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During forensic analysis of disks, it may be desirable to construct an
account of events over time, including when �les were created, modi�ed,
accessed and deleted. "Timeline analysis" is the process of collating this
data, using �le timestamps from the �le system and other sources such
as log �les and internal �le metadata.
The Zettabyte File System (ZFS) uses a complex structure to store

�le data and metadata and the many internal structures of ZFS are an-
other source of timeline information. This internal metadata can also be
used to detect timestamps which have been tampered with by the touch
command or by changing the system clock.
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1 Introduction

1 Introduction

In computer forensics, timeline analysis is the collation of timestamps and other event
information into an account of what occurred on the computer. Event information
such as �le timestamps, log �les and web browser cache and history is collated into
a �super-timeline�[1], with events corroborated from multiple sources.
The Zettabyte File System (ZFS)[2, 3], a relatively new and unusual �lesystem,

uses a novel pooled disk structure and hierarchical object based mechanism for stor-
ing �les and metadata. Due to the unusual structure and operation of ZFS, many
existing forensics tools and techniques cannot be used to analyse ZFS �lesystems.
No timeline analysis tools[1, 4] currently make use of ZFS internal metadata.
Furthermore, there are few existing studies of ZFS forensics, none of which include

an empirical analysis of timeline forensics. There are no established procedures or
guidelines for forensic investigators, with the exception of data recovery and �nding
known data on a disk [5, 6].
We have examined ZFS documentation, source code and �le systems to determine

which ZFS metadata can be useful for timeline analysis. Much of the metadata
is a�ected by the order in which the associated �les were written to disk. Our
analysis has discovered four techniques which can use this metadata to detect falsi�ed
timestamps, as well as one which provides extra timeline information.

2 Existing ZFS Forensics Literature

Beebe et al's Digital Forensic Implications of ZFS [7] is an overview of the forensic
di�erences between ZFS and more �traditional� �le systems; in particular it outlines
many forensic advantages and challenges of ZFS. Beebe identi�es many properties
of ZFS which may be useful to a forensic investigator, highlighting the opportunities
for recovery of data from multiple allocated and unallocated copies. However, it is
based on theoretical examination of the documentation and source code, noting that
�we have yet to verify all statements through our own direct observation and reverse
engineering of on-disk behavior�.
Beebe also mentions ZFS forensics in [8], noting that many �le systems not used

with Microsoft and Apple products have recieved inadequate study; ZFS, UFS and
ReiserFS are mentioned as particular examples of ��le systems that deserve to be
the focus of more research�.
Data recovery on ZFS has been examined extensively by other researchers. Max

Bruning's On Disk Data Walk [6] demonstrates how to access ZFS data on disk from
�rst principles; Bruning has also demonstrated techniques for recovering deleted
�les[9].
Li [5, 10] presents an enhancement to the ZDB �lesystem �debugger� which allows

it to trace target data within ZFS media without mounting the �le system. Finally,
some ZFS anti-forensics techniques are examined by Cifuentes and Cano [11].
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3 Background: The Zettabyte File System

3 Background: The Zettabyte File System

A brief description of ZFS internals is provided here; for full details please consult
Bonwick and Ahrens' The Zettabyte File System [2], Sun Microsystems ZFS On Disk

Speci�cation [12] and Bruning's ZFS On Disk Data Walk [6].
ZFS stores all data and metadata within a tree of objects. Each reference to

another object can point to up to three identical copies of the target object, which
ZFS spreads across multiple devices in the pool if possible to provide redundancy in
case of disk failure. ZFS generates checksums on all objects and if any objects are
found to be corrupted, they are replaced with one of the redundant copies.

3.1 Basic Structure

A ZFS Pool contains one or more virtual devices (�vdev�), which may contain one
or more physical devices. Virtual devices may combine physical devices in a mirror
or �RAID-Z� to ensure redundancy. Dedicated devices for cache, ZIL and hot spares
may also be allocated to a pool.
Each device contains an array of 128 �Uberblocks�; only one of these is active at

one time. The Uberblock array is duplicated 4 times in each vdev for redundancy.
Each Uberblock contains a �Block Pointer� structure pointing to the root of the
object tree, the �Meta Object Set�. Apart from the metadata contained within the
Uberblock, all data and metadata is stored within the object tree, including internal
metadata such the free space maps and delete queues.
Block Pointers connect all objects and data blocks and include forensically useful

metadata including up to three pointers (for redundant copies of the object/data),
transaction group ID (TXG) and checksum of the object or data they point to. Where
Block Pointers need to refer to multiple blocks (e.g. if not enough contiguous space
is available for the object), a tree of �Indirect� Blocks is used. Indirect blocks point
to blocks containing further Block Pointers, with the level zero leaf Block Pointers
pointing to the actual data. Section 5.2.3 further discusses the forensic uses of Block
Pointers.
Each ZFS �lesystem in a pool is contained within an object set, or �Dataset�. Each

pool may have up to 264 Datasets; other types of datasets exist including snapshots
and clones. The �Meta Object Set� contains a directory which references all datasets
and their hierarchy (e.g. snapshot datasets depend upon the �lesystem dataset they
were created from). Filesystem datasets may be mounted on the system directory
hierarchy independently; they contain several �lesystem-speci�c objects as well as
�le and directory objects. File objects are examined in detail in section 5.2.

3.2 Transactions, TXG and ZIL

ZFS uses a transactional copy-on-write method for all writes. Objects are never over-
written in place, instead a new tree is created from the bottom up, retaining existing
pointers to unmodi�ed objects, with the new root written to the next Uberblock in
the array.
Transactions are collated in �Transaction groups� for committing to disk. Trans-

action groups are identi�ed by a 64 bit transaction group ID (TXG), which is stored
in all Block Pointers and some other structures written when the Transaction Group
is �ushed. Transaction groups are �ushed to disk every 5 seconds under normal
operation.
Synchronous writes and other transactions which must be committed to stable

storage immediately are written to the ZFS Intent Log (ZIL). Transactions in the
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4 Experiments

ZIL are then written to a transaction group as usual, the ZIL records can then
be discarded or overwritten. When recovering from a power failure, uncommitted
transactions in the ZIL are replayed. ZIL blocks may be stored on a dedicated device
or allocated dynamically within the pool.

3.3 Space Allocation

Each ZFS virtual device is divided up into equal sized regions called �metaslabs�. The
metaslab selection algorithm prioritizes metaslabs with higher bandwidth (closer to
the outer region of the disk) and those with more free space, but de-prioritizes empty
metaslabs. A region within the metaslab is allocated to the object using a modi�ed
�rst-�t algorithm.
The location of free space within a ZFS disk is recorded in a �space map� object.

Space maps are stored in a �log-structured� format - data is appended to them when
disk space is allocated or released. Space maps are �condensed�[13] when the system
detects that there are many allocations and deallocations which cancel out.

4 Experiments

4.1 Method

In our experiments, ZFS metadata was collected from our own systems and test
systems created for this project. Disk activity on the test systems was simulated using
data obtained from surveys of activity on corporate network �le storage [14, 15, 16].
ZFS pools with 1,2,3,4,5,7 and 9 devices were created on the test systems, including

pool con�gurations with all levels of Raid-Z, mirrors and mirror pairs as well as ��at�
pools where applicable, giving 22 di�erent pool constructions. The test systems used
FreeBSD version 9.1-RELEASE with ZFS Pool version 28.

4.2 Timestamp Tampering

Three experiments were conducted for each pool: a control with no tampering, one
where timestamps were altered by changing the system clock backwards one hour
for ten seconds, and one where the Unix �touch� command was used to alter the
modi�cation and access times of one �le backwards by one hour.

4.3 Data Collection

Internal data structures were collected every 30 minutes as well as before and after
all experiments, using the �zdb� (ZFS Debugger) command. Three types of metadata
were collected:

• All 128 Uberblocks from all virtual devices in the pool.

� zdb -P -uuu -l /dev/<device>

• All Spacemaps for all Metaslabs in each virtual device.

� zdb -P -mmmmmm <pool>

• All objects and Block Pointers from with the dataset with simulated activity.

� zdb -P -dddddd -bbbbbb <poolname>/<dataset-name>

The �Quick Reference�[17] contains further example commands for ZFS timeline
forensics.
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5 ZFS Structures for Timeline Analysis

Listing 1: Example Uberblock dump from ZDB

...

Uberblock [72]

...

Uberblock [73]

magic = 0000000000 bab10c

version = 28

txg = 1737

guid_sum = 4420604878723568201

timestamp = 1382428544 UTC = Tue Oct 22 18:55:44 2013

rootbp = DVA [0]= <0:3 e0c000 :200> DVA [1]= <1:3 f57200 :200> DVA

[2]= <2:3593 a00:200> [L0 DMU objset] fletcher4 lzjb LE

contiguous unique triple size =800L/200P birth =1737L/1737P

fill =42 cksum =15 ffed59a7 :7 e9c9c594b0 :17 c4c7cb7a7eb :318

e5de89d442a

Uberblock [74]

...

5 ZFS Structures for Timeline Analysis

5.1 Uberblocks

An example Uberblock dump from ZDB is shown in Listing 1. The most useful entries
for forensic investigators are the TXG and timestamp; this provides one method to
link a TXG to the time it was written. This can be used to verify �le timetamps and
detect false ones. Where a �le is modi�ed with the touch command, the timestamp
on the �le will not match the timestamp in the Uberblock with the same transaction
group (TXG).
Consecutive uberblocks contain increasing TXG and timestamps (except for the

highest TXG where the array wraps around). Where the system clock was changed,
the corresponding changes in the uberblock timestamps before and after the clock
changes show that tampering occurred.
Uberblocks could potentially be used to access previous version of the object tree,

however they are quickly overwritten (see �Disadvantages� below) so this facility is
only useful when they can be collected immediately after tampering has occurred.
Other than this, uberblocks do not provide any extra information beyond the �le
timestamps.
In 50% of all experiments involving tampering we were successfully able to use

an Uberblock to detect a falsi�ed �le timestamp. However, this was only possible
because data was collected every 30 minutes during the experiments; at the end of
the simulation the relevant uberblocks were already overwritten.

5.1.1 Uberblocks: Disadvantages

Uberblocks are the simplest metadata for an attacker to tamper with as they are at
the top of the hash tree; if modi�ed the attacker only has to change the uberblock's
internal checksum to match.
The most serious disadvantage of Uberblocks for forensic use is that for most

pools they last only 10.6 minutes under a continuous writing load. This is due to
ZFS typically writing a new Uberblock every 5 seconds (5× 128 = 640 seconds). In
75% of experiments, the oldest Uberblock in the array of 128 was between 634 and
636 seconds old.
Pools with 4 or more top level virtual devices (i.e. 4 or more disks and a ��at�
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5 ZFS Structures for Timeline Analysis

0 2000 4000 6000 8000 10000

1-3 Disks (all con gs)

4-9 Disks, No Redundancy

4-9 Disks, Mirror/Raid-Z

Figure 1: Time in seconds between oldest and newest Uberblock, for di�erent pool
con�gurations.

pool with no redundancy) consistently had a signi�cantly longer period between the
oldest and newest Uberblock in the pool; between 1475 and 8609 seconds (median
4018). With more than three devices, some writes may not a�ect all devices, so a
new uberblock will not always be written to all of them for each TXG. Pools using
RAID-Z or mirroring are less a�ected as writes are likely to a�ect all devices in a
more redundant pool.
Figure 1 plots the di�erences between di�erent types of pool con�guration. Pools

with less than 4 disks all had a uberblock period of 636 seconds or less, as did most
pools with 4 or more disks which used a mirror or RAID-Z con�guration.
Due to the short lifespan of Uberblocks they are most useful in a �dawn raid�

scenario, where a system is siezed immediately after a suspect may have been deleting
or modifying �les. In this case they could be used to access previous version of the
object tree and determine recent changes.

5.2 File Objects

All objects and Block Pointers associated with a dataset may be extracted using
ZDB's -b and -d options. We have only examined �lesystem datasets at this stage.
A sample �le object is shown in Listing 2.
File objects contain several attributes which are useful for verifying timestamps; in

particular, the �gen� TXG and the Object Number which are related to the creation
time of the object. Block pointer TXG values in the Block Pointers which point to
the �le data can also be used to detect falsi�ed timestamps, and in some cases Block
Pointers to previously written �le data segments may also be used to obtain the time
of those modi�cations.

5.2.1 Object Number

All objects in a dataset have a 64 bit �object number�, used as an internal identi�er
for ZFS. As new object numbers are generated in locally increasing order, they are
related to the order of creation of objects, and can therefore be used to detect objects
with a falsi�ed creation time.
In all experiments involving a falsi�ed creation time, the object number of the

a�ected �les were out of order; this provides a simple method to detect false creation
times. Figure 2 (left) shows a plot of object number vs creation time from an
experiment where the system clock was adjusted one hour backwards to alter �le
timestamps; the outliers above the line indicate �les with false creation times.
Object numbers may be reused when ZFS detects a large range of unused num-

bers (e.g. when many �les are deleted); this did not occur during our experiments
and further study is required to determine how often numbers are reused during
production conditions and how this would a�ect forensic use of object numbers.
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5 ZFS Structures for Timeline Analysis

Listing 2: Example File Object dump from ZDB

Object lvl iblk dblk dsize lsize %full type

15417 1 16384 67072 67072 67072 100.00 ZFS plain file (K

=inherit) (Z=inherit)

168 bonus System attributes

dnode flags: USED_BYTES USERUSED_ACCOUNTED

dnode maxblkid: 0

path /1382428539 -to -2147483647 - reps -0

uid 0

gid 0

atime Tue Oct 22 17:55:40 2013

mtime Tue Oct 22 17:55:40 2013

ctime Tue Oct 22 17:55:40 2013

crtime Tue Oct 22 17:55:40 2013

gen 1737

mode 100644

size 66566

parent 4

links 1

pflags 40800000004

Indirect blocks:

0 L0 DVA [0]= <2:353 c200 :10600 > [L0 ZFS plain file]

fletcher4 uncompressed LE contiguous unique single

size =10600L/10600P birth =1737L/1737P fill=1 cksum =1

e970f0f68f0 :3 f178f0ed3b3b88 :1 c0a9b8bd4c82800:

eb83cbb696eca800

segment [0000000000000000 , 0000000000010600) size

67072

As object numbers are not a�ected by modi�cations to the �le, they cannot be used
to detect falsi�ed modi�cation time, unless the modi�cation time is altered to before
the �le was created. They cannot be used to provide any extra event information to
forensic investigation (beyond verifying the �le creation time).

5.2.2 Object Generation TXG

All �lesystem objects also store the transaction group ID in which they were gener-
ated (this is the �gen� attribute in Listing 2).
Similar to object numbers, as they increase with the order of creation of objects

they can also be used to detect objects with falsi�ed creation time. In all experiments
involving a falsi�ed creation time, the generation TXG was out of order. The right
plot in Figure 2 shows a plot of Generation TXG vs creation time; again the outliers
above the line are from the same �les which were created when the system clock was
reverted by one hour. Although covering the same three hours the TXG graph rises
evenly over time as TXG are �ushed to disk at a constant rate, whereas �le objects
are created at a variable rate.
Likewise, they cannot be used to detect falsi�ed modi�cation time unless the

modi�cation time is altered to before the �le was created, and no not provide any
extra information beyond corroborating the creation time.
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5 ZFS Structures for Timeline Analysis

Figure 2: Object number (left) and generation TXG (right) vs. creation time, from
�le objects in an experiment with false creation times. Time values are
time_t (seconds since Unix epoch).

5.2.3 Block Pointer TXG

Unless empty, each �le object dumped from ZDB contains at least one Block Pointer
pointing to the �le data. Each Block Pointer contains the TXG in which the pointer
was written. This is the most useful metadata discovered so far for detecting falsi�ed
timestamps, and can even be used to determine past modi�cation times in some cases.
As TXG increase with time, the order of writes can be veri�ed by comparing

modi�cation times with the �le's most recent Block Pointer TXG. If a �le contains
multiple Block Pointers, the highest level pointer in the Indirect Block(s) will contain
the most recent TXG. Figure 3 (left) shows Block Pointer TXG plotted against
modi�cation time.
Allowing a 5 second window for the �ushing of each TXG to disk, any out-of-

order TXG/modi�cation time pairs indicate the timestamp may be falsi�ed. In all
experiments inolving tampering, comparison of Block Pointer TXG between �les was
successful in detecting it.

Determining Past Modi�cation Times

Listing 3 shows an example of a large �le with two segments written during di�erent
transactions. The �le object points to one level 1 Indirect Block containing two level
0 �leaf� Block Pointers, which point to the �le data. The data in the �rst level 0
BP was written during TXG 15464, whereas the second level 0 BP was written in
transaction 15853 (requiring the parent BP to be also rewritten).
If there is another �le (or other object) in the pool which can link a timestamp to

TXG 15464, we can determine the last time that the �rst segment was written. Note
that this can only discover the most recent write to each segment; either segment
may have been rewritten multiple times
This technique is most e�ective for large �les which are modi�ed only in small

sections at a time (e.g. virtual machine images). In our experiments only 109 per
million �les required more than one Block Pointer for their data. Our experiments
used statistics based on corporate network storage[15], where most �les are under
4KB in size. With default settings ZFS uses segments up to 128KB in size thus very
few �les required more than one segment.
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5 ZFS Structures for Timeline Analysis

Figure 3: Modi�cation Time (left) and Creation Time (right) of �les vs their Block
Pointer TXG values. No tampering was involved in this experiment.

Listing 3: Example File Object with multiple Block Pointers to data
(many �elds removed for clarity)

Object lvl iblk lsize %full type

57296 2 16384 262144 100.00 ZFS plain file

...

mtime Wed Oct 23 13:21:10

size 158599

...

Indirect blocks:

0 L1 DVA [0]= <1:202 c7400 :400> DVA [1]= <2:2183 e000 :400>

[L1 ZFS plain file] double size =4000L/400P ...

birth =15853L/15853P fill=2 ...

0 L0 DVA [0]= <1:24409600:20000 > [L0 ZFS plain file]

single size =20000L/20000P birth =15464L/15464P fill=1 ...

20000 L0 DVA [0]= <1:24 a7da00 :20000 > [L0 ZFS plain file] ...

single size =20000L/20000P birth =15853L/15853P fill=1 ...
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5 ZFS Structures for Timeline Analysis
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Spacemaps (RAIDZ1)

Spacemaps (RAIDZ2)

Spacemaps (RAIDZ3)

Modi cation Time

Figure 4: Normalized modi�cation times (top) and TXG of Spacemap segments
(lower 4 plots) in 5 disk pools after 24 hours with various RAIDZ levels.

5.3 Spacemaps

Each spacemap segment lists the TXG when the spacemap was written (see examples
in Listing 4). However, this is likely to be a more recent TXG than the one in
which the space was allocated, because spacemaps are �condensed� and re-written
frequently. Therefore, presence of a Block Pointer's allocated space in a segment
with a later TXG than the �le's Block Pointer TXGs is not evidence of a forged
timestamp.
Spacemaps could be used to verify that a given block has not been modi�ed since

the spacemap segment TXG (due to the copy-on-write system, blocks are never
overwritten in place), although this is of limited forensic use.
Condensation is more frequent than might expected due to the frequency of tem-

porary �les created and deleted within seconds [15] and the ZFS metaslab allocation
algorithm preferring to �ll metaslabs towards full capacity to reduce fragmentation
(increasing the chance of recently used metaslabs being condensed).
Figure 4 shows normalized plots of transaction groups from spacemaps in 5 disk

pools (of various RAIDZ levels) and the modi�cation time of the �les in the pools.
While modi�cation time is evenly distributed, slightly skewed towards the present
(median 0.55), the spacemap TXGs have a median of 0.72. With increasing redun-
dancy, there are more early outliers remaining, however most spacemap segments are
still condensed after the allocated block was written.
In none of the experiments could spacemaps be used to detect falsi�ed timestamps,

due to the the relevant allocation being condensed. It may not be possible to reliably
reconstruct events from spacemaps in any �lesystem with transient �les.

5.3.1 Virtual Devices

ZFS uses a round robin algorithm[13] which attempts to write 512KB to each disk
before moving to the next. Theoretically this could be used to detect out of order
writes. However, due to transient �les which may have been created in between
other writes, it appears that this behaviour cannot be used to detect out-of-order
timestamps.
Even if it is known that �les were not modi�ed or deleted, transient internal objects

(e.g. spacemaps) may have been modi�ed or destroyed. None of the timestamp
falsi�cation in our experiments could be detected by analysing the pattern of virtual
device writes.
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6 Discussion

Listing 4: Example Metaslab/Spacemap dump from ZDB

vdev 0

metaslabs 119 offset spacemap free

--------------- ------------------- ---------------

-------------

metaslab 0 offset 0 spacemap 35 free

536655872

segments 15 maxsize 536123392 freepct

99%

[ 0] ALLOC: txg 229, pass 1

[ 1] A range: 0000000000 -0000008000 size: 008000

[ 2] A range: 0000011000 -0000016800 size: 005800

[ 3] A range: 000000 f800 -0000010800 size: 001000

[ 4] A range: 000001 c800 -000001 d000 size: 000800

...

[ 14] A range: 00000 ad000 -00000 b4800 size: 007800

[ 15] A range: 0000093000 -000009 a800 size: 007800

[ 16] A range: 0000043800 -0000047800 size: 004000

[ 17] ALLOC: txg 229, pass 2

[ 18] A range: 0000008000 -000000 b000 size: 003000

[ 19] FREE: txg 229, pass 2

[ 20] F range: 00000 c4000 -00000 c7000 size: 003000

metaslab 1 offset 20000000 spacemap 0 free

536870912

segments 1 maxsize 536870912 freepct

100%

metaslab 2 offset 40000000 spacemap 0 free

536870912

segments 1 maxsize 536870912 freepct

100%

...

6 Discussion

6.1 Results & Observations

A summary of the results is shown in Table 1 below. It can be seen that comparing
Block Pointer TXGs is the most e�ective technique for detecting falsi�ed timestamps
and the only method found so far which can obtain extra timeline information be-
yond the �le timestamps. False creation time is much simpler to detect than false
modi�cation time, as there are more attributes a�ected by the creation order of an
object.

Table 1: Summary of Results

Forensic Uses
Structures

Uberblock BP TXG Gen TXG Obj. ID Spacemap

Detect Forged Mtime Sometimes Yes No No No

Detect Forged CRTime Sometimes Yes Yes Yes No

Determine Past Mtime No Sometimes No No No

6.2 False Positives

Timestamp mismatches can be caused by normal, innocuous events as well as delib-
erate tampering and anti-forensics. Care must be taken by forensic investigators to
avoid false positives.
Regular corrections to the system clock will a�ect all timestamps. If the clock is

fast and is corrected backwards, timestamps will appear out of order. This occurred
in two of the 76 experiments, a overnight clock correction caused object number,
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6 Discussion

Generation TXG and Block Pointer TXGs to appear out of order when they were
not.
There are also valid reasons why timestamps may be changed by the user to a

previous value, (or a userspace utility), such as unpacking archives or copying �les
with previous timestamps preserved - the newly created �les will appear to have
�false� timestamps to forensic tools.

6.3 Modifying Internal Metadata

A determined attacker could tamper with internal ZFS structures to match any
modi�ed �le timestamps, in order to make the modi�cation more di�cult to detect
by forensic investigators.
It is most simple to modify uberblocks as they are at the head of the tree, and if

modi�ed only their own checksum needs to be corrected. However, this may not be
worthwhile for the attacker as uberblocks are quickly overwritten.
ID numbers (including Object number, Gen TXG and Block Pointer TXGs) could

be falsi�ed fairly simply if a suitable old ID can be inserted. On a typical �lesystem
with many transient �les there would probably be many IDs which could be �reused�
this way. Once this change is made, the attacker must then correct the checksums
in all parent objects and Block Pointers up the tree and the uberblock, to prevent
the tampering from appearing as disk corruption.
If an old ID cannot be used, tampering would be possible but may require rewriting

all �les in the �lesystem to �t the desired IDs. In the worst case (or best case for the
forensics team), where no plausible TXGs could be inserted, the entire pool would
have to be re-created. Apart from the time and e�ort involved, rewriting the disk
may leave its own traces detectable to the forensic investigators (such as lack of
fragmentation).

6.4 Future work

Although this is the �rst time internal ZFS metadata has been examined for timeline
forensics, the scope of this study is extremely limited and much more work needs to
be done to validate the techniques presented here under varied conditions.
Most importantly, data from production systems needs to be obtained to verify

our results with real systems. The next phase of this project will involve a survey to
obtain metadata from real systems. Volunteers would be asked to submit anonymized
ZDB data (with paths and names removed)1.
Another important task is to incorporate the detection algorithms described into

existing forensic tools such as log2timeline[1] so they can be tested in the �eld.

6.4.1 Other ZFS Structures

We have only examined a few ZFS structures at this stage. There are many other
ZFS objects and other structures which could be used for timeline analysis.
As identi�ed by Beebe et al [7], the ZFS Intent Log (ZIL) contains metadata

relating to �lesystem events. As entries in the ZIL are discarded (but not destroyed)
after they are committed to a TXG, information from ZIL entries be recoverable long
after they are written.
There are several per-dataset objects and attributes which are likely to be useful

for timeline forensics, particularly the Delete Queue. Snapshot and clone datasets

1We intend to announce the call for volunteers on freebsd-fs and other mailing lists when the

survey is ready.
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have not yet been examined and are likely to provide a great deal of time-related
metadata to investigators. The Meta-Object-Set and its dataset directories may also
contain useful timeline data.
As mentioned in the Uberblock section, previous Object Sets from previous uberblocks

could also be traced to determine recent changes. Although we have used the
Uberblock array to detect TXG/timestamp inconsistencies, we have not yet exam-
ined them further.
Finally, regions of the disk which are no longer referenced by any Block Pointer

could be examined to see if they contain old ZFS objects or BPs. Most ZFS structures
contain magic numbers so that they can be easily identi�ed, and TXG so the time
they were written could be determined. If this sort of analysis would provide any
useful data to forensic investigators it still needs to be determined empirically.

6.4.2 Other Pool Con�gurations and Workloads

Our experiments used simulated �le activity based on a corporate/engineering net-
work �le workload[15, 16]. Many factors in our analysis, especially the condensation
of spacemaps and allocation of large �les, are a�ected by the patterns of �le activ-
ity. Other types of systems (e.g. desktop, home media storage, webserver) could be
expected to have di�erent patterns of �le activity which may make some techniques
more or less viable.
Our experiments also used only a single �lesystem dataset, whereas real systems

would use many �lesystems, with di�erent patterns of �le activity. Other dataset
types (snapshots, clones, ZVOLs) were not examined. Many ZFS features such
as compression and deduplication were not used. We did not examine pools with
dedicated log or cache devices.

7 Conclusion

We have determined that multiple ZFS internal structures can be used as a source
for timeline analysis, including the detection of forged timestamps. Block Pointers
to �le data are particularly useful and can sometimes be used to determine the time
of previous writes to a �le.
Although these techniques have been shown to work under laboratory conditions

they are yet to be tested in the �eld and on a wide variety of systems and con�gu-
rations.
Clock corrections and other normal behaviour could appear to be deliberate tam-

pering with timestamps, and investigators should consider this possibility.
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