least once behavior (see
“At Most Once. At Least Once. Exactly Once” on page 16)? Or
should the next message in the queue be returned instead, while
waiting for the acknowledgment for the first message? What hap-

1 Jay Kreps doesn’t use the term CQRS, but he discusses the advantages and disadvan-
tages in practical terms in his Radar post, “Why Local State Is a Fundamental Primitive
in Stream Processing”.
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pens if the acknowledgment for the first message is never received?
Presumably a timeout occurs and the first message is made available
for a subsequent consumer. But what happens if the messages need
to be processed in the same order in which they appear in the
queue? In this case the consumers will need to coordinate to ensure
proper ordering. Ugh...

At Most Once. At Least Once. Exactly Once.

In a distributed system, there are many things that can go wrong
when passing information between processes. What should I do if a
message fails to arrive? How do I know it failed to arrive in the first
place? There are three behaviors we can strive to achieve.

At most once (i.e., “fire and forget”) means the message is sent, but
the sender doesn’t care if it’s received or lost. If data loss is not a
concern, which might be true for monitoring telemetry, for exam-
ple, then this model imposes no additional overhead to ensure mes-
sage delivery, such as requiring acknowledgments from consumers.
Hence, it is the easiest and most performant behavior to support.

At least once means that retransmission of a message will occur
until an acknowledgment is received. Since a delayed acknowledg-
ment from the receiver could be in flight when the sender retrans-
mits the message, the message may be received one or more times.
This is the most practical model when message loss is not accepta-
ble—e.g., for bank transactions—but duplication can occur.

Exactly once ensures that a message is received once and only once,
and is never lost and never repeated. The system must implement
whatever mechanisms are required to ensure that a message is
received and processed just once. This is the ideal scenario, because
it is the easiest to reason about when considering the evolution of
system state. It is also impossible to implement in the general case,?
but it can be successfully implemented for specific cases (at least to
a high percentage of reliability?).

Often you’ll use at least once semantics for message transmission,
but you'll still want state changes, when present, to be exactly once
(for example, if you are transmitting transactions for bank

2 See Tyler Treat’s blog post, “You Cannot Have Exactly-Once Delivery”.

3 You can always concoct a failure scenario where some data loss will occur.
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accounts). A deduplication process is required to detect duplicate
messages. Most often, a unique identifier of some kind is used: a
subsequent message is ignored if it has an identifier that has already
been seen. In many contexts, you can exploit idempotency, where
processing duplicate messages causes no state changes, so they are
harmless (other than the processing overhead).

On the other hand, having multiple readers is a way to improve per-
formance through parallelism, but any one reader instance won't see
every message in the topic, so the reader must be stateless; it can’t
know global state about the stream.

Kafka is unique in that messages are not deleted when read, so any
number of readers can ingest all the messages in a topic. Instead,
Kafka uses either a user-specified retention time (the time to live, or
TTL, which defaults to seven days), a maximum number of bytes in
the queue (the default is unbounded), or both to know when to
delete the oldest messages.

Kafka can't just return the head element for a topic’s queue, since it
ismt immediately deleted the first time its read. Instead, Kafka
remembers the offset into the topic for each consumer and returns
the next message on the next read.

Hence, a Kafka consumer could maintain stream state, since it will
see all the messages in the topic. However, since any process might
crash, it’s necessary to persist any important state changes. One way
to do this is to write the current state to another Kafka topic!

Message queues provide many advantages. They decouple producers
from consumers, making it easy for them to come and go. They sup-
port an arbitrary number of producers and consumers per topic,
promoting scalability. They expose a narrow message queue abstrac-
tion, which not only makes them easy to use but also effectively
hides the implementation so that many scalability and resiliency fea-
tures can be implemented behind the scenes.

Why Kafka?

Kafka’s current popularity is because it is ideally suited as the back-
bone of fast data architectures. It combines the benefits of event logs
as the fundamental abstraction for streaming with the benefits of
message queues. The Kafka documentation describes it as “a dis-
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tributed, partitioned, replicated commit log service” Note the
emphasis on logging, which is why Katka doesn’t delete messages
once they've been read. Instead, multiple consumers can see the
whole log and process it as they see fit (or even reprocess the log
when an analysis task fails). The quote also hints that Kafka topics
are partitioned for greater scalability and the partitions can be repli-
cated across the cluster for greater durability and resiliency.

Kafka has also benefited from years of production use and develop-
ment at LinkedIn, where it started. A year ago, LinkedIns Kafka
infrastructure surpassed 1.1 trillion messages a day, and it’s still
growing.

With the Kafka backbone and persistence options like distributed
filesystems and databases, the third key element is the processing
engine. For the last several years, Katka, Cassandra, and Spark
Streaming have been a very popular combination for streaming
implementations.* However, our thinking about stream processing
semantics is evolving, too, which has fueled the emergence of Spark
competitors.

4 The acronym SMACK has emerged, which adds Mesos and Akka: Spark, Mesos, Akka,
Cassandra, and Kafka.
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CHAPTER 4

How Do You Analyze
Infinite Data Sets?

Infinite data sets raise important questions about how to do certain
operations when you don’t have all the data and never will. In partic-
ular, what do classic SQL operations like GROUP BY and JOIN mean
in this context?

A theory of streaming semantics is emerging to answer questions
like these. Central to this theory is the idea that operations like
GROUP BY and JOIN are now based on snapshots of the data available
at points in time.

Apache Beam, formerly known as Google Dataflow, is perhaps the
best-known mature streaming engine that offers a sophisticated for-
mulation of these semantics. It has become the de facto standard for
how precise analytics can be performed in real-world streaming sce-
narios. A third-party “runner” is required to execute Beam data-
flows. In the open source world, teams are implementing this
functionality for Flink, Gearpump, and Spark Streaming, while Goo-
gle’s own runner is its cloud service, Cloud Dataflow. This means
you will soon be able to write Beam dataflows and run them with
these tools, or you will be able to use the native Flink, Gearpump, or
Spark Streaming APIs to write dataflows with the same behaviors.

For space reasons, I can only provide a sketch of these semantics
here, but two O’'Reilly Radar blog posts by Tyler Akidau, a leader of
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the Beam/Dataflow team, cover them in depth.! If you follow no
other links in this report, at least read those blog posts!

Suppose we set out to build our own streaming engine. We might
start by implementing two “modes” of processing, to cover a large
fraction of possible scenarios: single-event processing and what I'll
call aggregation processing over many records, including summary
statistics and GROUP BY, JOIN, and similar queries.

Single-event processing is the simplest case to support, where we
process each event individually. We might trigger an alarm on an
error event, or filter out events that aren’t interesting, or transform
each event into a more useful format. All of these actions can be per-
formed one event at a time. All of the low-latency tools discussed
previously support this simple model.

The next level of sophistication is aggregations of events. Because
the stream may be infinite, the simplest approach is to trigger a
computation over a fixed-size window (usually limited by time, but
possibly also by volume). For example, suppose I want to track
clicks per page per minute. At the same time, I might want to segre-
gate all those clicks into different files, one per minute. I collect the
data coming in and at the end of each minute, I perform these tasks
on the accumulated data, while the next minute’s data is being accu-
mulated. This fixed-window approach is what Spark Streaming’s
mini-batch model provides.? It was a clever way to adapt Spark,
which started life as a batch-mode tool, to provide a stream process-
ing capability.

But the fixed-window model raises a problem. Time is a first-class
concern in streaming. There is a difference between event time
(when the event happened on the server where it happened), and
processing time (the point in time later when the event was pro-
cessed, probably on a different server). While processing time is
easiest to handle, event time is usually more important for recon-
structing reality, such as transaction sequences, anomalous activity,
etc. Unfortunately, the fixed-window model I just described works
with processing time.

1 See “The World Beyond Batch: Streaming 1017, and “The World Beyond Batch:
Streaming 102”.

2 I'm using “windows” and “batches” informally, glossing over the distinction that mov-
ing windows over a set of batches is also an important construct.

20 | Chapter4: How Do You Analyze Infinite Data Sets?


https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102

Complicating the picture is the fact that times across different
servers will never be completely aligned. If I'm trying to reconstruct
a session—the sequence of events based on event times for activity
that spans servers—I have to account for the inevitable clock skew
between the servers.

One implication of the difference between event and processing
time is the fact that I can’t really know that my processing system
has received all of the events for a particular window of event time.
Arrival delays could be significant, due to network delays or parti-
tions, servers that crash and then reboot, mobile devices that leave
and then rejoin the Internet, etc.

In the clicks per page per minute example, because of inevitable
latencies, however small, the actual events in the mini-batch will
include stragglers from the previous window of event time. For
example, they might include very late events that were received after
a network problem was corrected. Similarly, some events with event
times in this window won't arrive until the next mini-batch window,
if not much later.

Figure 4-1 illustrates event vs. processing times.
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Figure 4-1. Event time vs. processing time

Events generated on Servers 1 and 2 at particular event times propa-
gate to the Analysis server at different rates (shown exaggerated).
While most events that occur in a particular one-minute interval
arrive in the same interval, some arrive in the next interval. During
each minute, events that arrive are accumulated. At minute bound-
aries, the analysis task for the previous minute’s events is invoked,
but clearly some data will usually be missing.
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So, I really need to process by event time, independent of the mini-
batch processing times, to compute clicks per page per minute.
However, if my persistent storage supports incremental updates, the
second task I mentioned—segregating clicks by minute—is less
problematic. When they aren’t within the same mini-batch interval,
I can just append stragglers later.

This impacts correctness, too. For fast data architectures to truly
supplant batch-mode architectures, they have to provide the same
correctness guarantees. My clicks per page per minute calculation
should have the same accuracy whether I do it incrementally over
the event log or in a batch job over yesterday’s accumulated data.

I still need some sense of finite windows, because I can’t wait for an
infinite stream to end. Therefore, I need to decide when to trigger
processing. Three concepts help us refine what to do within win-
dows:

o Watermarks indicate that all events relative to a session or other
“context” have been received, so it’s now safe to process the final
result for the context.

o Triggers are a more general tool for invoking processing, includ-
ing the detection of watermarks, a timer firing, a threshold
being reached, etc. They may result in computation of incom-
plete results for a given context, as more data may arrive later.

o Accumulation modes encapsulate how we should treat multiple
observations within the same window, whether they are disjoint
or overlapping. If overlapping, do later observations override
earlier ones or are they merged somehow?

Except for the case when we know we've seen everything for a con-
text, we still need a plan for handling late-arriving events. One pos-
sibility is to structure our analysis so that we can always take a
snapshot in time, then improve it as events arrive later. My dash-
board might show results for clicks per page per minute for the last
hour, but some of them might be updated as late events arrive and
are processed. In a dashboard, it's probably better to show provi-
sional results sooner rather than later, as long as it’s clear to the
viewer that the results aren’t final.

However, suppose instead that these point-in-time analytics are
written to yet another stream of data that feeds a billing system.
Simply overwriting a previous value isn’t an option. Accountants
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never modify an entry in their bookkeeping; instead, they add a cor-
rection entry later to fix earlier mistakes. Similarly, my streaming
tools need to support retractions, followed by new values.

We've just scratched the surface of the important considerations
required for processing infinite streams in a timely fashion, yet pre-
serving correctness, robustness, and durability.

Now that you understand some of the important concepts required
for effective stream processing, let’s examine several of the currently
available options and how they support these concepts.

Which Streaming Engine(s) Should You Use?

How do the low-latency and mini-batch engines available today
stand up? Which ones should you use?

While Spark Streaming version 1.x was limited to mini-batch inter-
vals based on processing time, Structured Streaming in Spark version
2.0 starts the evolution toward a low-latency streaming engine with
full support for the semantics just discussed. Spark 2.0 still uses
mini-batches internally, but features like event-time support have
been added. A major goal of the Spark project is to promote so-
called continuous applications, where the division between batch and
stream processing is further reduced. The project also wants to sim-
plify common scenarios where other services integrate with stream-
ing data.

Today, Spark Streaming offers the benefit of enabling very rich, very
scalable, and resource-intensive processing, like training machine
learning models, when the longer latencies of mini-batches are tol-
erable.

Flink and Gearpump are the two most prominent open source tools
that are aggressively pursuing the ability to run Beam dataflows.
Flink is better known, while Gearpump is better integrated with
Akka and Akka Streams. For example, Gearpump can materialize
Akka Streams (analogous to being a Beam runner) in a distributed
configuration not natively supported by Akka. Cloudera is leading
an effort to add Beam support to Spark’s Structured Streaming as
well.

Kafka Streams and Akka Streams are designed for the sweet spot of
building microservices that process data asynchronously, versus a
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focus on data analytics. Both provide single-event processing with
very low latency and high throughput, as well as some aggregation
processing, like grouping and joins. Akka and Akka Streams are also
very good for implementing complex event processing (CEP) sce-
narios, such as lifecycle state transitions, alarm triggering off certain
events, etc. Kafka Streams runs as a library on top of the Kafka clus-
ter, so it requires no additional cluster setup and minimal additional
management overhead. Akka is part of the Lightbend Reactive Plat-
form, which puts more emphasis on building microservices. There-
fore, Akka Streams is a good choice when you are integrating a wide
variety of other services with your data processing system.

The reason why I included so many tools in Figure 2-1 is because a
real environment may need several of them. However, there’s
enough overlap that you wont need all of them. Indeed, you
shouldn’t take on the management burden of using all of these tools.
If you already use or plan to use Spark for interactive SQL queries,
machine learning, and batch jobs, then Spark Streaming is a good
choice that covers a wide class of problems and lets you share logic
between streaming and batch applications.

If you need the sophisticated semantics and low latency provided by
Beam, then use the Beam API with Flink or Gearpump as the run-
ner, or use the Flink or Gearpump native API to define your data-
flows directly. Even if you don’t (yet) need Beam semantics, if you
are primarily doing stream processing and you don't need the full
spectrum of Spark features, consider using Flink or Gearpump
instead of Spark.

Since we assume that Kafka is a given, use Kafka Streams for low-
overhead processing that doesn’t require the sophistication or flexi-
bility provided by the other tools. The management overhead is
minimal, once Kafka is running. ETL tasks like filtering, transfor-
mation, and many aggregation tasks are ideal for Kafka Streams. Use
it for Kafka-centric microservices that process asynchronous data
streams.

Use Akka Streams to implement and integrate more general micro-
services and a wide variety of other tools and products, with flexible
options for communication protocols besides REST, such as Aeron,
and especially those that support the Reactive Streams specification,
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a new standard for asynchronous communications.’ Consider Gear-
pump as a materializer for Akka Streams for more deployment
options. Akka Streams also supports the construction of complex
graphs of streams for sophisticated dataflows. Other recommended
uses include low-latency processing (similar to Kafka Streams) such
as ETL filtering and transformation, alarm signaling, and two-way
stateful sessions, such as interactions with IoT devices.

3 Reactive Streams is a protocol for dynamic flow control though backpressure that’s
negotiated between the consumer and producer.
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CHAPTER 5
Real-World Systems

Fast data architectures raise the bar for the “ilities” of distributed
data processing. Whereas batch jobs seldom last more than a few
hours, a streaming pipeline is designed to run for weeks, months,
even years. If you wait long enough, even the most obscure problem
is likely to happen.

The umbrella term reactive systems embodies the qualities that real-
world systems must meet. These systems must be:

Responsive
The system can always respond in a timely manner, even when
it's necessary to respond that full service isn’t available due to
some failure.

Resilient
The system is resilient against failure of any one component,
such as server crashes, hard drive failures, network partitions,
etc. Leveraging replication prevents data loss and enables a ser-
vice to keep going using the remaining instances. Leveraging
isolation prevents cascading failures.

Elastic
You can expect the load to vary considerably over the lifetime of
a service. It’s essential to implement dynamic, automatic scala-
bility, both up and down, based on load.

Message driven
While fast data architectures are obviously focused on data, here
we mean that all services respond to directed commands and
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queries. Furthermore, they use messages to send commands and
queries to other services as well.

Batch-mode and interactive systems have traditionally had less
stringent requirements for these qualities. Fast data architectures are
just like other online systems where downtime and data loss are
serious, costly problems. When implementing these architectures,
developers who have focused on analytics tools that run in the back
office are suddenly forced to learn new skills for distributed systems
programming and operations.

Some Specific Recommendations

Most of the components we've discussed strive to support the reac-
tive qualities to one degree or another. Of course, you should follow
all of the usual recommendations about good management and
monitoring tools, disaster recovery plans, etc., which I won’t repeat
here. However, here are some specific recommendations:

o Ingest all inbound data into Kafka first, then consume it with
the stream processors. For all the reasons I've highlighted, you
get durable, scalable, resilient storage as well as multiple con-
sumers, replay capabilities, etc. You also get the uniform sim-
plicity and power of event log and message queue semantics as
the core concepts of your architecture.

« For the same reasons, write data back to Kafka for consumption
by downstream services. Avoid direct connections between
services, which are less resilient.

o Because Kafka Streams leverages the distributed management
features of Kafka, you should use it when you can to add pro-
cessing capabilities with minimal additional management over-
head in your architecture.

« For integration microservices, use Reactive Streams—compliant
protocols for direct message and data exchange, for the resilient
capabilities of backpressure as a flow-control mechanism.

« Use Mesos, YARN, or a similarly mature management infra-
structure for processes and resources, with proven scalability,
resiliency, and flexibility. I don’t recommend SparKk’s standalone-
mode deployments, except for relatively simple deployments
that aren’t mission critical, because Spark provides only limited
support for these features.
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» Choose your databases wisely (if you need them). Do they pro-
vide distributed scalability? How resilient against data loss and
service disruption are they when components fail? Understand
the CAP trade-offs you need and how well they are supported
by your databases.

o Seek professional production support for your environment,
even when using open source solutions. It’s cheap insurance and
it saves you time (which is money).
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CHAPTER 6
Example Application

Lets finish with a look at an example application, IoT telemetry
ingestion and anomaly detection for home automation systems.
Figure 6-1 labels how the parts of the fast data architecture are used.
I've grayed out less-important details from Figure 2-1, but left them
in place for continuity.
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Figure 6-1. IoT example
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Let’s look at the details of this figure:

A.

Stream telemetry data from devices into Kafka. This includes
low-level machine and operating system metrics, such as tem-
peratures of components like hard drive controllers and CPUs,
CPU and memory utilization, etc. Application-specific metrics
are also included, such as service requests, user interactions,
state transitions, and so on. Various logs from remote devices
and microservices will also be ingested, but they are grayed out
here to highlight what’s unique about this example.

. Mediate two-way sessions between devices in the field and

microservices over REST. These sessions process user requests
to adjust room temperatures, control lighting and door locks,
program timers and time-of-day transitions (like raising the
room temperature in the morning), and invoke services (like
processing voice commands). Sessions can also perform admin-
istration functions like downloading software patches and even
shutting down a device if problems are detected. Using one
Akka Actor per device is an ideal way to mirror a device’s state
within the microservice and use the network of Akka Actors to
mirror the real topology. Because Akka Actors are so light-
weight (you can run millions of them concurrently on a single
laptop, for example), they scale very well for a large device net-
work.

. Clean, filter, and transform telemetry data and session data to

convenient formats using Kafka Streams, and write it to storage
using Katka Connect. Most data is written to HDFS or S3,
where it can be subsequently scanned for analysis, such as for
machine learning, aggregations over time windows, dashboards,
etc. The data may be written to databases and/or search engines
if more focused queries are needed.

. Train machine learning models “online”, as data arrives, using

Spark Streaming (see the next section for more details). Spark
Streaming can also be used for very large-scale streaming aggre-
gations where longer latencies are tolerable.

. Apply the latest machine learning models to “score” the data in

real time and trigger appropriate responses using Flink, Gear-
pump, Akka Streams, or Kafka Streams. Use the same streaming
engine to serve operational dashboards via Kafka (see G).
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Compute other running analytics. If sophisticated Beam-style
stream processing is required, choose Flink or Gearpump.

. Use Akka Streams for complex event processing, such as
alarming.

. Write stream processing results to special topics in Kafka for
low-latency, downstream consumption. Examples include the
following:

a. Updates to machine learning model parameters

b. Alerts for anomalous behavior, which will be consumed by
microservices for triggering corrective actions on the device,
notifying administrators or customers, etc.

c. Data feeds for dashboards

d. State changes in the stream for durable retention, in case it’s
necessary to restart a processor and recover the last state of
the stream

e. Buffering of analytics results for subsequent storage in the
persistence tier (see H)

H. Store results of stream processing.

Other fast data deployments will have broadly similar characteris-

Machine Learning Considerations

Machine learning has emerged as a product or service differentiator.
Here are some applications of it for our IoT scenario:

Anomaly detection

Look for outliers and other indications of anomalies in the tele-
metry data. For example, hardware telemetry can be analyzed to
predict potential hardware failures so that services can be per-
formed proactively and to detect atypical activity that might
indicate hardware tampering, software hacking, or even a bur-
glary in progress.

Voice interface

Respond to voice commands for service.
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Image classification
Alert the customer when people or animals are detected in the
environment using images from system cameras.

Recommendations
Recommend service features to customers that reflect their
usage patterns and interests.

Automatic tuning of the IoT environment
In a very large network of devices and services, usage patterns
can change dramatically during the day, and during certain
times of year. Usage spikes are common. Hence, being able to
automatically tune how services are distributed and allocated to
devices, how and when devices interact with services, etc. makes
the overall system more robust.

There are nontrivial aspects of deploying machine learning. Like
stream processing in general, incremental training of machine
learning models has become important. For example, if you are
detecting spam, ideally you want your model to reflect the latest
kinds of spam, not a snapshot from some earlier time. The term
“online” is used for machine learning algorithms where training is
incremental, often per-datum. Online algorithms were invented for
training with very large data sets, where “all at once” training is
impractical. However, they have proven useful for streaming appli-
cations, too.

Many algorithms are compute-intensive enough that they take too
long for low-latency situations. In this case, Spark Streaming’s mini-
batch model is ideal for striking a balance, trading off longer laten-
cies for the ability to use more sophisticated algorithms.

When you're training a model with Spark Streaming mini-batches,
you can apply the model to the mini-batch data at the same time.
This is the simplest approach, but sometimes you need to separate
training from scoring. For robustness reasons, you might prefer
“separation of concerns,” where a Spark Streaming job focuses only
on training and other jobs handle scoring. Then, if the Spark
Streaming job crashes, you can continue to score data with a sepa-
rate process. You also might require low-latency scoring, for which
Spark Streaming is currently ill suited.
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This raises the problem of how models can be shared between these
processes, which may be implemented in very different tools. There
are a few ways to share models:

1. Implement the underlying model (e.g., logistic regression) in
both places, but share parameters. Duplicate implementations
won't be an easy option for sophisticated machine learning
models, unless the implementation is in a library that can be
shared. If this isn’t an issue, then the parameters can be shared
in one of two ways:

a. The trainer streams updates to individual model parameters
to a Kafka topic. The scorer consumes the stream and applies
the updates.

b. The trainer writes changed parameters to a database, perhaps
all at once, from which the scorer periodically reads them.

2. Use a third-party machine learning service, either hosted or on-
premise,’ to provide both training and scoring in one place that
is accessible from different streaming jobs.

Note that moving model parameters between jobs means there will
be a small delay where the scoring engine has slightly obsolete
parameters. Usually this isn't a significant concern.

1 E.g., Deeplearning4].
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CHAPTER 7
Where to Go from Here

Fast data is the natural evolution of big data to be stream oriented
and quickly processed, while still enabling classic batch-mode ana-
Iytics, data warehousing, and interactive queries.

Long-running streaming jobs raise the bar for a fast data architec-
ture’s ability to stay resilient, scale up and down on demand, remain
responsive, and be adaptable as tools and techniques evolve.

There are many tools with various levels of support for sophisticated
stream processing semantics, other features, and deployment sce-
narios. I didn’t discuss all the possible engines. I omitted those that
appear to be declining in popularity, such as Storm and Samza, as
well as newer but still obscure options. There are also many com-
mercial tools that are worth considering. However, I chose to focus
on the current open source choices that seem most important, along
with their strengths and weaknesses.

I encourage you to explore the links to additional information
throughout this report. Form your own opinions and let me know
what you discover.! At Lightbend, we've been working hard to build
tools, techniques, and expertise to help our customers succeed with
fast data. Please take a look.

1 I'm at dean.wampler@lightbend.com and on Twitter, @deanwampler.
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Additional References

Besides the links throughout this report, the following references are
very good for further exploration:

1. Justin Sheehy, “There Is No Now,” ACM Queue, Vol. 13, Issue 3,
March 10, 2015, https://queue.acm.org/detail.cfm?id=2745385.

2. Jay Kreps, I Heart Logs, September 2014, O’Reilly.

3. Martin Kleppmann, Making Sense of Stream Processing, May
2016, O’Reilly.

4. Martin Kleppmann, Designing Data-Intensive Applications, cur-
rently in Early Release, O'Reilly.
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