
Copyright © GREE, Inc. All Rights Reserved.

Common Pitfalls of Functional
Programming and How to Avoid Them:
A Mobile Gaming Platform Case Study

Sep 22, 2013

GREE, Inc.

Yasuaki Takebe

Copyright © GREE, Inc. All Rights Reserved.

• Why Functional Programming?
• Reliability: Eliminate runtime type error, implicit state, ...

• High performance: 20-60 times faster than Perl, PHP, Ruby, ...

• Productivity: Powerful and elegant, a vast number of libraries, ...

• However...
• Memory leak

• Data lost

• Performance degradation

• Crash

Introduction

Copyright © GREE, Inc. All Rights Reserved.

• About ourselves
• What we developed using functional programming

• Examples of pitfalls

• How to avoid them
• Testing tool

• Documentation

• Technical review

• Education

Contents

Copyright © GREE, Inc. All Rights Reserved.

• Overview of GREE's services
• One of the largest mobile game platforms

• 37.2M users, 2000 games (as of Jun. 2013)

• Business
• Social games

• Platform: SNS, 3rd party games

• Social media: mail magazine, news

• Advertising and ad network

• Licensing and merchandising

• Venture capital

About GREE (1/3)

Copyright © GREE, Inc. All Rights Reserved.

• Example of GREE's products / services

• Social games
• Modern War: War simulation game

• Miniature Garden: Wonder Mail and Animal Island: Gardening game

• ...

• SNS app

About GREE (2/3)

Features

- Game portal

- See what friends are

playing

- Share updates, photos and

videos

- Notification from friends

when they like your posts

Copyright © GREE, Inc. All Rights Reserved.

• Company
• Founded: Dec 7, 2004

• Employees: 2582 (group, as of Jun. 2013)

• Common architecture
• Client: Java, Objective-C, JavaScript, Unity/C#, ...

• Server: PHP, MySQL, Flare (KVS), ...

• Develop middleware for ourselves

• Functional programming
• Started: Jun, 2012 (a Haskell project)

• Engineers: Haskell: 4, Scala: 6

About GREE (3/3)

Copyright © GREE, Inc. All Rights Reserved.

• KVS management system
• Setup / destroy KVS nodes in response to hardware fault / sudden access

spike

• Used in a social game app

• Components developed in Haskell
• Frontend

• Control server

• Web admin
server

What We Developed Using FP (1/2)

Copyright © GREE, Inc. All Rights Reserved.

• Image storage gateway
• Convert WebDAV to memcached / S3 API

• Used in SNS photo uploader

• Developed using Warp and http-conduit

What We Developed Using FP (2/2)

Image
Storage
Gateway

OpenStack Swift Cluster

memcached S3 API

storage
storage

Swift

Flare Cluster

Flare

PHP

WebDAV

Upload

Download

SNS App

storage
storage

Swift

Copyright © GREE, Inc. All Rights Reserved.

Examples of Pitfalls

Copyright © GREE, Inc. All Rights Reserved.

• Issue: Memory leak

• Cause
• Frontend server keeps a list of active thread IDs in TVar for monitoring

• Delete from thread ID list

 modifyTVar' requestThreads $ \threads -> filter (tid /=) threads

• But this reduces thread ID list only to WHNF

Pitfall 1: Leak by Lazy Evaluation

Copyright © GREE, Inc. All Rights Reserved.

• How to fix
• Evaluate to normal form (or evaluate filters in this case)

• In this case we fixed by evaluating length of threads as follows:

 modifyTVar requestThreads $ \threads ->
 let thread' = filter (tid /=) threads
 in seq (length threads') threads'

• Pitfall
• It is easy to mix up write to TVar / MVar with other IO operations, which

evaluate value to normal form

• Easy to mix up modityTVar', strict version of modifyTVar, with other IO

operations which evaluate the value to normal form

Pitfall 1: Leak by Lazy Evaluation (Cont.)

Copyright © GREE, Inc. All Rights Reserved.

• Issue: Data put in a queue (very rarely) lost

• Cause
• Queue is implemented using TQueue, which has two TVars of list

• Dequeue from TQueue is wrapped by timeout, as readTQueue blocks

forever when no item in queue

• Definition of timeout

 timeout n f = do
 pid <- myThreadId
 ex <- fmap Timeout newUnique
 handleJust (\e -> if e == ex then Just () else Nothing)
 (_ -> return Nothing)
 (bracket (forkIO (threadDelay n >> throwTo pid ex))
 (killThread)
 (_ -> fmap Just f))

• timeout invokes another thread which wait n microseconds and an

exception to throws current thread

• Exception might be thrown when evaluation of f (IO action wrapped by
timeout) just finished

Pitfall 2: Race Condition

Copyright © GREE, Inc. All Rights Reserved.

• How to fix
• Do not change state of queue in timeout

 readRequest q = do
 mRequest <- timeout 10 $ atomically $ do
 request <- peekTQueue q
 return request
 case mRequest of
 Just _ -> atomically $ tryReadTQueue q
 Nothing -> return Nothing

• Pitfall
• Because timeout is implemented as a higher-order function, it is easy to

compose with IO action without taking care of internal implementation

• timeout can be used safely only with IO action which does not change
data, such as accept and connectTo

Pitfall 2: Race Condition (Cont.)

Copyright © GREE, Inc. All Rights Reserved.

• Issue: Performance degradation

• Cause
• This program uses http-conduit to connect to backend HTTP servers

periodically for health check

 manager <- newManager def
 http req manager

• newManager forks thread to repeatedly collect stale connections

• To finish this thread, closeManager must be called (from version 1.2.0)

Pitfall 3: Library Misuse

Copyright © GREE, Inc. All Rights Reserved.

• How to fix
• Call closeManager or use withManager

 withManager $ (\manager -> http req manager)

• Pitfall
• Specification of newManager was changed from 1.2.0

• Haskell libraries are often developed very actively

Pitfall 3: Library Misuse (Cont.)

Copyright © GREE, Inc. All Rights Reserved.

How to Avoid Pitfalls

Copyright © GREE, Inc. All Rights Reserved.

• Overview of recurrence prevention method

How to Avoid Pitfalls

Requirement
 analysis
 &
Design

Coding Unit testing
System
testing

Operation
 &
Maintenance

Technical
review

System
testing

tool

Functional Programming Education

Pitfall
Documentation

Copyright © GREE, Inc. All Rights Reserved.

• Haskell has great unit testing framework
• HUnit, QuickCheck

• Unit testing is not enough to find critical bugs
• System testing

• Stress testing

• Aging testing (long-running stress testing)

• test-sandbox
• System testing framework

• Write system tests using HUnit or QuickCheck

• Can be used for network applications and CUI tools

System Testing Tool (1/4)

Copyright © GREE, Inc. All Rights Reserved.

• Example: memcached test (HUnit)

setup = do -- Register memcached using free TCP port to env
 port <- getPort "memcached"
 register "memcached" "/usr/bin/memcached" ["-p", show port] def

test1 = sandboxTest "Store" $ do
 -- Send commant through registered TCP port
 output <- sendTo "memcached" "set key 0 0 5\r\nvalue\r\n" 1
 assertEqual "item is stored" "STORED\r\n" output

main =
 defaultMain
 [sandboxTests "Example" $ do
 setup -- Setup env accessible from all tests
 start "memcached"
 sandboxTestGroup "All" [test1, test2, ...]
]

System Testing Tool (2/4)

Copyright © GREE, Inc. All Rights Reserved.

• Example: memcached test (QuickCheck)
• For any string s, get(set s) == s

 sandboxTest "Get and set" $ quickCheck $ do
 -- Take any string
 str <- pick arbitrary :: PropertyM Sandbox String

 -- Get and set string
 _ <- run $ sendTo "memcached"
 (printf "set key 0 0 %d\r\n%s\r\n" (length str) str) 20
 output <- run $ sendTo "memcached" "get key\r\n" 20

 -- Check that we get the same string
 assert $ printf "VALUE key 0 %d\r\n%s\r\nEND\r\n" (length str) str
 == output

System Testing Tool (3/4)

Copyright © GREE, Inc. All Rights Reserved.

• Applied to
• KVS management system

• Flare (KVS written in C++)

• # of tests
• Frontend server

• 49 property tests

• 103 system tests

• Control server

• 45 system tests

• 5000+ assertions

• Flare

• Found many bugs

• > 7000 tests

http://hackage.haskell.org/package/test-sandbox

System Testing Tool (4/4)

http://hackage.haskell.org/package/test-sandbox
http://hackage.haskell.org/package/test-sandbox
http://hackage.haskell.org/package/test-sandbox

Copyright © GREE, Inc. All Rights Reserved.

• Problem report
• Describe details of problem

• Linked from bug tracking system

• Timeline of issue

• Temporary measure

• Extent of influence

• Detailed cause and how to fix

• Recurrence prevention

• ...

• Scattered among a lot of other problem reports

• Other FP programmers don't read them

Documentation of Pitfalls (1/4)

Copyright © GREE, Inc. All Rights Reserved.

• Aggregated document
• Collect problems caused by functional programming

• Summarize cause and how to fix for each item

• "Writing Middleware in Haskell"

• Contents
• Lazy evaluation and memory leak

• Preforking and load balancing

• Concurrent programming

• Libraries

• Profiling and optimization

• Test and debug

• Other FP programmers still won't read it

Documentation of Pitfalls (2/4)

Copyright © GREE, Inc. All Rights Reserved.

• Automated check using hlint
• Customize hlint to check pitfall

• Put item number of aggregated document in hlint comment

 warn "Non-strict TVar [1.1]" = modifyTVar ==> modifyTVar'

 warn "Should not use timeout with STM [3.1]" =
 timeout x (atomically f) ==> somethingElse

• Check from Emacs

Documentation of Pitfalls (3/4)

Copyright © GREE, Inc. All Rights Reserved.

• Problems of hlint method
• Not all pitfalls can be detected by hlint

• High level design issue

• Library issue (Ex. Version of http-conduit, hashable)

Documentation of Pitfalls (4/4)

Copyright © GREE, Inc. All Rights Reserved.

• Established technical review process
• Check feasibility of new technologies such as functional programming by

managements and other teams

Technical Review

Copyright © GREE, Inc. All Rights Reserved.

• Brown bag FP meeting
• Once or twice in a month

• Scala and Haskell topics

• "Make GREE a better place
 through the power of FP"

• Education program for
new graduate
• Haskell code puzzle from

Project Euler

Education

Copyright © GREE, Inc. All Rights Reserved.

• Functional programming is great
• We develop some key components of our services using FP

• But there are many pitfalls
• Lazy evaluation, race condition, library misuse, ...

• We should avoid them
• Testing tool

• Documentation

• Technical review

• Education

Conclusion

Copyright © GREE, Inc. All Rights Reserved.

