
C++ History and Rationale

Shuo Chen

giantchen@gmail.com @bnu_chenshuo

blog.csdn.net/Solstice

Agenda

• Quiz

• Timeline

• Three Constraints

• Imperfections

• Why we use C++

• Improvements

Quiz

• Are virtual dtors necessary for base classes?

• Do you disable copy ctor and operator=() ?

• Ever worried about binary compatibility?

• Pimpl as common practices?

• Is auto_ptr recommended?

• Polymorphic array?

• Is std::copy as fast as memcpy for char[] ?

Quiz con’t

• Is list::size() O(1) or O(n) ? list::empty() ?

• How about vector::push_back()? O(1) ?

• Break words in to vector<string>

string line; // "cmd arg1 arg2"
vector<string> result;

istringstream iss(line);
istream_iterator<string> begin(iss);
istream_iterator<string> end;
copy(begin, end, back_inserter(result));

One system language
every 10 years

• C 1970s stable since 1974

• C++ 1980s stable since 1996 (CD2)

• Java 1990s stable since 2004 (Java 5)

• ???? 2000s

• Go?? 2010s

• C#? well, it is a system-specific language

C++ in the 20th century
• C with class 1980 inherit w/o virtual

• First impl. 1983 virtual function

• CFront E/1.0 1985-02 overloading

• CFront 1.1 1985/86 reference

• CFront 1.2 1987-02 protected

• CFront 2.0 1989-06 Multiple-inheritance

• CFront 3.0 1991-10 Templates

• HP C++ 1992 Exceptions

• C++ 98/03 1996 namespaces/STL

Java in the 21th century

• Java 1.0 1996-01 Initial release

• Java 1.1 1997-02 JDBC

• Java 1.2 1998-12 Collections

• Java 1.3 2000-05 HotSpot JVM

• Java 1.4 2002-02 NIO

• Java 1.5 2004-09 Concurrent/generics/...

• Java 1.6 2006-12 Performance

• Java 1.7 2010-?? Closures

Major improvements every 2 years

• C# 1.0 VS 2002/3 ≈ Java 5 - generics

• C# 2.0 VS 2005 Generics, partial class

• C# 3.0 VS 2008 LINQ, lambda

• C# 4.0 VS 2010 More dynamic

• 10 years ago Java for C++ Developers

• Now C++ for Java Developers

C# in the 21th century

The second standard of
a language is irrelevant

• C89 and C99

– Does C99 change the way we write C programs?

• COBOL 60 and 2002

– COBOL 2002 adds object-oriented, who cares?

• Fortran 77 and 90/95/03

– 90/2003 adds object-oriented and generics

• IPv4 and IPv6, JPEG and JPEG2000

• C++98 and C++0x (Finalized on March 13, 2010)

What does C++ look like?

But, why?

480k EDG frontend vs. 250k HotSpot VM

Three constraints

• Compatible with C

• Zero-overhead principle

• Value semantics

Birthdays

• C was born on PDP-11 with 64k address space

– The 1st C compiler involves two or three passes

– Cc1 parse C source, generates intermediate code

– Cc2 read in, generate machine code

– Then link object files to executable

– Why C has header files, compiler needs it

• C++ was born on 32-bit VAX with 1M memory

– But it still uses header filer and expose to ODR
violation, and to be binary compatible with C

– Java compiler is smarter to find class definitions

C++ was born in Bell Labs

• Where Unix and C were born

• Same speed as C, why CFront compiles to C?

– Otherwise no one would use it in the first place

• Same footprint as C, easily verifiable if C is the target

– Class is almost same as struct, same size/layout

– No virtual dtor by default, struct in sockets, mktime

• Compatible with C, a political pressure

– Legal C code must be legal C++ code

– Preprocessor/macros to compile Unix headers

Why class Foo{};

• Can be difficult to diagnose for novice
– #include "foo.h" // missing ‘;’ at the end

– #include "bar.h" // strange errors in first lines

• C# and Java doesn’t need the ‘;’ for classes
– C++ namespace {} doesn’t neither, so why

• C allows defining unnamed struct
– struct {int ask; int bid;} bidask; bidask.ask = 0;

– struct {int x; int y;} getPoint(); // new type in return

• C++ doesn’t allow unnamed class*, but has
to follow the same syntax, ‘;’ as delimiter.

Politics ? Yes, we're human
• ABI – compiler neutral inter-operations

– It is said that to allow completive impls.

– Every architecture except x86-32 has one ABI

AMD64, ARM, MIPS, Itanium, PowerPC, SPARC

– Truth: vendors didn’t want to change their code

• abstract vs. =0

– Adding new keyword would break existing code?

– After CFront 2.0, we added template, namespace,
throw, catch, …, in C++0x, will add nullptr

– Truth: Too close to release 2.0, no time to add kw

Origination of features

• Why do we need object-oriented?

– Because OO is the killer feature at 1980s

– C++ made OO affordable for PCs, a major success factor

• Why do we need template?

– Because Ada supports generic programming

• Why do we need exception?

– Because Ada supports exception handling

• Why does Ada matter, anyway?

– It’s the chosen language of DoD,
a big buyer of Bell Labs

Zero-overhead principle

• As close to machine as possible, same as C

• A minimal C++ runtime only needs stack to be
setup, same as C.

• The sequence of evaluation is unspecified

• Variables on stack are not initialized

– But there is a rule says you’d always init as define

• The default ctor doesn’t bzero() the POD

• Virtual is not by default (which is good)

Value semantics

• User-defined types (string) vs. built-ins (int)

– Pass by value for class types

– Allocate class object on stack

– Return class object by value

– Composite

• It violates reference semantics in OO

– Making a copy of Printer != having two printers

• Auto generated copy constructors/operator=

• User-defined bi-direction implicit conversion

struct TcpHeader { IpHeader ip; ports }; // C
struct TcpHeader : IpHeader { ports }; // C++

Reference types

• Introduced for operator overloading

– Matrix operator+(Matrix a, Matrix b) vs.

– Matrix operator+(Matrix& a, Matrix& b)

– BigInteger& BigInteger::operator++()

• A hole in the value semantic framework

– When you hold a reference or a pointer as
member, you worry about its life time.

– Dynamic binding only works on ptr/reference

– Not object-oriented, but pointer-oriented or
reference-oriented. (kidding)

There are only two kinds of languages:

• The ones people
complain about and

• The ones nobody uses

Imperfections

WTFs

C++ syntax is not context-free

• Foo<T> a;

• A few possibilities

– Foo is a class template, T is a type

– Foo is a class template, T is a const int

– Foo is an int, T is an int

• Don't forget

– operator< is overloadable, Foo and T can be objects

• To understand one line of C++ code

– One must read through all header files

Template syntax

• To initial an integer to zero

– int x(0); int x = 0; int x = int();

• To convert integer x to double

– (double) x, double(x), static_cast<double>(x)

• Why C++ supports all of them? Template!
template <typename T>
class Sync {
public:
explicit Sync(const T& v) : value_(v) {}
Sync() : value_() {}
pricate:
Mutex mutex_;
T value_;

};

template<typename To, typename From>
inline To explicit_cast(const From &f) {
return To(f);

}

Inconsistency

• Class vs. struct, class is private by default, but

– The operator=() and copy-ctor are public

– Makes C++ an unsafe language by default, for any non-
trivial class, unless you explicitly disable them (Item 6, EC)

– It’s a bad decision, class and struct shouldn’t be so close

• Class uses private inheritance by default

– Contrast to common OO practices, (is-a, LSP)

• More? Yes!

– ~100 rules to remember while coding

– Most of them say of “thou shalt not”

C++ is a mess
• Four small languages meshed together

– immanent contradictions

• Unnecessarily flexibility

– Why would the language allow returning a
reference or pointer to stack local variable?

• Complex scoping rule and overload resolution

– Free functions defined at global or namespace level

– Plus implicit type conversion provided by
constructors and conversion operators.

– Look up and look around (for function definitions)

Prefer library solution over
language solution

• Not always cleaner, too many “idioms”

• To force checking return value

– Loki::CheckReturn<T, Action>

– int foo() __attribute__ ((warn_unused_result));

• To make a class not derivable

– extra base class hiding ctor + friend

– keyword final

Not a good OO language

• Much weaker than modern languages: Java/C#

– no reflection, no dynamic creation or class loading

– Object slicing, object life time management

• Essentially, OO programming is try and error

– Complex syntax stops us building refactoring tools

– No reflection stops easy mocking

– Compiles slowly, who else do distributed compilation?

• Ellipsis (...) parameter works fine in
C/Java/C#, but is discouraged in C++

– auto boxing, single root hierarchy, toString()

Exceptions are bad in C++

• Not because exception handling is bad, it is
essential in Java and many other languages

• Exception is not designed with the language

– It is added 10+ years later after the language
shaped, ie. a late patch

– Inconsistence with value semantics

• “throw 1” or “throw 1.0” make no sense at all

• No established good practices

– Many guys/teams fall back to C’s return value /
error code approach

Can we catch in ctor?
• Yes, of course

• How about initialization list?

• Do you still want to parse C++?
class Person
{
public:
Foo()
try
: name_("Shuo")

{ // ...
}
catch (...) { // read name_ ?
}

private:
std::string name_;

};

class Person
{
public:
Foo() : name_("Shuo")
{
try {
// ...
} catch (...) {
}

}

private:
std::string name_;

};

Exception vs. destructing

• Throw an exception in function will

– Destructs all previous constructed objects

• Throw an exception in constructor will

– Destructs all member objects and base object(s)

• Throw an exception in initialization list will

– Destructs member objects constructed so far

• Throw an exception in array constructing

– Destructs objects constructed before this one

• How about multiple and virtual inheritances

Even worse, threading

• Multithreading appeared early 1990s

– Solaris 2.2/Windows NT 3.1 both in 1993

– Breaks lots of C function
strtok, itoa, errno, singals, fork

– Java was born in 1996, designed with threads

• No practical memory order for years

• No reference impl. -> slow evolution

– Tons of meeting, arguing, debate, paper work

– Java took 3 years to fix "double checked locking"

Not cooperative

• Perl/Python/Ruby/Lua/Erlang are all in C

– Ironically, object-oriented scripting languages
expose API interfaces in C

• Libraries from two vendors can’t be mixed

– Not true for C/Java/Python, why?

– Varied style/taste/resource management

• Binaries from two compilers can’t be mixed

– Combination explosion, if you supply .so
yourlibrary_gcc32_boost_1.33 yourlibrary_gcc32_boost_1.36

yourlibrary_gcc41_boost_1.33 yourlibrary_gcc41_boost_1.36

yourlibrary_gcc41-64_boost_1.33 yourlibrary_gcc41-64_boost_1.36

Not affordable for small companies

• Boost, QT, Poco, ACE, apr

– all provide all-in-one solution, but incomplete

– Difficult to mix any two of them

• Due to diff philosophies behinds libraries

– Every big company re-invents wheels (as I know)

• Java (not to mention Spring/Hibernate/Tomcat)

– logback, xerces, xalan, joda-time, mina, guice, trove4j

• Dependency management

– Java – Ant+Ivy, I can setup my repository in 1 hr

– C++ - GNU Make? CMake? SCons? Autotools?

Why we use C++

C++ is deterministic

• Destructing is determinate

– Arguably the most important feature of C++

• The performance is predictable

– C++ is fast, only when the coders are experts

– Java is almost as fast, much higher productivity

• Although less deterministic than C

– When stepping through code with debugger,
a function call jumps to constructors

– The optimized machine code is unreadable due
to inlining

Determinism?

• Is it O(N) or O(1) ?

– std::string a("a string");

– std::string b = a;

• Is it O(N) or O(N*M) ?

– vector<string> vs; // N-length

– vector<string> newvs = vs;

• Allocate memory from heap? (No COW)

– std::string c = a;

– short string optimization

A better C + data abstraction

• Use C++ as of in 1985: C + concrete class + STL

• Only use templates for saving typing

• Only use OO for replacing switch-case

– Eg. IO-Multiplex, select/poll/epoll/kqueue

– Never design a base case to be derived by others, it’s
hard to do it correctly in C++

– Use boost::bind/boost::function for dynamic bindings

• Frameworks are bad, libraries are good

– One size never fits all, we’re using C++ for purposes
(latency, throughput, footprint, etc.)

– Flexibility? Specificity!

Misuses

• Impersonate other languages

– Boost.Proto vs. embedded interpreter (eg. Lua)

– Boost.Sprit vs. ANTLR

– Boost.Preprocessor vs. code generator

– SystemC vs. Verilog

• overemphasize reusability or flexibility

– too many customizable possibilities (how to test?)

• overemphasize portability

– Good example: Lua, bad example: ACE

Improvements?

With out compromise performance

Many thanks to RoachCock@smth

Core language

• Module system, No headers, No ODR

– compiler looks up modules by namespaces

– Modern package dependency management

• Enum introduces scope

– Color::RED vs. Color_RED

• Fixed integer sizes and (un)sign of char

• Disallow hiding variable of outer scope

• No diff to new/new[] -- or disallow new[]

• Not convert bool to int; nullptr for NULL ptr

Core language

• Allow ctor calling ctor

• override – @Override

• final – not designed as a base class

• finally – try {} catch () {} finally {}

• abstract – must override/inherit

• Copy-ctor/operator= make private for class

• Default values for data members

• Stack trace on error

• variadic template/macros

Library

• Unnecessary flexibility

– Remove allocator template parameter

• A vector<int, MyAlloc> is not a vector<int>

– Remove locales and facets

• iostream should be faster than scanf and printf

– Remove or deprecate error-prone/bad-designed

• auto_ptr, valarray, vector<bool>

• Add more

– Networking, threading, XML, date time, logging

– You name it!

Conclusion

• C++ was designed a person who works with
people who invented Unix and C

• C++ is not owned by a person or company

– pros and cons

• C++ is a success

• C++ doesn't fit all

– Know when and when not to use C++

– Know how and how not to use C++

Thanks for your time

